kvcache-ai-ktransformers/ktransformers/server/api/openai/endpoints/chat.py
2025-04-13 23:48:51 -04:00

437 lines
21 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
from time import time
from uuid import uuid4
from typing import Dict, List, Optional, Any, Literal, Union
from pydantic import BaseModel, Field
import re
from fastapi import APIRouter
from fastapi.requests import Request
from ktransformers.server.utils.create_interface import get_interface
from ktransformers.server.schemas.assistants.streaming import chat_stream_response
from ktransformers.server.schemas.endpoints.chat import ChatCompletionCreate
from ktransformers.server.schemas.endpoints.chat import RawUsage, Role
from ktransformers.server.backend.base import BackendInterfaceBase
from ktransformers.server.config.config import Config
from ktransformers.server.config.log import logger
from ktransformers.server.schemas.endpoints.chat import ChatCompletionChunk
# Define own data structure instead of importing from OpenAI
class CompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: Optional[Dict[str, Any]] = None
completion_tokens_details: Optional[Dict[str, Any]] = None
class Choice(BaseModel):
index: int
message: Optional[Dict[str, Any]] = None
finish_reason: Optional[str] = None
logprobs: Optional[Any] = None
delta: Optional[Dict[str, Any]] = None
content_filter_results: Optional[Dict[str, Any]] = None
class ChatCompletion(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Choice]
usage: Optional[CompletionUsage] = None
system_fingerprint: Optional[str] = None
prompt_filter_results: Optional[List[Dict[str, Any]]] = None
# Only for non-streaming response construction
class ChatCompletionMessageToolCallFunction(BaseModel):
name: str
arguments: str
class ChatCompletionMessageToolCall(BaseModel):
id: str
type: str
function: ChatCompletionMessageToolCallFunction
class ChatCompletionMessage(BaseModel):
role: str
content: Optional[str] = None
tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None
router = APIRouter()
@router.get('/models', tags=['openai'])
async def list_models():
return {"data": [{"id": Config().model_name, "name": Config().model_name}], "object": "list"}
def getTools(buffer):
tool_calls_begin_marker = "<tool▁calls▁begin>"
tool_call_begin_marker = "<tool▁call▁begin>"
tool_sep_marker = "<tool▁sep>"
tool_call_end_marker = "<tool▁call▁end>"
tool_calls_end_marker = "<tool▁calls▁end>"
extracted_tools = []
working_buffer = buffer
# Iterate over all function calls
while tool_call_begin_marker in working_buffer and tool_call_end_marker in working_buffer:
# Find a complete function call
start_index = working_buffer.find(tool_call_begin_marker)
end_index = working_buffer.find(tool_call_end_marker) + len(tool_call_end_marker)
if start_index == -1 or end_index == -1 or start_index > end_index:
logger.warning("Not a function")
break
# Extract the full function call
full_tool_call = working_buffer[start_index:end_index]
# Remove this function call from the working buffer to prevent duplicate processing
working_buffer = working_buffer.replace(full_tool_call, "", 1)
# Extract the function name
function_name_start = full_tool_call.find(tool_sep_marker) + len(tool_sep_marker)
function_name_end = full_tool_call.find("\n", function_name_start)
function_name = full_tool_call[function_name_start:function_name_end].strip()
# Extract JSON parameters
json_pattern = r'```json\s*(.*?)\s*```'
json_match = re.search(json_pattern, full_tool_call, re.DOTALL)
if json_match:
arguments_str = json_match.group(1).strip()
# Generate tool call IDs
tool_call_id = f"call_{uuid4().hex[:24]}"
# Add to tool call list
extracted_tools.append({
"id": tool_call_id,
"type": "function",
"function": {
"name": function_name,
"arguments": arguments_str
}
})
logger.info(f"Get Function: {function_name}")
else:
logger.warning(f"Unable to get functionfunction_name: {function_name}")
logger.info(f"Total {len(extracted_tools)} Functions")
return extracted_tools
@router.post('/chat/completions', tags=['openai'])
async def chat_completion(request: Request, create: ChatCompletionCreate):
id = str(uuid4().hex)
# 1. Use system prompts to let models know how to use tools
enhanced_messages = list(create.messages)
# If there is a tool and the first message is system, add instructions on how to use the tool in the system tip
if create.tools and len(create.tools) > 0 and (enhanced_messages[0].role == Role.system or enhanced_messages[0].role == Role.user):
tool_instructions = "你可以使用function_call函数调用功能目前你可以使用以下工具\n\n"
for tool in create.tools:
tool_instructions += f" \"function\":{{\"name\" : {tool.function.name},\"description\" : {tool.function.description} , \"parameters\" : {tool.function.parameters}}}\n"
# Modify tool usage guidelines to encourage JSON output
tool_instructions += "name为函数名称description为函数功能的描述parameters中含有函数需要使用的参数和参数的描述, 其中required为必要参数\n"
tool_instructions += "工具仅在用户明确提出,或者你认为需要调用工具的时候调用,注意,当需要高度实时性的信息比如时间或者最近的事情等,优先调用工具来获取!。当确实调用工具的关键信息时,你可以先向用户索取关键信息再调用工具\n"
tool_instructions += "\n当你需要使用工具时,请以下列格式输出,格式为:\n"
tool_instructions += '<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>name\n```json {"参数名": "参数值","参数名2": "参数值2"...}\n```<tool▁call▁end><tool▁calls▁end>\n'
tool_instructions += '示例: \n<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>the_functnion_name_will_be_called\n```json {"arg1": "value1","arg2": "value2"}\n```<tool▁call▁end><tool▁calls▁end>\n'
tool_instructions += "这样可以调用名为\"the_functnion_name_will_be_called\",并将value1和value2传入参数arg1,arg2\n"
tool_instructions += "不要尝试解释你在做什么,直接输出工具函数调用即可。确保函数调用语句格式正确且完整。"
enhanced_messages[0].content = enhanced_messages[0].content + "\n\n" + tool_instructions
# Requests processed
interface: BackendInterfaceBase = get_interface()
input_message = [json.loads(m.model_dump_json()) for m in enhanced_messages]
if Config().api_key != '':
assert request.headers.get('Authorization', '').split()[-1] == Config().api_key
if create.stream:
async def inner():
chunk = ChatCompletionChunk(
id=id,
choices=[],
object='chat.completion.chunk',
created=int(time()),
model=Config().model_name,
system_fingerprint=f"fp_{uuid4().hex[:12]}",
)
# Collect the full output of the model, but specialize in processing tool calls
full_content = ""
buffer = "" # Used to temporarily store the current block of text
tool_call_mode = False # Mark if a tool call is being processed
tool_calls = [] # Store all detected tool calls
# Customize model special tokens
tool_calls_begin_marker = "<tool▁calls▁begin>"
tool_call_begin_marker = "<tool▁call▁begin>"
tool_sep_marker = "<tool▁sep>"
tool_call_end_marker = "<tool▁call▁end>"
tool_calls_end_marker = "<tool▁calls▁end>"
async for res in interface.inference(input_message, id, create.temperature, create.top_p):
if isinstance(res, RawUsage):
# Final return on utilization
raw_usage = res
chunk.choices = []
chunk.usage = CompletionUsage(
prompt_tokens=raw_usage.prefill_count,
completion_tokens=raw_usage.decode_count,
total_tokens=raw_usage.prefill_count + raw_usage.decode_count
)
yield chunk
elif isinstance(res, tuple) and len(res) == 2:
token, finish_reason = res
# Detecting model-specific formatting tool call starts
if not tool_call_mode and tool_calls_begin_marker in buffer + token:
tool_call_mode = True
# Adjust full_content to remove tool call section
if buffer.endswith(tool_calls_begin_marker):
full_content = full_content[:-len(tool_calls_begin_marker)]
elif tool_calls_begin_marker in (buffer + token):
idx = (buffer + token).find(tool_calls_begin_marker)
full_content = full_content[:-(len(buffer) - idx)]
buffer = ""
# Send the current cumulative text content (if any)
if full_content:
chunk.choices = [{
"index": 0,
"delta": {"content": full_content},
"finish_reason": None
}]
yield chunk
full_content = ""
# Accumulation of content in non-tool call mode
if not tool_call_mode:
full_content += token
buffer += token
# Keep the buffer at a reasonable size
if len(buffer) > 200:
buffer = buffer[-200:]
else:
# In tool call mode, continue to collect tool call related text
buffer += token
# If the tool call end marker is found
if tool_calls_end_marker in buffer:
try:
# Parsing Calling Text Extraction Tool Calling Information
tool_calls = getTools(buffer)
if len(tool_calls):
# reset state
tool_call_mode = False
buffer = ""
# Send tool call events
for idx, tool_call in enumerate(tool_calls):
# First tool call message
chunk.choices = [{
"index": 0,
"delta": {
"role": "assistant",
"content": None,
"tool_calls": [{
"index": idx,
"id": tool_call["id"],
"type": "function",
"function": {
"name": tool_call["function"]["name"],
"arguments": ""
}
}]
},
"finish_reason": None
}]
yield chunk
# Sending Parameters
chunk.choices = [{
"index": 0,
"delta": {
"tool_calls": [{
"index": idx,
"function": {"arguments": tool_call["function"]["arguments"]}
}]
},
"finish_reason": None
}]
yield chunk
# Send Completion Message
chunk.choices = [{
"index": 0,
"delta": {},
"finish_reason": "tool_calls"
}]
yield chunk
# No further processing after return
return
else:
# JSON extraction failed, probably incomplete formatting
logger.warning("Failed to extract JSON from tool call")
tool_call_mode = False
buffer = ""
except Exception as e:
logger.error(f"Error processing tool call: {e}")
tool_call_mode = False
buffer = ""
# Normal text output (only in non-tool call mode)
if not tool_call_mode and token:
if finish_reason is not None:
chunk.choices = [{
"index": 0,
"delta": {},
"finish_reason": finish_reason
}]
yield chunk
else:
if any(marker in token for marker in [tool_calls_begin_marker, tool_call_begin_marker]):
pass
else:
chunk.choices = [{
"index": 0,
"delta": {"content": token},
"finish_reason": None
}]
yield chunk
# If gotten this far without returning, it means that the full tool call was not detected
# Send Routine Completion Message
if not tool_call_mode:
chunk.choices = [{
"index": 0,
"delta": {},
"finish_reason": "stop"
}]
yield chunk
return chat_stream_response(request, inner())
else:
# non streaming response processing
full_content = ""
finish_reason = None
tool_calls = []
buffer = ""
tool_call_mode = False
# Custom model special markers
tool_calls_begin_marker = "<tool▁calls▁begin>"
tool_call_begin_marker = "<tool▁call▁begin>"
tool_sep_marker = "<tool▁sep>"
tool_call_end_marker = "<tool▁call▁end>"
tool_calls_end_marker = "<tool▁calls▁end>"
async for res in interface.inference(input_message, id, create.temperature, create.top_p):
if isinstance(res, RawUsage):
raw_usage = res
usage = CompletionUsage(
prompt_tokens=raw_usage.prefill_count,
completion_tokens=raw_usage.decode_count,
total_tokens=raw_usage.prefill_count + raw_usage.decode_count
)
elif isinstance(res, tuple) and len(res) == 2:
token, finish_reason = res
# Detecting the start of model-specific formatting tool calls
if not tool_call_mode and tool_calls_begin_marker in buffer + token:
tool_call_mode = True
# Adjust full_content to remove tool call section
if buffer.endswith(tool_calls_begin_marker):
full_content = full_content[:-len(tool_calls_begin_marker)]
elif tool_calls_begin_marker in (buffer + token):
idx = (buffer + token).find(tool_calls_begin_marker)
full_content = full_content[:-(len(buffer) - idx)]
buffer = ""
# Accumulation of content in non-tool call mode
if not tool_call_mode:
full_content += token
buffer += token
# Keep the buffer at a reasonable size
if len(buffer) > 200:
buffer = buffer[-200:]
else:
# In tool call mode, continue to collect tool call related text
buffer += token
# If the tool call end marker is found
if tool_calls_end_marker in buffer:
try:
# Parsing Calling Text Extraction Tool Calling Information
full_tool_call = buffer
# Extract function name
function_name_start = full_tool_call.find(tool_sep_marker) + len(tool_sep_marker)
function_name_end = full_tool_call.find("\n", function_name_start)
function_name = full_tool_call[function_name_start:function_name_end].strip()
# Extract JSON Parameters - Extracts the content between ```json and ```.
json_pattern = r'```json\s*(.*?)\s*```'
json_match = re.search(json_pattern, full_tool_call, re.DOTALL)
if json_match:
arguments_str = json_match.group(1).strip()
# Generate tool call IDs
tool_call_id = f"call_{uuid4().hex[:24]}"
# Add to tool call list
tool_calls.append({
"id": tool_call_id,
"index": 0,
"type": "function",
"function": {
"name": function_name,
"arguments": arguments_str
}
})
# If the tool call is successfully parsed, set the reason for completion
finish_reason = "tool_calls"
# reset state
tool_call_mode = False
buffer = ""
else:
# JSON extraction failed, probably incomplete formatting
logger.warning("Failed to extract JSON from tool call")
tool_call_mode = False
buffer = ""
except Exception as e:
logger.error(f"Error processing tool call: {e}")
tool_call_mode = False
buffer = ""
# Build Response
response = {
"id": id,
"object": "chat.completion",
"created": int(time()),
"model": Config().model_name,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": None if tool_calls else full_content,
"tool_calls": tool_calls if tool_calls else None
},
"finish_reason": finish_reason or "stop"
}],
"usage": usage.__dict__,
"system_fingerprint": f"fp_{uuid4().hex[:12]}"
}
return response