kvcache-ai-ktransformers/doc/en/Docker_xpu.md
Shaojun Liu 404ad39a04 docs: add Dockerfile.xpu and GPU driver setup instructions
- Add Dockerfile.xpu for oneAPI-based container
- Create Docker_xpu.md with usage instructions
- Update xpu.md to include Docker guide
2025-05-28 13:55:35 +08:00

94 lines
2.3 KiB
Markdown

# Intel GPU Docker Guide (Beta)
## Prerequisites
* Docker must be installed and running on your system.
* Create a folder to store big models & intermediate files (e.g., /mnt/models)
* **Before proceeding, ensure the Intel GPU driver is installed correctly on your host:** [Installation Guide](./xpu.md#1-install-intel-gpu-driver)
---
## Building the Docker Image Locally
1. Clone the repository and navigate to the project directory:
```bash
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
```
2. Build the Docker image using the XPU-specific [Dockerfile.xpu](../../Dockerfile.xpu):
```bash
sudo http_proxy=$HTTP_PROXY \
https_proxy=$HTTPS_PROXY \
docker build \
--build-arg http_proxy=$HTTP_PROXY \
--build-arg https_proxy=$HTTPS_PROXY \
-t kt_xpu:0.3.1 \
-f Dockerfile.xpu \
.
```
---
## Running the Container
### 1. Start the container
```bash
sudo docker run -td --privileged \
--net=host \
--device=/dev/dri \
--shm-size="16g" \
-v /path/to/models:/models \
-e http_proxy=$HTTP_PROXY \
-e https_proxy=$HTTPS_PROXY \
--name ktransformers_xpu \
kt_xpu:0.3.1
```
**Note**: Replace `/path/to/models` with your actual model directory path (e.g., `/mnt/models`).
---
### 2. Access the container
```bash
sudo docker exec -it ktransformers_xpu /bin/bash
```
---
### 3. Set required XPU environment variables (inside the container)
```bash
export SYCL_CACHE_PERSISTENT=1
export ONEAPI_DEVICE_SELECTOR=level_zero:0
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
---
### 4. Run the sample script
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path ktransformers/optimize/optimize_rules/xpu/DeepSeek-V3-Chat.yaml \
--cpu_infer <cpu_cores + 1> \
--device xpu \
--max_new_tokens 200
```
**Note**:
* Replace `<path_to_gguf_files>` with the path to your GGUF model files.
* Replace `<cpu_cores + 1>` with the number of CPU cores you want to use plus one.
---
## Additional Information
For more configuration options and usage details, refer to the [project README](../../README.md). To run KTransformers natively on XPU (outside of Docker), please refer to [xpu.md](./xpu.md).