mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-11 07:44:35 +00:00
update rope calculation; update modeling.py; update gate for moe
This commit is contained in:
parent
5a50b34627
commit
f873558a89
11 changed files with 402 additions and 412 deletions
235
ktransformers/models/configuration_deepseek_v3.py
Normal file
235
ktransformers/models/configuration_deepseek_v3.py
Normal file
|
@ -0,0 +1,235 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2025 bzantium and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on the DeepSeekV3 implementations from the DeepSeek AI team. (https://huggingface.co/deepseek-ai/DeepSeek-V3)
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""DeepSeekV3 model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.modeling_rope_utils import rope_config_validation
|
||||
|
||||
|
||||
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
class DeepseekV3Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the DeepSeek-V3.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 129280):
|
||||
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`DeepseekV3Model`]
|
||||
hidden_size (`int`, *optional*, defaults to 7168):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 18432):
|
||||
Dimension of the MLP representations.
|
||||
moe_intermediate_size (`int`, *optional*, defaults to 2048):
|
||||
Dimension of the MoE representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 61):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 128):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*, defaults to 128):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
n_shared_experts (`int`, *optional*, defaults to 1):
|
||||
Number of shared experts.
|
||||
n_routed_experts (`int`, *optional*, defaults to 256):
|
||||
Number of routed experts.
|
||||
routed_scaling_factor (`float`, *optional*, defaults to 2.5):
|
||||
Scaling factor or routed experts.
|
||||
kv_lora_rank (`int`, *optional*, defaults to 512):
|
||||
Rank of the LoRA matrices for key and value projections.
|
||||
q_lora_rank (`int`, *optional*, defaults to 1536):
|
||||
Rank of the LoRA matrices for query projections.
|
||||
qk_rope_head_dim (`int`, *optional*, defaults to 64):
|
||||
Dimension of the query/key heads that use rotary position embeddings.
|
||||
v_head_dim (`int`, *optional*, defaults to 128):
|
||||
Dimension of the value heads.
|
||||
qk_nope_head_dim (`int`, *optional*, defaults to 128):
|
||||
Dimension of the query/key heads that don't use rotary position embeddings.
|
||||
n_group (`int`, *optional*, defaults to 8):
|
||||
Number of groups for routed experts.
|
||||
topk_group (`int`, *optional*, defaults to 4):
|
||||
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
||||
num_experts_per_tok (`int`, *optional*, defaults to 8):
|
||||
Number of selected experts, None means dense model.
|
||||
first_k_dense_replace (`int`, *optional*, defaults to 3):
|
||||
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
||||
\--k dense layers--/
|
||||
norm_topk_prob (`bool`, *optional*, defaults to `True`):
|
||||
Whether to normalize the weights of the routed experts.
|
||||
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
||||
Auxiliary loss weight coefficient.
|
||||
Whether to compute the auxiliary loss for each individual sample.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 0):
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 1):
|
||||
End of stream token id.
|
||||
pretraining_tp (`int`, *optional*, defaults to 1):
|
||||
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
||||
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
||||
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
||||
issue](https://github.com/pytorch/pytorch/issues/76232).
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||||
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
||||
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||
`max_position_embeddings` to the expected new maximum.
|
||||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
|
||||
```python
|
||||
>>> from transformers import DeepseekV3Model, DeepseekV3Config
|
||||
|
||||
>>> # Initializing a Deepseek-V3 style configuration
|
||||
>>> configuration = DeepseekV3Config()
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "deepseek_v3"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
# Default tensor parallel plan for base model `DeepseekV3Model`
|
||||
base_model_tp_plan = {
|
||||
"layers.*.gate_proj": "colwise",
|
||||
"layers.*.up_proj": "colwise",
|
||||
"layers.*.down_proj": "rowwise",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=129280,
|
||||
hidden_size=7168,
|
||||
intermediate_size=18432,
|
||||
moe_intermediate_size=2048,
|
||||
num_hidden_layers=61,
|
||||
num_attention_heads=128,
|
||||
num_key_value_heads=128,
|
||||
n_shared_experts=1,
|
||||
n_routed_experts=256,
|
||||
routed_scaling_factor=2.5,
|
||||
kv_lora_rank=512,
|
||||
q_lora_rank=1536,
|
||||
qk_rope_head_dim=64,
|
||||
v_head_dim=128,
|
||||
qk_nope_head_dim=128,
|
||||
n_group=8,
|
||||
topk_group=4,
|
||||
num_experts_per_tok=8,
|
||||
first_k_dense_replace=3,
|
||||
norm_topk_prob=True,
|
||||
aux_loss_alpha=0.001,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=0,
|
||||
eos_token_id=1,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.n_shared_experts = n_shared_experts
|
||||
self.n_routed_experts = n_routed_experts
|
||||
self.routed_scaling_factor = routed_scaling_factor
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.q_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.head_dim = qk_rope_head_dim
|
||||
self.n_group = n_group
|
||||
self.topk_group = topk_group
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.first_k_dense_replace = first_k_dense_replace
|
||||
self.norm_topk_prob = norm_topk_prob
|
||||
self.aux_loss_alpha = aux_loss_alpha
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
# Validate the correctness of rotary position embeddings parameters
|
||||
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
||||
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
||||
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
||||
rope_config_validation(self)
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["DeepseekV3Config"]
|
Loading…
Add table
Add a link
Reference in a new issue