mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 20:49:55 +00:00
113 lines
No EOL
5.1 KiB
Python
113 lines
No EOL
5.1 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Description :
|
|
Author : chenht2022
|
|
Date : 2024-07-25 10:32:05
|
|
Version : 1.0.0
|
|
LastEditors : chenht2022
|
|
LastEditTime : 2024-07-25 10:34:06
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
'''
|
|
import os, sys
|
|
import time
|
|
sys.path.append(os.path.dirname(__file__) + '/../build')
|
|
import cpuinfer_ext
|
|
import torch
|
|
|
|
with torch.inference_mode(mode=True):
|
|
expert_num = 10
|
|
hidden_size = 5120
|
|
intermediate_size = 1536
|
|
stride = 32
|
|
group_min_len = 10
|
|
group_max_len = 1024
|
|
gate_type = 1 # ggml_type::GGML_TYPE_F16
|
|
up_type = 1 # ggml_type::GGML_TYPE_F16
|
|
down_type = 1 # ggml_type::GGML_TYPE_F16
|
|
hidden_type = 1 # ggml_type::GGML_TYPE_F16
|
|
n_routed_experts = 6
|
|
qlen = 30
|
|
layer_num = 10
|
|
CPUInfer = cpuinfer_ext.CPUInfer(48)
|
|
validation_iter = 100
|
|
warm_up_iter = 1000
|
|
test_iter = 10000
|
|
|
|
moes = []
|
|
gate_projs = []
|
|
up_projs = []
|
|
down_projs = []
|
|
for _ in range(layer_num):
|
|
gate_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
up_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
down_proj = torch.randn((expert_num, hidden_size, intermediate_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
config = cpuinfer_ext.moe.MOEConfig(expert_num, n_routed_experts, hidden_size, intermediate_size, stride, group_min_len, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
|
|
moe = cpuinfer_ext.moe.MOE(config)
|
|
gate_projs.append(gate_proj)
|
|
up_projs.append(up_proj)
|
|
down_projs.append(down_proj)
|
|
moes.append(moe)
|
|
|
|
# validation
|
|
for i in range(validation_iter):
|
|
moe = moes[i % layer_num]
|
|
expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous()
|
|
weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous()
|
|
input = torch.randn((qlen, 1, hidden_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((qlen, 1, hidden_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
|
|
CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr())
|
|
CPUInfer.sync()
|
|
# print('cpuinfer output', output)
|
|
|
|
def act_fn(x):
|
|
return x / (1.0 + torch.exp(-x))
|
|
t_output = torch.zeros((qlen, 1, hidden_size), dtype=torch.float32).contiguous()
|
|
gate_proj = gate_projs[i%layer_num]
|
|
up_proj = up_projs[i%layer_num]
|
|
down_proj = down_projs[i%layer_num]
|
|
for token_idx in range(qlen):
|
|
for i, expert_id in enumerate(expert_ids[token_idx]):
|
|
gate_buf = torch.mm(input[token_idx], gate_proj[expert_id].t())
|
|
up_buf = torch.mm(input[token_idx], up_proj[expert_id].t())
|
|
intermediate = act_fn(gate_buf) * up_buf
|
|
expert_output = torch.mm(intermediate, down_proj[expert_id].t())
|
|
t_output[token_idx] += weights[token_idx][i] * expert_output
|
|
# print('torch output', t_output)
|
|
|
|
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
|
|
print('diff = ', diff)
|
|
assert(diff < 0.001)
|
|
|
|
# warm up
|
|
for i in range(warm_up_iter):
|
|
moe = moes[i % layer_num]
|
|
expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous()
|
|
weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous()
|
|
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr())
|
|
CPUInfer.sync()
|
|
|
|
# test
|
|
total_time = 0
|
|
for i in range(test_iter):
|
|
moe = moes[i % layer_num]
|
|
expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous()
|
|
weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous()
|
|
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
start = time.perf_counter()
|
|
CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr())
|
|
CPUInfer.sync()
|
|
end = time.perf_counter()
|
|
total_time += end - start
|
|
print('Time: ', total_time)
|
|
print('Iteration: ', test_iter)
|
|
print('Time per iteration: ', total_time / test_iter)
|
|
print('Bandwidth: ', hidden_size * intermediate_size * 3 * n_routed_experts * 2 * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
|
|
print("All tasks completed.") |