- match: class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding replace: class: ktransformers.operators.RoPE.RotaryEmbedding kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^lm_head$" # regular expression class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda" prefill_device: "cuda" generate_op: "KLinearMarlin" prefill_op: "KLinearTorch" # - match: # name: "^model\\.layers\\..*$" # regular expression # class: torch.nn.Linear # only match modules matching name and class simultaneously # replace: # class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types # kwargs: # generate_device: "cuda" # prefill_device: "cuda" # generate_op: "VLinearMarlin" # prefill_op: "KLinearTorch" - match: name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda" prefill_device: "cuda" generate_op: "VLinearMarlin" prefill_op: "KLinearTorch" - match: name: "^model\\.layers\\..*\\.mlp$" class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock replace: class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlockV2 # mlp module with custom forward function kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^model\\.layers\\..*\\.mlp\\.experts$" replace: class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism kwargs: prefill_device: "cuda" prefill_op: "KExpertsTorch" generate_device: "cpu" generate_op: "KExpertsCPU" out_device: "cuda" backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default) recursive: False # don't recursively inject submodules of this module - match: name: "^model\\.layers\\..*\\.self_attn$" replace: class: ktransformers.operators.balance_serve_attention.KQwen2MoeAttention # optimized MLA implementation kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^model$" replace: class: "ktransformers.operators.models.KQwen2MoeModel" kwargs: per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill - match: name: "^model.embed_tokens" replace: class: "default" kwargs: generate_device: "cpu" prefill_device: "cpu" - match: class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRMSNorm replace: class: ktransformers.operators.layernorm.KQwen2MoeRMSNorm kwargs: generate_device: "cuda" prefill_device: "cuda" - match: class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeMLP replace: class: ktransformers.operators.mlp.KQwen2MoeMLP kwargs: generate_device: "cuda" prefill_device: "cuda"