import json from time import time from uuid import uuid4 from typing import Dict, List, Optional, Any, Literal, Union from pydantic import BaseModel, Field import re from fastapi import APIRouter from fastapi.requests import Request from ktransformers.server.utils.create_interface import get_interface from ktransformers.server.schemas.assistants.streaming import chat_stream_response from ktransformers.server.schemas.endpoints.chat import ChatCompletionCreate from ktransformers.server.schemas.endpoints.chat import RawUsage, Role from ktransformers.server.backend.base import BackendInterfaceBase from ktransformers.server.config.config import Config from ktransformers.server.config.log import logger from ktransformers.server.schemas.endpoints.chat import ChatCompletionChunk # Define own data structure instead of importing from OpenAI class CompletionUsage(BaseModel): prompt_tokens: int completion_tokens: int total_tokens: int prompt_tokens_details: Optional[Dict[str, Any]] = None completion_tokens_details: Optional[Dict[str, Any]] = None class Choice(BaseModel): index: int message: Optional[Dict[str, Any]] = None finish_reason: Optional[str] = None logprobs: Optional[Any] = None delta: Optional[Dict[str, Any]] = None content_filter_results: Optional[Dict[str, Any]] = None class ChatCompletion(BaseModel): id: str object: str = "chat.completion" created: int model: str choices: List[Choice] usage: Optional[CompletionUsage] = None system_fingerprint: Optional[str] = None prompt_filter_results: Optional[List[Dict[str, Any]]] = None # Only for non-streaming response construction class ChatCompletionMessageToolCallFunction(BaseModel): name: str arguments: str class ChatCompletionMessageToolCall(BaseModel): id: str type: str function: ChatCompletionMessageToolCallFunction class ChatCompletionMessage(BaseModel): role: str content: Optional[str] = None tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None router = APIRouter() @router.get('/models', tags=['openai']) async def list_models(): return {"data": [{"id": Config().model_name, "name": Config().model_name}], "object": "list"} def getTools(buffer): tool_calls_begin_marker = "<|tool▁calls▁begin|>" tool_call_begin_marker = "<|tool▁call▁begin|>" tool_sep_marker = "<|tool▁sep|>" tool_call_end_marker = "<|tool▁call▁end|>" tool_calls_end_marker = "<|tool▁calls▁end|>" extracted_tools = [] working_buffer = buffer # Iterate over all function calls while tool_call_begin_marker in working_buffer and tool_call_end_marker in working_buffer: # Find a complete function call start_index = working_buffer.find(tool_call_begin_marker) end_index = working_buffer.find(tool_call_end_marker) + len(tool_call_end_marker) if start_index == -1 or end_index == -1 or start_index > end_index: logger.warning("Not a function") break # Extract the full function call full_tool_call = working_buffer[start_index:end_index] # Remove this function call from the working buffer to prevent duplicate processing working_buffer = working_buffer.replace(full_tool_call, "", 1) # Extract the function name function_name_start = full_tool_call.find(tool_sep_marker) + len(tool_sep_marker) function_name_end = full_tool_call.find("\n", function_name_start) function_name = full_tool_call[function_name_start:function_name_end].strip() # Extract JSON parameters json_pattern = r'```json\s*(.*?)\s*```' json_match = re.search(json_pattern, full_tool_call, re.DOTALL) if json_match: arguments_str = json_match.group(1).strip() # Generate tool call IDs tool_call_id = f"call_{uuid4().hex[:24]}" # Add to tool call list extracted_tools.append({ "id": tool_call_id, "type": "function", "function": { "name": function_name, "arguments": arguments_str } }) logger.info(f"Get Function: {function_name}") else: logger.warning(f"Unable to get function,function_name: {function_name}") logger.info(f"Total {len(extracted_tools)} Functions") return extracted_tools @router.post('/chat/completions', tags=['openai']) async def chat_completion(request: Request, create: ChatCompletionCreate): id = str(uuid4().hex) # 1. Use system prompts to let models know how to use tools enhanced_messages = list(create.messages) # If there is a tool and the first message is system, add instructions on how to use the tool in the system tip if create.tools and len(create.tools) > 0 and (enhanced_messages[0].role == Role.system or enhanced_messages[0].role == Role.user): tool_instructions = "你可以使用function_call,函数调用功能,目前,你可以使用以下工具\n\n" for tool in create.tools: tool_instructions += f" \"function\":{{\"name\" : {tool.function.name},\"description\" : {tool.function.description} , \"parameters\" : {tool.function.parameters}}}\n" # Modify tool usage guidelines to encourage JSON output tool_instructions += "name为函数名称,description为函数功能的描述,parameters中含有函数需要使用的参数和参数的描述, 其中required为必要参数\n" tool_instructions += "工具仅在用户明确提出,或者你认为需要调用工具的时候调用,注意,当需要高度实时性的信息比如时间或者最近的事情等,优先调用工具来获取!。当确实调用工具的关键信息时,你可以先向用户索取关键信息再调用工具\n" tool_instructions += "\n当你需要使用工具时,请以下列格式输出,格式为:\n" tool_instructions += '<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>name\n```json {"参数名": "参数值","参数名2": "参数值2"...}\n```<|tool▁call▁end|><|tool▁calls▁end|>\n' tool_instructions += '示例: \n<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>the_functnion_name_will_be_called\n```json {"arg1": "value1","arg2": "value2"}\n```<|tool▁call▁end|><|tool▁calls▁end|>\n' tool_instructions += "这样可以调用名为\"the_functnion_name_will_be_called\",并将value1和value2传入参数arg1,arg2\n" tool_instructions += "不要尝试解释你在做什么,直接输出工具函数调用即可。确保函数调用语句格式正确且完整。" enhanced_messages[0].content = enhanced_messages[0].content + "\n\n" + tool_instructions # Requests processed interface: BackendInterfaceBase = get_interface() input_message = [json.loads(m.model_dump_json()) for m in enhanced_messages] if Config().api_key != '': assert request.headers.get('Authorization', '').split()[-1] == Config().api_key if create.stream: async def inner(): chunk = ChatCompletionChunk( id=id, choices=[], object='chat.completion.chunk', created=int(time()), model=Config().model_name, system_fingerprint=f"fp_{uuid4().hex[:12]}", ) # Collect the full output of the model, but specialize in processing tool calls full_content = "" buffer = "" # Used to temporarily store the current block of text tool_call_mode = False # Mark if a tool call is being processed tool_calls = [] # Store all detected tool calls # Customize model special tokens tool_calls_begin_marker = "<|tool▁calls▁begin|>" tool_call_begin_marker = "<|tool▁call▁begin|>" tool_sep_marker = "<|tool▁sep|>" tool_call_end_marker = "<|tool▁call▁end|>" tool_calls_end_marker = "<|tool▁calls▁end|>" async for res in interface.inference(input_message, id, create.temperature, create.top_p): if isinstance(res, RawUsage): # Final return on utilization raw_usage = res chunk.choices = [] chunk.usage = CompletionUsage( prompt_tokens=raw_usage.prefill_count, completion_tokens=raw_usage.decode_count, total_tokens=raw_usage.prefill_count + raw_usage.decode_count ) yield chunk elif isinstance(res, tuple) and len(res) == 2: token, finish_reason = res # Detecting model-specific formatting tool call starts if not tool_call_mode and tool_calls_begin_marker in buffer + token: tool_call_mode = True # Adjust full_content to remove tool call section if buffer.endswith(tool_calls_begin_marker): full_content = full_content[:-len(tool_calls_begin_marker)] elif tool_calls_begin_marker in (buffer + token): idx = (buffer + token).find(tool_calls_begin_marker) full_content = full_content[:-(len(buffer) - idx)] buffer = "" # Send the current cumulative text content (if any) if full_content: chunk.choices = [{ "index": 0, "delta": {"content": full_content}, "finish_reason": None }] yield chunk full_content = "" # Accumulation of content in non-tool call mode if not tool_call_mode: full_content += token buffer += token # Keep the buffer at a reasonable size if len(buffer) > 200: buffer = buffer[-200:] else: # In tool call mode, continue to collect tool call related text buffer += token # If the tool call end marker is found if tool_calls_end_marker in buffer: try: # Parsing Calling Text Extraction Tool Calling Information tool_calls = getTools(buffer) if len(tool_calls): # reset state tool_call_mode = False buffer = "" # Send tool call events for idx, tool_call in enumerate(tool_calls): # First tool call message chunk.choices = [{ "index": 0, "delta": { "role": "assistant", "content": None, "tool_calls": [{ "index": idx, "id": tool_call["id"], "type": "function", "function": { "name": tool_call["function"]["name"], "arguments": "" } }] }, "finish_reason": None }] yield chunk # Sending Parameters chunk.choices = [{ "index": 0, "delta": { "tool_calls": [{ "index": idx, "function": {"arguments": tool_call["function"]["arguments"]} }] }, "finish_reason": None }] yield chunk # Send Completion Message chunk.choices = [{ "index": 0, "delta": {}, "finish_reason": "tool_calls" }] yield chunk # No further processing after return return else: # JSON extraction failed, probably incomplete formatting logger.warning("Failed to extract JSON from tool call") tool_call_mode = False buffer = "" except Exception as e: logger.error(f"Error processing tool call: {e}") tool_call_mode = False buffer = "" # Normal text output (only in non-tool call mode) if not tool_call_mode and token: if finish_reason is not None: chunk.choices = [{ "index": 0, "delta": {}, "finish_reason": finish_reason }] yield chunk else: if any(marker in token for marker in [tool_calls_begin_marker, tool_call_begin_marker]): pass else: chunk.choices = [{ "index": 0, "delta": {"content": token}, "finish_reason": None }] yield chunk # If gotten this far without returning, it means that the full tool call was not detected # Send Routine Completion Message if not tool_call_mode: chunk.choices = [{ "index": 0, "delta": {}, "finish_reason": "stop" }] yield chunk return chat_stream_response(request, inner()) else: # non streaming response processing full_content = "" finish_reason = None tool_calls = [] buffer = "" tool_call_mode = False # Custom model special markers tool_calls_begin_marker = "<|tool▁calls▁begin|>" tool_call_begin_marker = "<|tool▁call▁begin|>" tool_sep_marker = "<|tool▁sep|>" tool_call_end_marker = "<|tool▁call▁end|>" tool_calls_end_marker = "<|tool▁calls▁end|>" async for res in interface.inference(input_message, id, create.temperature, create.top_p): if isinstance(res, RawUsage): raw_usage = res usage = CompletionUsage( prompt_tokens=raw_usage.prefill_count, completion_tokens=raw_usage.decode_count, total_tokens=raw_usage.prefill_count + raw_usage.decode_count ) elif isinstance(res, tuple) and len(res) == 2: token, finish_reason = res # Detecting the start of model-specific formatting tool calls if not tool_call_mode and tool_calls_begin_marker in buffer + token: tool_call_mode = True # Adjust full_content to remove tool call section if buffer.endswith(tool_calls_begin_marker): full_content = full_content[:-len(tool_calls_begin_marker)] elif tool_calls_begin_marker in (buffer + token): idx = (buffer + token).find(tool_calls_begin_marker) full_content = full_content[:-(len(buffer) - idx)] buffer = "" # Accumulation of content in non-tool call mode if not tool_call_mode: full_content += token buffer += token # Keep the buffer at a reasonable size if len(buffer) > 200: buffer = buffer[-200:] else: # In tool call mode, continue to collect tool call related text buffer += token # If the tool call end marker is found if tool_calls_end_marker in buffer: try: # Parsing Calling Text Extraction Tool Calling Information full_tool_call = buffer # Extract function name function_name_start = full_tool_call.find(tool_sep_marker) + len(tool_sep_marker) function_name_end = full_tool_call.find("\n", function_name_start) function_name = full_tool_call[function_name_start:function_name_end].strip() # Extract JSON Parameters - Extracts the content between ```json and ```. json_pattern = r'```json\s*(.*?)\s*```' json_match = re.search(json_pattern, full_tool_call, re.DOTALL) if json_match: arguments_str = json_match.group(1).strip() # Generate tool call IDs tool_call_id = f"call_{uuid4().hex[:24]}" # Add to tool call list tool_calls.append({ "id": tool_call_id, "index": 0, "type": "function", "function": { "name": function_name, "arguments": arguments_str } }) # If the tool call is successfully parsed, set the reason for completion finish_reason = "tool_calls" # reset state tool_call_mode = False buffer = "" else: # JSON extraction failed, probably incomplete formatting logger.warning("Failed to extract JSON from tool call") tool_call_mode = False buffer = "" except Exception as e: logger.error(f"Error processing tool call: {e}") tool_call_mode = False buffer = "" # Build Response response = { "id": id, "object": "chat.completion", "created": int(time()), "model": Config().model_name, "choices": [{ "index": 0, "message": { "role": "assistant", "content": None if tool_calls else full_content, "tool_calls": tool_calls if tool_calls else None }, "finish_reason": finish_reason or "stop" }], "usage": usage.__dict__, "system_fingerprint": f"fp_{uuid4().hex[:12]}" } return response