#!/usr/bin/env python # coding=utf-8 ''' Description : Author : chenht2022 Date : 2024-07-25 10:32:05 Version : 1.0.0 LastEditors : chenht2022 LastEditTime : 2024-07-25 10:34:06 Copyright (c) 2024 by KVCache.AI, All Rights Reserved. ''' import os, sys import time sys.path.append(os.path.dirname(__file__) + '/../build') import cpuinfer_ext import torch with torch.inference_mode(mode=True): expert_num = 10 hidden_size = 5120 intermediate_size = 1536 stride = 32 group_min_len = 10 group_max_len = 1024 gate_type = 1 # ggml_type::GGML_TYPE_F16 up_type = 1 # ggml_type::GGML_TYPE_F16 down_type = 1 # ggml_type::GGML_TYPE_F16 hidden_type = 1 # ggml_type::GGML_TYPE_F16 n_routed_experts = 6 qlen = 30 layer_num = 10 CPUInfer = cpuinfer_ext.CPUInfer(48) validation_iter = 100 warm_up_iter = 1000 test_iter = 10000 moes = [] gate_projs = [] up_projs = [] down_projs = [] for _ in range(layer_num): gate_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() up_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() down_proj = torch.randn((expert_num, hidden_size, intermediate_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() config = cpuinfer_ext.moe.MOEConfig(expert_num, n_routed_experts, hidden_size, intermediate_size, stride, group_min_len, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type) moe = cpuinfer_ext.moe.MOE(config) gate_projs.append(gate_proj) up_projs.append(up_proj) down_projs.append(down_proj) moes.append(moe) # validation for i in range(validation_iter): moe = moes[i % layer_num] expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous() weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous() input = torch.randn((qlen, 1, hidden_size), dtype=torch.float16).contiguous() output = torch.empty((qlen, 1, hidden_size), dtype=torch.float16).contiguous() input = input / 100 CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr()) CPUInfer.sync() # print('cpuinfer output', output) def act_fn(x): return x / (1.0 + torch.exp(-x)) t_output = torch.zeros((qlen, 1, hidden_size), dtype=torch.float32).contiguous() gate_proj = gate_projs[i%layer_num] up_proj = up_projs[i%layer_num] down_proj = down_projs[i%layer_num] for token_idx in range(qlen): for i, expert_id in enumerate(expert_ids[token_idx]): gate_buf = torch.mm(input[token_idx], gate_proj[expert_id].t()) up_buf = torch.mm(input[token_idx], up_proj[expert_id].t()) intermediate = act_fn(gate_buf) * up_buf expert_output = torch.mm(intermediate, down_proj[expert_id].t()) t_output[token_idx] += weights[token_idx][i] * expert_output # print('torch output', t_output) diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output)) print('diff = ', diff) assert(diff < 0.001) # warm up for i in range(warm_up_iter): moe = moes[i % layer_num] expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous() weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous() input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous() output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous() input = input / 100 CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr()) CPUInfer.sync() # test total_time = 0 for i in range(test_iter): moe = moes[i % layer_num] expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous() weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous() input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous() output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous() input = input / 100 start = time.perf_counter() CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr()) CPUInfer.sync() end = time.perf_counter() total_time += end - start print('Time: ', total_time) print('Iteration: ', test_iter) print('Time per iteration: ', total_time / test_iter) print('Bandwidth: ', hidden_size * intermediate_size * 3 * n_routed_experts * 2 * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s') print("All tasks completed.")