mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 04:30:03 +00:00
235 lines
No EOL
11 KiB
Python
235 lines
No EOL
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 bzantium and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on the DeepSeekV3 implementations from the DeepSeek AI team. (https://huggingface.co/deepseek-ai/DeepSeek-V3)
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""DeepSeekV3 model configuration"""
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.modeling_rope_utils import rope_config_validation
|
|
|
|
|
|
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
|
|
|
|
|
class DeepseekV3Config(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the DeepSeek-V3.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 129280):
|
|
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`DeepseekV3Model`]
|
|
hidden_size (`int`, *optional*, defaults to 7168):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 18432):
|
|
Dimension of the MLP representations.
|
|
moe_intermediate_size (`int`, *optional*, defaults to 2048):
|
|
Dimension of the MoE representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 61):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 128):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 128):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
n_shared_experts (`int`, *optional*, defaults to 1):
|
|
Number of shared experts.
|
|
n_routed_experts (`int`, *optional*, defaults to 256):
|
|
Number of routed experts.
|
|
routed_scaling_factor (`float`, *optional*, defaults to 2.5):
|
|
Scaling factor or routed experts.
|
|
kv_lora_rank (`int`, *optional*, defaults to 512):
|
|
Rank of the LoRA matrices for key and value projections.
|
|
q_lora_rank (`int`, *optional*, defaults to 1536):
|
|
Rank of the LoRA matrices for query projections.
|
|
qk_rope_head_dim (`int`, *optional*, defaults to 64):
|
|
Dimension of the query/key heads that use rotary position embeddings.
|
|
v_head_dim (`int`, *optional*, defaults to 128):
|
|
Dimension of the value heads.
|
|
qk_nope_head_dim (`int`, *optional*, defaults to 128):
|
|
Dimension of the query/key heads that don't use rotary position embeddings.
|
|
n_group (`int`, *optional*, defaults to 8):
|
|
Number of groups for routed experts.
|
|
topk_group (`int`, *optional*, defaults to 4):
|
|
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
|
num_experts_per_tok (`int`, *optional*, defaults to 8):
|
|
Number of selected experts, None means dense model.
|
|
first_k_dense_replace (`int`, *optional*, defaults to 3):
|
|
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
|
\--k dense layers--/
|
|
norm_topk_prob (`bool`, *optional*, defaults to `True`):
|
|
Whether to normalize the weights of the routed experts.
|
|
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
|
Auxiliary loss weight coefficient.
|
|
Whether to compute the auxiliary loss for each individual sample.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
|
The maximum sequence length that this model might ever be used with.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 0):
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 1):
|
|
End of stream token id.
|
|
pretraining_tp (`int`, *optional*, defaults to 1):
|
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
|
issue](https://github.com/pytorch/pytorch/issues/76232).
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
rope_scaling (`Dict`, *optional*):
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
|
`max_position_embeddings` to the expected new maximum.
|
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
|
|
```python
|
|
>>> from transformers import DeepseekV3Model, DeepseekV3Config
|
|
|
|
>>> # Initializing a Deepseek-V3 style configuration
|
|
>>> configuration = DeepseekV3Config()
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "deepseek_v3"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
# Default tensor parallel plan for base model `DeepseekV3Model`
|
|
base_model_tp_plan = {
|
|
"layers.*.gate_proj": "colwise",
|
|
"layers.*.up_proj": "colwise",
|
|
"layers.*.down_proj": "rowwise",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=129280,
|
|
hidden_size=7168,
|
|
intermediate_size=18432,
|
|
moe_intermediate_size=2048,
|
|
num_hidden_layers=61,
|
|
num_attention_heads=128,
|
|
num_key_value_heads=128,
|
|
n_shared_experts=1,
|
|
n_routed_experts=256,
|
|
routed_scaling_factor=2.5,
|
|
kv_lora_rank=512,
|
|
q_lora_rank=1536,
|
|
qk_rope_head_dim=64,
|
|
v_head_dim=128,
|
|
qk_nope_head_dim=128,
|
|
n_group=8,
|
|
topk_group=4,
|
|
num_experts_per_tok=8,
|
|
first_k_dense_replace=3,
|
|
norm_topk_prob=True,
|
|
aux_loss_alpha=0.001,
|
|
hidden_act="silu",
|
|
max_position_embeddings=4096,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=0,
|
|
eos_token_id=1,
|
|
pretraining_tp=1,
|
|
tie_word_embeddings=False,
|
|
rope_theta=10000.0,
|
|
rope_scaling=None,
|
|
attention_bias=False,
|
|
attention_dropout=0.0,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.moe_intermediate_size = moe_intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.n_shared_experts = n_shared_experts
|
|
self.n_routed_experts = n_routed_experts
|
|
self.routed_scaling_factor = routed_scaling_factor
|
|
self.kv_lora_rank = kv_lora_rank
|
|
self.q_lora_rank = q_lora_rank
|
|
self.qk_rope_head_dim = qk_rope_head_dim
|
|
self.v_head_dim = v_head_dim
|
|
self.qk_nope_head_dim = qk_nope_head_dim
|
|
self.q_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
|
self.head_dim = qk_rope_head_dim
|
|
self.n_group = n_group
|
|
self.topk_group = topk_group
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.first_k_dense_replace = first_k_dense_replace
|
|
self.norm_topk_prob = norm_topk_prob
|
|
self.aux_loss_alpha = aux_loss_alpha
|
|
|
|
# for backward compatibility
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.pretraining_tp = pretraining_tp
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.rope_scaling = rope_scaling
|
|
self.attention_bias = attention_bias
|
|
self.attention_dropout = attention_dropout
|
|
# Validate the correctness of rotary position embeddings parameters
|
|
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
|
rope_config_validation(self)
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
__all__ = ["DeepseekV3Config"] |