mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 04:30:03 +00:00
121 lines
4.3 KiB
Python
121 lines
4.3 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Description :
|
|
Author : chenht2022
|
|
Date : 2024-07-25 10:32:05
|
|
Version : 1.0.0
|
|
LastEditors : chenht2022
|
|
LastEditTime : 2024-08-06 10:38:05
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
'''
|
|
import os, sys
|
|
import time
|
|
sys.path.append(os.path.dirname(__file__) + '/../build')
|
|
import cpuinfer_ext
|
|
import torch
|
|
|
|
expert_num = 160
|
|
hidden_size = 5120
|
|
intermediate_size = 1536
|
|
stride = 32
|
|
group_min_len = 10
|
|
group_max_len = 1024
|
|
gate_type = 1 # ggml_type::GGML_TYPE_F16
|
|
up_type = 1 # ggml_type::GGML_TYPE_F16
|
|
down_type = 1 # ggml_type::GGML_TYPE_F16
|
|
hidden_type = 1 # ggml_type::GGML_TYPE_F16
|
|
n_routed_experts = 6
|
|
qlen = 30
|
|
layer_num = 10
|
|
CPUInfer = cpuinfer_ext.CPUInfer(48)
|
|
validation_iter = 100
|
|
|
|
def act_fn(x):
|
|
return x / (1.0 + torch.exp(-x))
|
|
|
|
def mlp_torch(input, gate_proj, up_proj, down_proj):
|
|
gate_buf = torch.mm(input, gate_proj.t())
|
|
up_buf = torch.mm(input, up_proj.t())
|
|
intermediate = act_fn(gate_buf) * up_buf
|
|
ret = torch.mm(intermediate, down_proj.t())
|
|
return ret
|
|
|
|
def moe_torch(input, expert_ids, weights, gate_proj, up_proj, down_proj):
|
|
cnts = expert_ids.new_zeros((expert_ids.shape[0], expert_num))
|
|
cnts.scatter_(1, expert_ids, 1)
|
|
tokens_per_expert = cnts.sum(dim=0)
|
|
idxs = expert_ids.view(-1).argsort()
|
|
sorted_tokens = input[idxs // expert_ids.shape[1]]
|
|
|
|
outputs = []
|
|
start_idx = 0
|
|
for i, num_tokens in enumerate(tokens_per_expert):
|
|
end_idx = start_idx + num_tokens
|
|
if num_tokens == 0:
|
|
continue
|
|
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
|
expert_out = mlp_torch(tokens_for_this_expert, gate_proj[i], up_proj[i], down_proj[i])
|
|
outputs.append(expert_out)
|
|
start_idx = end_idx
|
|
|
|
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
|
|
|
new_x = torch.empty_like(outs)
|
|
new_x[idxs] = outs
|
|
t_output = (
|
|
new_x.view(*expert_ids.shape, -1)
|
|
.type(weights.dtype)
|
|
.mul_(weights.unsqueeze(dim=-1))
|
|
.sum(dim=1)
|
|
.type(new_x.dtype)
|
|
)
|
|
return t_output
|
|
|
|
with torch.inference_mode(mode=True):
|
|
moes = []
|
|
gate_projs = []
|
|
up_projs = []
|
|
down_projs = []
|
|
for _ in range(layer_num):
|
|
gate_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
up_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
down_proj = torch.randn((expert_num, hidden_size, intermediate_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
config = cpuinfer_ext.moe.MOEConfig(expert_num, n_routed_experts, hidden_size, intermediate_size, stride, group_min_len, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
|
|
moe = cpuinfer_ext.moe.MOE(config)
|
|
gate_projs.append(gate_proj)
|
|
up_projs.append(up_proj)
|
|
down_projs.append(down_proj)
|
|
moes.append(moe)
|
|
|
|
# validation
|
|
for i in range(validation_iter):
|
|
expert_ids = torch.stack([torch.randperm(expert_num)[:n_routed_experts] for _ in range(qlen)]).contiguous()
|
|
weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous()
|
|
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
|
|
moe = moes[i % layer_num]
|
|
CPUInfer.submit(
|
|
moe.forward(
|
|
qlen,
|
|
n_routed_experts,
|
|
expert_ids.data_ptr(),
|
|
weights.data_ptr(),
|
|
input.data_ptr(),
|
|
output.data_ptr()
|
|
)
|
|
)
|
|
CPUInfer.sync()
|
|
# print('cpuinfer output', output)
|
|
|
|
gate_proj = gate_projs[i%layer_num]
|
|
up_proj = up_projs[i%layer_num]
|
|
down_proj = down_projs[i%layer_num]
|
|
t_output = moe_torch(input, expert_ids, weights, gate_proj, up_proj, down_proj)
|
|
# print('torch output', t_output)
|
|
|
|
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
|
|
print('diff = ', diff)
|
|
assert(diff < 0.001)
|