#!/usr/bin/env python # coding=utf-8 ''' Description : Author : chenht2022 Date : 2024-07-25 10:31:59 Version : 1.0.0 LastEditors : chenht2022 LastEditTime : 2024-07-25 10:32:51 Copyright (c) 2024 by KVCache.AI, All Rights Reserved. ''' import os, sys import time sys.path.append(os.path.dirname(__file__) + '/../build') import cpuinfer_ext import torch def bench_linear(quant_mode: str): with torch.inference_mode(mode=True): input_size = 16384 output_size = 5120 stride = 16 layer_num = 10 CPUInfer = cpuinfer_ext.CPUInfer(64) warm_up_iter = 1000 test_iter = 10000 hidden_type = 30 # ggml_type::GGML_TYPE_BF16 if quant_mode == "fp32": proj_type = 0 # ggml_type::GGML_TYPE_F32 bytes_per_elem = 4.000000 elif quant_mode == "fp16": proj_type = 1 # ggml_type::GGML_TYPE_F16 bytes_per_elem = 2.000000 elif quant_mode == "bf16": proj_type = 30 # ggml_type::GGML_TYPE_BF16 bytes_per_elem = 2.000000 elif quant_mode == "q8_0": proj_type = 8 # ggml_type::GGML_TYPE_Q8_0 bytes_per_elem = 1.062500 elif quant_mode == "q6_k": proj_type = 14 # ggml_type::GGML_TYPE_Q6_K bytes_per_elem = 0.820312 elif quant_mode == "q5_k_m": proj_type = 13 # ggml_type::GGML_TYPE_Q5_K bytes_per_elem = 0.687500 elif quant_mode == "q4_k_m": proj_type = 12 # ggml_type::GGML_TYPE_Q4_K bytes_per_elem = 0.562500 elif quant_mode == "q3_k_m": proj_type = 11 # ggml_type::GGML_TYPE_Q3_K bytes_per_elem = 0.429688 elif quant_mode == "q2_k": proj_type = 10 # ggml_type::GGML_TYPE_Q2_K bytes_per_elem = 0.328125 elif quant_mode == "iq3_xs": proj_type = 21 # ggml_type::GGML_TYPE_IQ3_S bytes_per_elem = 0.429688 elif quant_mode == "iq2_xxs": proj_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS bytes_per_elem = 0.257812 else: assert(False) linears = [] projs = [] for _ in range(layer_num): proj = torch.randn((output_size, input_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous() config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, proj.data_ptr(), proj_type, hidden_type) linear = cpuinfer_ext.linear.Linear(config) projs.append(proj) linears.append(linear) # warm up for i in range(warm_up_iter): linear = linears[i % layer_num] input = torch.randn((1, input_size), dtype=torch.bfloat16).contiguous() output = torch.empty((1, output_size), dtype=torch.bfloat16).contiguous() CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr()) CPUInfer.sync() # test total_time = 0 for i in range(test_iter): linear = linears[i % layer_num] input = torch.randn((1, input_size), dtype=torch.bfloat16).contiguous() output = torch.empty((1, output_size), dtype=torch.bfloat16).contiguous() start = time.perf_counter() CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr()) CPUInfer.sync() end = time.perf_counter() total_time += end - start print('Quant mode: ', quant_mode) print('Time(s): ', total_time) print('Iteration: ', test_iter) print('Time(us) per iteration: ', total_time / test_iter * 1000000) print('Bandwidth: ', input_size * output_size * bytes_per_elem * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s') print('') bench_linear("fp32") bench_linear("fp16") bench_linear("bf16") bench_linear("q8_0") bench_linear("q6_k") bench_linear("q5_k_m") bench_linear("q4_k_m") bench_linear("q3_k_m") bench_linear("q2_k") # Not supported on __x86_64__ # bench_linear("iq3_xs") # bench_linear("iq2_xxs")