//This is Concedo's shitty adapter for adding python bindings for llama //Considerations: //Don't want to use pybind11 due to dependencies on MSVCC //ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here! //Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically. //No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields //Python will ALWAYS provide the memory, we just write to it. #include "main.cpp" #include "extra.h" void print_tok_vec(std::vector & embd) { std::cout << "["; bool first = true; for (auto i: embd) { if(!first) { std::cout << ','; } first = false; std::cout << i; } std::cout << "]"; } extern "C" { struct load_model_inputs { const int threads; const int max_context_length; const int batch_size; const char * model_filename; const int n_parts_overwrite = -1; }; struct generation_inputs { const int seed; const char * prompt; const int max_context_length; const int max_length; const float temperature; const int top_k; const float top_p; const float rep_pen; const int rep_pen_range; }; struct generation_outputs { int status = -1; char text[16384]; //16kb should be enough for any response }; bool legacy_format = false; llama_context_params ctx_params; gpt_params params; int n_past = 0; int n_threads = 4; int n_batch = 8; std::string model; llama_context * ctx; std::vector last_n_tokens; std::vector current_context_tokens; bool load_model(const load_model_inputs inputs) { ctx_params = llama_context_default_params(); n_threads = inputs.threads; n_batch = inputs.batch_size; model = inputs.model_filename; ctx_params.n_ctx = inputs.max_context_length; ctx_params.n_parts = inputs.n_parts_overwrite; ctx_params.seed = -1; ctx_params.f16_kv = true; ctx_params.logits_all = false; ctx = llama_init_from_file(model.c_str(), ctx_params); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str()); return false; } //return val: 0=fail, 1=newformat, 2=legacy int fileformat = check_file_format(model.c_str()); legacy_format = (fileformat==1?true:false); if(legacy_format) { printf("\n---\nWarning: Your model is using an OUTDATED format. Please reconvert it for better results!\n"); } //determine mem per token const std::vector tmp = { 0, 1, 2, 3 }; llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); return true; } generation_outputs generate(const generation_inputs inputs, generation_outputs & output) { params.prompt = inputs.prompt; params.seed = inputs.seed; params.n_predict = inputs.max_length; params.top_k = inputs.top_k; params.top_p = inputs.top_p; params.temp = inputs.temperature; params.repeat_last_n = inputs.rep_pen_range; params.repeat_penalty = inputs.rep_pen; params.n_ctx = inputs.max_context_length; params.n_batch = n_batch; params.n_threads = n_threads; if(params.repeat_last_n<1) { params.repeat_last_n = 1; } if(params.top_k<1) { params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number } if (params.seed <= 0) { params.seed = time(NULL); } params.prompt.insert(0, 1, ' '); // tokenize the prompt std::vector embd_inp; if(legacy_format) { embd_inp = ::legacy_llama_tokenize(ctx, params.prompt, true); }else{ embd_inp = ::llama_tokenize(ctx, params.prompt, true); } //params.n_predict = std::min(params.n_predict, params.n_ctx - (int) embd_inp.size()); //truncate to front of the prompt if its too long if (embd_inp.size() + params.n_predict > params.n_ctx) { int offset = embd_inp.size() - params.n_ctx + params.n_predict; embd_inp = std::vector(embd_inp.begin() + offset, embd_inp.end()); } //determine how much npast we have to rewind from the current state std::vector embd; int last_n_size = params.repeat_last_n; last_n_tokens.resize(last_n_size); //display usage // std::string tst = " "; // char * tst2 = (char*)tst.c_str(); // gpt_print_usage(1,&tst2,params); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); n_past = 0; //fast forward the past based on identical tokens, stop once a divergence is noted int embd_inp_len = embd_inp.size(); for(int i=0;i=embd_inp_len) { break; } } last_n_tokens.erase(last_n_tokens.begin(),last_n_tokens.begin()+n_past); embd_inp.erase(embd_inp.begin(),embd_inp.begin()+n_past); current_context_tokens.resize(n_past); int remaining_tokens = params.n_predict; int input_consumed = 0; std::mt19937 rng(params.seed); std::string concat_output = ""; bool startedsampling = false; printf("\nProcessing Prompt: "); while (remaining_tokens > 0) { llama_token id = 0; // predict if (embd.size() > 0) { printf("|"); //printf("\nnp:%d embd:%d txt:%s",n_past,embd.size(),llama_token_to_str(ctx, embd[0])); if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) { fprintf(stderr, "Failed to predict\n"); snprintf(output.text, sizeof(output.text), "%s", ""); output.status = 0; return output; } } n_past += embd.size(); embd.clear(); if ((int) embd_inp.size() <= input_consumed) { // out of user input, sample next token const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const float repeat_penalty = params.repeat_penalty; if(!startedsampling) { startedsampling = true; printf("\nGenerating: "); } { auto logits = llama_get_logits(ctx); // set the logit of the eos token (2) to zero to avoid sampling it logits[llama_token_eos()] = 0; //set logits of opening square bracket to zero. logits[518] = 0; logits[29961] = 0; id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); current_context_tokens.push_back(id); } // add it to the context embd.push_back(id); // decrement remaining sampling budget --remaining_tokens; //printf("\nid:%d word:%s\n",id,llama_token_to_str(ctx, id)); concat_output += llama_token_to_str(ctx, id); } else { // some user input remains from prompt or interaction, forward it to processing while ((int) embd_inp.size() > input_consumed) { embd.push_back(embd_inp[input_consumed]); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(embd_inp[input_consumed]); current_context_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; if ((int) embd.size() >= params.n_batch) { break; } } } } output.status = 1; snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str()); return output; } }