kvcache-ai-ktransformers/ktransformers/ktransformers_ext/bench/bench_linear.py
2024-07-27 16:06:58 +08:00

111 lines
4 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Description :
Author : chenht2022
Date : 2024-07-25 10:31:59
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-07-25 10:32:51
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
import time
sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
def bench_linear(quant_mode: str):
with torch.inference_mode(mode=True):
input_size = 16384
output_size = 5120
stride = 16
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000
hidden_type = 30 # ggml_type::GGML_TYPE_BF16
if quant_mode == "fp32":
proj_type = 0 # ggml_type::GGML_TYPE_F32
bytes_per_elem = 4.000000
elif quant_mode == "fp16":
proj_type = 1 # ggml_type::GGML_TYPE_F16
bytes_per_elem = 2.000000
elif quant_mode == "bf16":
proj_type = 30 # ggml_type::GGML_TYPE_BF16
bytes_per_elem = 2.000000
elif quant_mode == "q8_0":
proj_type = 8 # ggml_type::GGML_TYPE_Q8_0
bytes_per_elem = 1.062500
elif quant_mode == "q6_k":
proj_type = 14 # ggml_type::GGML_TYPE_Q6_K
bytes_per_elem = 0.820312
elif quant_mode == "q5_k_m":
proj_type = 13 # ggml_type::GGML_TYPE_Q5_K
bytes_per_elem = 0.687500
elif quant_mode == "q4_k_m":
proj_type = 12 # ggml_type::GGML_TYPE_Q4_K
bytes_per_elem = 0.562500
elif quant_mode == "q3_k_m":
proj_type = 11 # ggml_type::GGML_TYPE_Q3_K
bytes_per_elem = 0.429688
elif quant_mode == "q2_k":
proj_type = 10 # ggml_type::GGML_TYPE_Q2_K
bytes_per_elem = 0.328125
elif quant_mode == "iq3_xs":
proj_type = 21 # ggml_type::GGML_TYPE_IQ3_S
bytes_per_elem = 0.429688
elif quant_mode == "iq2_xxs":
proj_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS
bytes_per_elem = 0.257812
else:
assert(False)
linears = []
projs = []
for _ in range(layer_num):
proj = torch.randn((output_size, input_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, proj.data_ptr(), proj_type, hidden_type)
linear = cpuinfer_ext.linear.Linear(config)
projs.append(proj)
linears.append(linear)
# warm up
for i in range(warm_up_iter):
linear = linears[i % layer_num]
input = torch.randn((1, input_size), dtype=torch.bfloat16).contiguous()
output = torch.empty((1, output_size), dtype=torch.bfloat16).contiguous()
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
CPUInfer.sync()
# test
total_time = 0
for i in range(test_iter):
linear = linears[i % layer_num]
input = torch.randn((1, input_size), dtype=torch.bfloat16).contiguous()
output = torch.empty((1, output_size), dtype=torch.bfloat16).contiguous()
start = time.perf_counter()
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
CPUInfer.sync()
end = time.perf_counter()
total_time += end - start
print('Quant mode: ', quant_mode)
print('Time(s): ', total_time)
print('Iteration: ', test_iter)
print('Time(us) per iteration: ', total_time / test_iter * 1000000)
print('Bandwidth: ', input_size * output_size * bytes_per_elem * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
print('')
bench_linear("fp32")
bench_linear("fp16")
bench_linear("bf16")
bench_linear("q8_0")
bench_linear("q6_k")
bench_linear("q5_k_m")
bench_linear("q4_k_m")
bench_linear("q3_k_m")
bench_linear("q2_k")
# Not supported on __x86_64__
# bench_linear("iq3_xs")
# bench_linear("iq2_xxs")