koboldcpp/llama_adapter.cpp
2023-04-16 01:17:40 +08:00

260 lines
8.5 KiB
C++

//This is Concedo's shitty adapter for adding python bindings for llama
//Considerations:
//Don't want to use pybind11 due to dependencies on MSVCC
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
//Python will ALWAYS provide the memory, we just write to it.
// Defines sigaction on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <time.h>
#include "./examples/main/main.cpp"
#include "ggml.h"
#include "model_adapter.h"
//for easier compilation
#include "llamaextra.cpp"
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
static FileFormat file_format = FileFormat::BADFORMAT;
static llama_context_params ctx_params;
static gpt_params params;
static int n_past = 0;
static int n_threads = 4;
static int n_batch = 8;
static bool useSmartContext = false;
static int blasbatchsize = 512;
static std::string modelname;
static llama_context *ctx;
static std::vector<llama_token> last_n_tokens;
static std::vector<llama_token> current_context_tokens;
static std::vector<llama_token> smartcontext;
bool llama_load_model(const load_model_inputs inputs, FileFormat in_file_format)
{
printf("System Info: %s\n", llama_print_system_info());
ctx_params = llama_context_default_params();
n_threads = inputs.threads;
n_batch = inputs.batch_size;
modelname = inputs.model_filename;
useSmartContext = inputs.use_smartcontext;
blasbatchsize = inputs.blasbatchsize;
ctx_params.n_ctx = inputs.max_context_length;
ctx_params.n_parts = -1;//inputs.n_parts_overwrite;
ctx_params.seed = -1;
ctx_params.f16_kv = inputs.f16_kv;
ctx_params.logits_all = false;
ctx_params.use_mmap = inputs.use_mmap;
ctx_params.use_mlock = false;
file_format = in_file_format;
ctx = llama_init_from_file(modelname.c_str(), ctx_params);
if (ctx == NULL)
{
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str());
return false;
}
if (file_format < FileFormat::GGJT)
{
printf("\n---\nWarning: Your model has an INVALID or OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format);
}
//determine mem per token
const std::vector<llama_token> tmp = {0, 1, 2, 3};
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
return true;
}
generation_outputs llama_generate(const generation_inputs inputs, generation_outputs &output)
{
params.prompt = inputs.prompt;
params.seed = inputs.seed;
params.n_predict = inputs.max_length;
params.top_k = inputs.top_k;
params.top_p = inputs.top_p;
params.temp = inputs.temperature;
params.repeat_last_n = inputs.rep_pen_range;
params.repeat_penalty = inputs.rep_pen;
params.n_ctx = inputs.max_context_length;
params.n_batch = n_batch;
params.n_threads = n_threads;
if (params.repeat_last_n < 1)
{
params.repeat_last_n = 1;
}
if (params.top_k < 1)
{
params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number
}
if (params.seed <= 0)
{
params.seed = time(NULL);
}
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
std::vector<llama_token> embd_inp;
if (file_format == 1)
{
embd_inp = ::legacy_llama_tokenize(ctx, params.prompt, true);
}
else
{
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
}
//truncate to front of the prompt if its too long
int32_t nctx = params.n_ctx;
if (embd_inp.size() + params.n_predict > nctx)
{
int offset = embd_inp.size() - nctx + params.n_predict;
embd_inp = std::vector<llama_token>(embd_inp.begin() + offset, embd_inp.end());
}
//determine how much npast we have to rewind from the current state
std::vector<llama_token> embd;
int last_n_size = params.repeat_last_n;
last_n_tokens.resize(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
n_past = 0;
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext);
//if using BLAS and prompt is big enough, switch to single thread and use a huge batch
bool blasmode = (embd_inp.size() >= 32 && ggml_cpu_has_blas());
int original_batch = params.n_batch;
int original_threads = params.n_threads;
if (blasmode)
{
params.n_batch = blasbatchsize; //received reports of 1024 and above crashing on some models
params.n_threads = 1;
}
current_context_tokens.resize(n_past);
int remaining_tokens = params.n_predict;
int input_consumed = 0;
std::mt19937 rng(params.seed);
std::string concat_output = "";
bool startedsampling = false;
timer_start();
double time1 = 0, time2 = 0;
unsigned int embd_inp_size = embd_inp.size();
printf("\n");
while (remaining_tokens > 0)
{
llama_token id = 0;
// predict
unsigned int embdsize = embd.size();
if (embdsize > 0)
{
//print progress
if (!startedsampling)
{
printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp_size);
}
else
{
printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict);
}
if (llama_eval(ctx, embd.data(), embdsize, n_past, params.n_threads))
{
fprintf(stderr, "Failed to predict\n");
snprintf(output.text, sizeof(output.text), "%s", "");
output.status = 0;
return output;
}
}
n_past += embd.size();
embd.clear();
if ((int)embd_inp_size <= input_consumed)
{
// out of user input, sample next token
const float top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
if (!startedsampling)
{
startedsampling = true;
params.n_batch = original_batch;
params.n_threads = original_threads;
time1 = timer_check();
timer_start();
printf("\n");
}
{
auto logits = llama_get_logits(ctx);
// set the logit of the eos token (2) to zero to avoid sampling it
logits[llama_token_eos()] = 0;
//set logits of opening square bracket to zero.
logits[518] = 0;
logits[29961] = 0;
id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
current_context_tokens.push_back(id);
}
// add it to the context
embd.push_back(id);
// decrement remaining sampling budget
--remaining_tokens;
//printf("\nid:%d word:%s\n",id,llama_token_to_str(ctx, id));
concat_output += llama_token_to_str(ctx, id);
}
else
{
// some user input remains from prompt or interaction, forward it to processing
while ((int)embd_inp_size > input_consumed)
{
embd.push_back(embd_inp[input_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[input_consumed]);
current_context_tokens.push_back(embd_inp[input_consumed]);
++input_consumed;
if ((int)embd.size() >= params.n_batch)
{
break;
}
}
}
}
time2 = timer_check();
float pt1 = (time1*1000.0/(embd_inp_size==0?1:embd_inp_size));
float pt2 = (time2*1000.0/(params.n_predict==0?1:params.n_predict));
printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2));
fflush(stdout);
output.status = 1;
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());
return output;
}