mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-03 19:20:04 +00:00
96 lines
No EOL
3.2 KiB
YAML
96 lines
No EOL
3.2 KiB
YAML
- match:
|
|
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
|
|
replace:
|
|
class: ktransformers.operators.RoPE.RotaryEmbedding
|
|
kwargs:
|
|
generate_device: "cuda"
|
|
prefill_device: "cuda"
|
|
|
|
- match:
|
|
name: "^lm_head$" # regular expression
|
|
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
|
replace:
|
|
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
|
kwargs:
|
|
generate_device: "cuda"
|
|
prefill_device: "cuda"
|
|
generate_op: "KLinearMarlin"
|
|
prefill_op: "KLinearTorch"
|
|
|
|
# - match:
|
|
# name: "^model\\.layers\\..*$" # regular expression
|
|
# class: torch.nn.Linear # only match modules matching name and class simultaneously
|
|
# replace:
|
|
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
|
# kwargs:
|
|
# generate_device: "cuda"
|
|
# prefill_device: "cuda"
|
|
# generate_op: "VLinearMarlin"
|
|
# prefill_op: "KLinearTorch"
|
|
- match:
|
|
name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression
|
|
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
|
replace:
|
|
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
|
kwargs:
|
|
generate_device: "cuda"
|
|
prefill_device: "cuda"
|
|
generate_op: "VLinearMarlin"
|
|
prefill_op: "KLinearTorch"
|
|
- match:
|
|
name: "^model\\.layers\\..*\\.mlp$"
|
|
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
|
|
replace:
|
|
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlockV2 # mlp module with custom forward function
|
|
kwargs:
|
|
generate_device: "cuda"
|
|
prefill_device: "cuda"
|
|
|
|
- match:
|
|
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
|
replace:
|
|
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
|
|
kwargs:
|
|
prefill_device: "cuda"
|
|
prefill_op: "KExpertsTorch"
|
|
generate_device: "cpu"
|
|
generate_op: "KExpertsCPU"
|
|
out_device: "cuda"
|
|
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
|
|
recursive: False # don't recursively inject submodules of this module
|
|
- match:
|
|
name: "^model\\.layers\\..*\\.self_attn$"
|
|
replace:
|
|
class: ktransformers.operators.balance_serve_attention.KQwen2MoeAttention # optimized MLA implementation
|
|
kwargs:
|
|
generate_device: "cuda"
|
|
prefill_device: "cuda"
|
|
- match:
|
|
name: "^model$"
|
|
replace:
|
|
class: "ktransformers.operators.models.KQwen2MoeModel"
|
|
kwargs:
|
|
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
|
- match:
|
|
name: "^model.embed_tokens"
|
|
replace:
|
|
class: "default"
|
|
kwargs:
|
|
generate_device: "cpu"
|
|
prefill_device: "cpu"
|
|
|
|
- match:
|
|
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRMSNorm
|
|
replace:
|
|
class: ktransformers.operators.layernorm.KQwen2MoeRMSNorm
|
|
kwargs:
|
|
generate_device: "cuda"
|
|
prefill_device: "cuda"
|
|
|
|
- match:
|
|
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeMLP
|
|
replace:
|
|
class: ktransformers.operators.mlp.KQwen2MoeMLP
|
|
kwargs:
|
|
generate_device: "cuda"
|
|
prefill_device: "cuda" |