mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 09:04:36 +00:00
276 lines
No EOL
8.7 KiB
C++
276 lines
No EOL
8.7 KiB
C++
//This is Concedo's shitty adapter for adding python bindings for llama
|
|
|
|
//Considerations:
|
|
//Don't want to use pybind11 due to dependencies on MSVCC
|
|
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
|
|
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
|
|
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
|
|
//Python will ALWAYS provide the memory, we just write to it.
|
|
|
|
#include "main.cpp"
|
|
#include "extra.h"
|
|
|
|
void print_tok_vec(std::vector<llama_token> & embd)
|
|
{
|
|
std::cout << "[";
|
|
bool first = true;
|
|
for (auto i: embd) {
|
|
if(!first)
|
|
{
|
|
std::cout << ',';
|
|
}
|
|
first = false;
|
|
std::cout << i;
|
|
}
|
|
std::cout << "]";
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
struct load_model_inputs
|
|
{
|
|
const int threads;
|
|
const int max_context_length;
|
|
const int batch_size;
|
|
const char * model_filename;
|
|
const int n_parts_overwrite = -1;
|
|
};
|
|
struct generation_inputs
|
|
{
|
|
const int seed;
|
|
const char * prompt;
|
|
const int max_context_length;
|
|
const int max_length;
|
|
const float temperature;
|
|
const int top_k;
|
|
const float top_p;
|
|
const float rep_pen;
|
|
const int rep_pen_range;
|
|
};
|
|
struct generation_outputs
|
|
{
|
|
int status = -1;
|
|
char text[16384]; //16kb should be enough for any response
|
|
};
|
|
|
|
bool legacy_format = false;
|
|
llama_context_params ctx_params;
|
|
gpt_params params;
|
|
int n_past = 0;
|
|
int n_threads = 4;
|
|
int n_batch = 8;
|
|
std::string model;
|
|
llama_context * ctx;
|
|
std::vector<llama_token> last_n_tokens;
|
|
std::vector<llama_token> current_context_tokens;
|
|
|
|
bool load_model(const load_model_inputs inputs)
|
|
{
|
|
ctx_params = llama_context_default_params();
|
|
|
|
n_threads = inputs.threads;
|
|
n_batch = inputs.batch_size;
|
|
model = inputs.model_filename;
|
|
|
|
ctx_params.n_ctx = inputs.max_context_length;
|
|
ctx_params.n_parts = inputs.n_parts_overwrite;
|
|
ctx_params.seed = -1;
|
|
ctx_params.f16_kv = true;
|
|
ctx_params.logits_all = false;
|
|
|
|
ctx = llama_init_from_file(model.c_str(), ctx_params);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str());
|
|
return false;
|
|
}
|
|
|
|
//return val: 0=fail, 1=newformat, 2=legacy
|
|
int fileformat = check_file_format(model.c_str());
|
|
|
|
legacy_format = (fileformat==1?true:false);
|
|
if(legacy_format)
|
|
{
|
|
printf("\n---\nWarning: Your model is using an OUTDATED format. Please reconvert it for better results!\n");
|
|
}
|
|
|
|
//determine mem per token
|
|
const std::vector<llama_token> tmp = { 0, 1, 2, 3 };
|
|
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
|
|
|
return true;
|
|
}
|
|
|
|
generation_outputs generate(const generation_inputs inputs, generation_outputs & output)
|
|
{
|
|
params.prompt = inputs.prompt;
|
|
params.seed = inputs.seed;
|
|
params.n_predict = inputs.max_length;
|
|
params.top_k = inputs.top_k;
|
|
params.top_p = inputs.top_p;
|
|
params.temp = inputs.temperature;
|
|
params.repeat_last_n = inputs.rep_pen_range;
|
|
params.repeat_penalty = inputs.rep_pen;
|
|
params.n_ctx = inputs.max_context_length;
|
|
params.n_batch = n_batch;
|
|
params.n_threads = n_threads;
|
|
|
|
if(params.repeat_last_n<1)
|
|
{
|
|
params.repeat_last_n = 1;
|
|
}
|
|
if(params.top_k<1)
|
|
{
|
|
params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number
|
|
}
|
|
if (params.seed <= 0)
|
|
{
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
params.prompt.insert(0, 1, ' ');
|
|
|
|
// tokenize the prompt
|
|
std::vector<llama_token> embd_inp;
|
|
if(legacy_format)
|
|
{
|
|
embd_inp = ::legacy_llama_tokenize(ctx, params.prompt, true);
|
|
}else{
|
|
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
|
}
|
|
|
|
//params.n_predict = std::min(params.n_predict, params.n_ctx - (int) embd_inp.size());
|
|
//truncate to front of the prompt if its too long
|
|
if (embd_inp.size() + params.n_predict > params.n_ctx) {
|
|
int offset = embd_inp.size() - params.n_ctx + params.n_predict;
|
|
embd_inp = std::vector<llama_token>(embd_inp.begin() + offset, embd_inp.end());
|
|
}
|
|
|
|
//determine how much npast we have to rewind from the current state
|
|
|
|
std::vector<llama_token> embd;
|
|
|
|
int last_n_size = params.repeat_last_n;
|
|
last_n_tokens.resize(last_n_size);
|
|
|
|
//display usage
|
|
// std::string tst = " ";
|
|
// char * tst2 = (char*)tst.c_str();
|
|
// gpt_print_usage(1,&tst2,params);
|
|
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
n_past = 0;
|
|
|
|
//fast forward the past based on identical tokens, stop once a divergence is noted
|
|
int embd_inp_len = embd_inp.size();
|
|
for(int i=0;i<current_context_tokens.size();++i)
|
|
{
|
|
if(current_context_tokens[i]==embd_inp[i])
|
|
{
|
|
n_past += 1;
|
|
last_n_tokens.push_back(current_context_tokens[i]);
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
if((i+2)>=embd_inp_len)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin(),last_n_tokens.begin()+n_past);
|
|
embd_inp.erase(embd_inp.begin(),embd_inp.begin()+n_past);
|
|
|
|
current_context_tokens.resize(n_past);
|
|
|
|
int remaining_tokens = params.n_predict;
|
|
int input_consumed = 0;
|
|
std::mt19937 rng(params.seed);
|
|
std::string concat_output = "";
|
|
|
|
bool startedsampling = false;
|
|
printf("\nProcessing Prompt: ");
|
|
|
|
while (remaining_tokens > 0)
|
|
{
|
|
llama_token id = 0;
|
|
// predict
|
|
if (embd.size() > 0)
|
|
{
|
|
printf("|");
|
|
//printf("\nnp:%d embd:%d txt:%s",n_past,embd.size(),llama_token_to_str(ctx, embd[0]));
|
|
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads))
|
|
{
|
|
fprintf(stderr, "Failed to predict\n");
|
|
snprintf(output.text, sizeof(output.text), "%s", "");
|
|
output.status = 0;
|
|
return output;
|
|
}
|
|
}
|
|
|
|
n_past += embd.size();
|
|
embd.clear();
|
|
if ((int) embd_inp.size() <= input_consumed)
|
|
{
|
|
// out of user input, sample next token
|
|
const float top_k = params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float temp = params.temp;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
|
|
if(!startedsampling)
|
|
{
|
|
startedsampling = true;
|
|
printf("\nGenerating: ");
|
|
}
|
|
|
|
{
|
|
auto logits = llama_get_logits(ctx);
|
|
// set the logit of the eos token (2) to zero to avoid sampling it
|
|
logits[llama_token_eos()] = 0;
|
|
//set logits of opening square bracket to zero.
|
|
logits[518] = 0;
|
|
logits[29961] = 0;
|
|
|
|
id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty);
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
current_context_tokens.push_back(id);
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// decrement remaining sampling budget
|
|
--remaining_tokens;
|
|
//printf("\nid:%d word:%s\n",id,llama_token_to_str(ctx, id));
|
|
concat_output += llama_token_to_str(ctx, id);
|
|
}
|
|
else
|
|
{
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while ((int) embd_inp.size() > input_consumed)
|
|
{
|
|
embd.push_back(embd_inp[input_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[input_consumed]);
|
|
current_context_tokens.push_back(embd_inp[input_consumed]);
|
|
++input_consumed;
|
|
if ((int) embd.size() >= params.n_batch)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
output.status = 1;
|
|
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());
|
|
return output;
|
|
|
|
}
|
|
} |