mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-09 22:05:30 +00:00
⚡ ready to publish
This commit is contained in:
parent
f892d22849
commit
83401dbb3b
6 changed files with 157 additions and 19 deletions
|
@ -18,6 +18,9 @@ from ktransformers.models.modeling_deepseek_v3 import (
|
|||
from ktransformers.models.modeling_deepseek import (
|
||||
DeepseekV2YarnRotaryEmbedding,
|
||||
DeepseekV2RotaryEmbedding,
|
||||
yarn_get_mscale,
|
||||
yarn_linear_ramp_mask,
|
||||
yarn_find_correction_range
|
||||
)
|
||||
from ktransformers.operators.base_operator import BaseInjectedModule
|
||||
from ktransformers.util.custom_gguf import GGUFLoader
|
||||
|
@ -188,7 +191,33 @@ class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
|
|||
self.orig_module.mscale_all_dim,
|
||||
)
|
||||
|
||||
class DeepSeekV3YarnRotaryEmbedding(BaseInjectedModule, DeepseekV3RotaryEmbedding):
|
||||
# class DeepSeekV3YarnRotaryEmbedding(BaseInjectedModule, DeepseekV3RotaryEmbedding):
|
||||
# def __init__(
|
||||
# self,
|
||||
# key: str,
|
||||
# gguf_loader: GGUFLoader,
|
||||
# config: PretrainedConfig,
|
||||
# orig_module: nn.Module,
|
||||
# # device: str = "cuda",
|
||||
# generate_device: str = "cuda",
|
||||
# prefill_device: str = "cuda",
|
||||
# **kwargs,
|
||||
# ):
|
||||
# BaseInjectedModule.__init__(
|
||||
# self, key, gguf_loader, config, orig_module, generate_device, **kwargs
|
||||
# )
|
||||
# self.generate_device = generate_device
|
||||
# self.prefill_device = prefill_device
|
||||
|
||||
# def load(self):
|
||||
# # TODO support perlayer prefill
|
||||
# self.orig_module.__init__(
|
||||
# self.config,
|
||||
# device=self.generate_device
|
||||
# )
|
||||
# return
|
||||
|
||||
class YarnRotaryEmbeddingV3(BaseInjectedModule):
|
||||
def __init__(
|
||||
self,
|
||||
key: str,
|
||||
|
@ -205,14 +234,94 @@ class DeepSeekV3YarnRotaryEmbedding(BaseInjectedModule, DeepseekV3RotaryEmbeddin
|
|||
)
|
||||
self.generate_device = generate_device
|
||||
self.prefill_device = prefill_device
|
||||
|
||||
|
||||
def load(self):
|
||||
# TODO support perlayer prefill
|
||||
self.orig_module.__init__(
|
||||
self.config,
|
||||
device=self.generate_device
|
||||
kwargs = {
|
||||
key: self.config.rope_scaling[key]
|
||||
for key in [
|
||||
"original_max_position_embeddings",
|
||||
"beta_fast",
|
||||
"beta_slow",
|
||||
"mscale",
|
||||
"mscale_all_dim",
|
||||
]
|
||||
if key in self.config.rope_scaling
|
||||
}
|
||||
self._init(
|
||||
dim=self.config.qk_rope_head_dim,
|
||||
max_position_embeddings=self.config.max_position_embeddings,
|
||||
base=self.config.rope_theta,
|
||||
device=self.device,
|
||||
scaling_factor=self.config.rope_scaling["factor"],
|
||||
**kwargs,
|
||||
)
|
||||
return
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, x, position_ids):
|
||||
# x: [bs, num_attention_heads, seq_len, head_size]
|
||||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||
position_ids_expanded = position_ids[:, None, :].float()
|
||||
# Force float32 since bfloat16 loses precision on long contexts
|
||||
# See https://github.com/huggingface/transformers/pull/29285
|
||||
device_type = x.device.type
|
||||
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||||
with torch.autocast(device_type=device_type, enabled=False):
|
||||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
cos = emb.cos()* self._mscale
|
||||
sin = emb.sin()* self._mscale
|
||||
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||||
|
||||
def _init(
|
||||
self,
|
||||
dim,
|
||||
max_position_embeddings=2048,
|
||||
base=10000,
|
||||
device=None,
|
||||
scaling_factor=1.0,
|
||||
original_max_position_embeddings=4096,
|
||||
beta_fast=32,
|
||||
beta_slow=1,
|
||||
mscale=1,
|
||||
mscale_all_dim=0,
|
||||
):
|
||||
self.original_max_position_embeddings = original_max_position_embeddings
|
||||
self.beta_fast = beta_fast
|
||||
self.beta_slow = beta_slow
|
||||
self.mscale = mscale
|
||||
self.mscale_all_dim = mscale_all_dim
|
||||
self.scaling_factor = scaling_factor
|
||||
self.dim = dim
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.base = base
|
||||
|
||||
freq_extra = 1.0 / (
|
||||
self.base
|
||||
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
||||
)
|
||||
freq_inter = 1.0 / (
|
||||
self.scaling_factor
|
||||
* self.base
|
||||
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
||||
)
|
||||
|
||||
low, high = yarn_find_correction_range(
|
||||
self.beta_fast,
|
||||
self.beta_slow,
|
||||
dim,
|
||||
self.base,
|
||||
self.original_max_position_embeddings,
|
||||
)
|
||||
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
||||
device=device, dtype=torch.float32
|
||||
)
|
||||
self.inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
||||
self._mscale = float(
|
||||
yarn_get_mscale(self.scaling_factor, self.mscale)
|
||||
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
||||
)
|
||||
# For BC we register cos and sin cached
|
||||
self.max_seq_len_cached = max_position_embeddings
|
||||
|
||||
class DynamicNTKScalingRotaryEmbedding(
|
||||
BaseInjectedModule, LlamaDynamicNTKScalingRotaryEmbedding
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue