diff --git a/README.md b/README.md index 92c7766..4c85e1f 100644 --- a/README.md +++ b/README.md @@ -42,10 +42,10 @@ https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285

- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 14GB VRAM and 382GB DRAM. - - Prefill Speed: + - Prefill Speed (tokens/s): - KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, V0.3 only) → 286.55 (selectively using 6 experts, V0.3 only) - Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **63.53× speedup**. - - Decode Speed(tokens/s): + - Decode Speed (tokens/s): - KTransfermor: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, V0.3 only) - Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**. - Upcoming Open Source Release: diff --git a/doc/en/DeepseekR1_V3_tutorial.md b/doc/en/DeepseekR1_V3_tutorial.md index e65e1d1..b69b304 100644 --- a/doc/en/DeepseekR1_V3_tutorial.md +++ b/doc/en/DeepseekR1_V3_tutorial.md @@ -1,15 +1,17 @@ # GPT-4/o1-level Local VSCode Copilot on a Desktop with only 24GB VRAM # SUMMARY +- **Fed 10, 2025**: Support DeepseekR1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~64x speedup.
+ https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285

- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 14GB VRAM and 382GB DRAM. - - Prefill Speed: + - Prefill Speed (tokens/s): - KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, V0.3 only) → 286.55 (selectively using 6 experts, V0.3 only) - Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **63.53× speedup**. - - Decode Speed(tokens/s): + - Decode Speed (tokens/s): - KTransfermor: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, V0.3 only) - Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**. - Upcoming Open Source Release: