mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 12:09:48 +00:00
⚡ update v3
This commit is contained in:
parent
aecb50f0d1
commit
f892d22849
2 changed files with 6 additions and 4 deletions
|
@ -42,10 +42,10 @@ https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285
|
|||
</p>
|
||||
|
||||
- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 14GB VRAM and 382GB DRAM.
|
||||
- Prefill Speed:
|
||||
- Prefill Speed (tokens/s):
|
||||
- KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, V0.3 only) → 286.55 (selectively using 6 experts, V0.3 only)
|
||||
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **63.53× speedup**.
|
||||
- Decode Speed(tokens/s):
|
||||
- Decode Speed (tokens/s):
|
||||
- KTransfermor: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, V0.3 only)
|
||||
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**.
|
||||
- Upcoming Open Source Release:
|
||||
|
|
|
@ -1,15 +1,17 @@
|
|||
# GPT-4/o1-level Local VSCode Copilot on a Desktop with only 24GB VRAM
|
||||
# SUMMARY
|
||||
|
||||
- **Fed 10, 2025**: Support DeepseekR1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~64x speedup.<br>
|
||||
|
||||
https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285
|
||||
|
||||
</p>
|
||||
|
||||
- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 14GB VRAM and 382GB DRAM.
|
||||
- Prefill Speed:
|
||||
- Prefill Speed (tokens/s):
|
||||
- KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, V0.3 only) → 286.55 (selectively using 6 experts, V0.3 only)
|
||||
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **63.53× speedup**.
|
||||
- Decode Speed(tokens/s):
|
||||
- Decode Speed (tokens/s):
|
||||
- KTransfermor: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, V0.3 only)
|
||||
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**.
|
||||
- Upcoming Open Source Release:
|
||||
|
|
Loading…
Add table
Reference in a new issue