#!/usr/bin/env python # coding=utf-8 ''' Description : Author : chenht2022 Date : 2024-07-25 10:32:05 Version : 1.0.0 LastEditors : chenht2022 LastEditTime : 2024-08-06 10:38:05 Copyright (c) 2024 by KVCache.AI, All Rights Reserved. ''' import os, sys import time sys.path.append(os.path.dirname(__file__) + '/../build') import cpuinfer_ext import torch expert_num = 160 hidden_size = 5120 intermediate_size = 1536 stride = 32 group_min_len = 10 group_max_len = 1024 gate_type = 1 # ggml_type::GGML_TYPE_F16 up_type = 1 # ggml_type::GGML_TYPE_F16 down_type = 1 # ggml_type::GGML_TYPE_F16 hidden_type = 1 # ggml_type::GGML_TYPE_F16 n_routed_experts = 6 qlen = 30 layer_num = 10 CPUInfer = cpuinfer_ext.CPUInfer(48) validation_iter = 100 def act_fn(x): return x / (1.0 + torch.exp(-x)) def mlp_torch(input, gate_proj, up_proj, down_proj): gate_buf = torch.mm(input, gate_proj.t()) up_buf = torch.mm(input, up_proj.t()) intermediate = act_fn(gate_buf) * up_buf ret = torch.mm(intermediate, down_proj.t()) return ret def moe_torch(input, expert_ids, weights, gate_proj, up_proj, down_proj): cnts = expert_ids.new_zeros((expert_ids.shape[0], expert_num)) cnts.scatter_(1, expert_ids, 1) tokens_per_expert = cnts.sum(dim=0) idxs = expert_ids.view(-1).argsort() sorted_tokens = input[idxs // expert_ids.shape[1]] outputs = [] start_idx = 0 for i, num_tokens in enumerate(tokens_per_expert): end_idx = start_idx + num_tokens if num_tokens == 0: continue tokens_for_this_expert = sorted_tokens[start_idx:end_idx] expert_out = mlp_torch(tokens_for_this_expert, gate_proj[i], up_proj[i], down_proj[i]) outputs.append(expert_out) start_idx = end_idx outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) new_x = torch.empty_like(outs) new_x[idxs] = outs t_output = ( new_x.view(*expert_ids.shape, -1) .type(weights.dtype) .mul_(weights.unsqueeze(dim=-1)) .sum(dim=1) .type(new_x.dtype) ) return t_output with torch.inference_mode(mode=True): moes = [] gate_projs = [] up_projs = [] down_projs = [] for _ in range(layer_num): gate_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() up_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() down_proj = torch.randn((expert_num, hidden_size, intermediate_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() config = cpuinfer_ext.moe.MOEConfig(expert_num, n_routed_experts, hidden_size, intermediate_size, stride, group_min_len, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type) moe = cpuinfer_ext.moe.MOE(config) gate_projs.append(gate_proj) up_projs.append(up_proj) down_projs.append(down_proj) moes.append(moe) # validation for i in range(validation_iter): expert_ids = torch.stack([torch.randperm(expert_num)[:n_routed_experts] for _ in range(qlen)]).contiguous() weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous() input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous() output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous() input = input / 100 moe = moes[i % layer_num] CPUInfer.submit( moe.forward( qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr() ) ) CPUInfer.sync() # print('cpuinfer output', output) gate_proj = gate_projs[i%layer_num] up_proj = up_projs[i%layer_num] down_proj = down_projs[i%layer_num] t_output = moe_torch(input, expert_ids, weights, gate_proj, up_proj, down_proj) # print('torch output', t_output) diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output)) print('diff = ', diff) assert(diff < 0.001)