kvcache-ai-ktransformers/doc/en/ROCm.md
2025-03-14 14:25:52 -04:00

96 lines
3 KiB
Markdown

# ROCm Support for ktransformers (Beta)
## Introduction
### Overview
In our effort to expand GPU architecture support beyond NVIDIA, we are excited to introduce **AMD GPU support through ROCm** in ktransformers (Beta release). This implementation has been tested and developed using EPYC 9274F processors and AMD Radeon 7900xtx GPUs.
## Installation Guide
### 1. Install ROCm Driver
Begin by installing the ROCm drivers for your AMD GPU:
- [Official ROCm Installation Guide for Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/native_linux/install-radeon.html)
### 2. Set Up Conda Environment
We recommend using Miniconda3/Anaconda3 for environment management:
```bash
# Download Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# Create environment
conda create --name ktransformers python=3.11
conda activate ktransformers
# Install required libraries
conda install -c conda-forge libstdcxx-ng
# Verify GLIBCXX version (should include 3.4.32)
strings ~/anaconda3/envs/ktransformers/lib/libstdc++.so.6 | grep GLIBCXX
```
> **Note:** Adjust the Anaconda path if your installation directory differs from `~/anaconda3`
### 3. Install PyTorch for ROCm
Install PyTorch with ROCm 6.2.4 support:
```bash
pip3 install torch torchvision torchaudio \
--index-url https://download.pytorch.org/whl/rocm6.2.4
pip3 install packaging ninja cpufeature numpy
```
> **Tip:** For other ROCm versions, visit [PyTorch Previous Versions](https://pytorch.org/get-started/previous-versions/)
### 4. Build ktransformers
```bash
# Clone repository
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
git submodule update --init
# Optional: Compile web interface
# See: api/server/website.md
# Install dependencies
bash install.sh
```
## Running DeepSeek-R1 Models
### Configuration for 24GB VRAM GPUs
Use our optimized configuration for constrained VRAM:
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path ktransformers/optimize/optimize_rules/rocm/DeepSeek-V3-Chat.yaml \
--cpu_infer <cpu_cores + 1>
```
> **Beta Note:** Current Q8 linear implementation (Marlin alternative) shows suboptimal performance. Expect optimizations in future releases.
### Configuration for 40GB+ VRAM GPUs
For better performance on high-VRAM GPUs:
1. Modify `DeepSeek-V3-Chat.yaml`:
```yaml
# Replace all instances of:
KLinearMarlin → KLinearTorch
```
2. Execute with:
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path <modified_yaml_path> \
--cpu_infer <cpu_cores + 1>
```
> **Tip:** If you got 2 * 24GB AMD GPUS, you may also do the same modify and run `ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat-multi-gpu.yaml` instead.
## Known Limitations
- Marlin operations not supported on ROCm platform
- Current Q8 linear implementation shows reduced performance (Beta limitation)