//This is Concedo's shitty adapter for adding python bindings for llama //Considerations: //Don't want to use pybind11 due to dependencies on MSVCC //ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here! //Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically. //No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields //Python will ALWAYS provide the memory, we just write to it. // Defines sigaction on msys: #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include "./examples/main/main.cpp" #include "ggml.h" #include "model_adapter.h" //for easier compilation #include "llamaextra.cpp" //return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt) static FileFormat file_format = FileFormat::BADFORMAT; static llama_context_params ctx_params; static gpt_params params; static int n_past = 0; static int n_threads = 4; static int n_batch = 8; static bool useSmartContext = false; static int blasbatchsize = 512; static std::string modelname; static llama_context *ctx; static std::vector last_n_tokens; static std::vector current_context_tokens; static std::vector smartcontext; bool llama_load_model(const load_model_inputs inputs, FileFormat in_file_format) { printf("System Info: %s\n", llama_print_system_info()); ctx_params = llama_context_default_params(); n_threads = inputs.threads; n_batch = inputs.batch_size; modelname = inputs.model_filename; useSmartContext = inputs.use_smartcontext; blasbatchsize = inputs.blasbatchsize; ctx_params.n_ctx = inputs.max_context_length; ctx_params.n_parts = -1;//inputs.n_parts_overwrite; ctx_params.seed = -1; ctx_params.f16_kv = inputs.f16_kv; ctx_params.logits_all = false; ctx_params.use_mmap = inputs.use_mmap; ctx_params.use_mlock = false; file_format = in_file_format; ctx = llama_init_from_file(modelname.c_str(), ctx_params); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); return false; } if (file_format < FileFormat::GGJT) { printf("\n---\nWarning: Your model has an INVALID or OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format); } //determine mem per token const std::vector tmp = {0, 1, 2, 3}; llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); return true; } generation_outputs llama_generate(const generation_inputs inputs, generation_outputs &output) { params.prompt = inputs.prompt; params.seed = inputs.seed; params.n_predict = inputs.max_length; params.top_k = inputs.top_k; params.top_p = inputs.top_p; params.temp = inputs.temperature; params.repeat_last_n = inputs.rep_pen_range; params.repeat_penalty = inputs.rep_pen; params.n_ctx = inputs.max_context_length; params.n_batch = n_batch; params.n_threads = n_threads; if (params.repeat_last_n < 1) { params.repeat_last_n = 1; } if (params.top_k < 1) { params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number } if (params.seed <= 0) { params.seed = time(NULL); } params.prompt.insert(0, 1, ' '); // tokenize the prompt std::vector embd_inp; if (file_format == 1) { embd_inp = ::legacy_llama_tokenize(ctx, params.prompt, true); } else { embd_inp = ::llama_tokenize(ctx, params.prompt, true); } //truncate to front of the prompt if its too long int32_t nctx = params.n_ctx; if (embd_inp.size() + params.n_predict > nctx) { int offset = embd_inp.size() - nctx + params.n_predict; embd_inp = std::vector(embd_inp.begin() + offset, embd_inp.end()); } //determine how much npast we have to rewind from the current state std::vector embd; int last_n_size = params.repeat_last_n; last_n_tokens.resize(last_n_size); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); n_past = 0; ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext); //if using BLAS and prompt is big enough, switch to single thread and use a huge batch bool blasmode = (embd_inp.size() >= 32 && ggml_cpu_has_blas()); int original_batch = params.n_batch; int original_threads = params.n_threads; if (blasmode) { params.n_batch = blasbatchsize; //received reports of 1024 and above crashing on some models params.n_threads = 1; } current_context_tokens.resize(n_past); int remaining_tokens = params.n_predict; int input_consumed = 0; std::mt19937 rng(params.seed); std::string concat_output = ""; bool startedsampling = false; timer_start(); double time1 = 0, time2 = 0; unsigned int embd_inp_size = embd_inp.size(); printf("\n"); while (remaining_tokens > 0) { llama_token id = 0; // predict unsigned int embdsize = embd.size(); if (embdsize > 0) { //print progress if (!startedsampling) { printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp_size); } else { printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict); } if (llama_eval(ctx, embd.data(), embdsize, n_past, params.n_threads)) { fprintf(stderr, "Failed to predict\n"); snprintf(output.text, sizeof(output.text), "%s", ""); output.status = 0; return output; } } n_past += embd.size(); embd.clear(); if ((int)embd_inp_size <= input_consumed) { // out of user input, sample next token const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const float repeat_penalty = params.repeat_penalty; if (!startedsampling) { startedsampling = true; params.n_batch = original_batch; params.n_threads = original_threads; time1 = timer_check(); timer_start(); printf("\n"); } { auto logits = llama_get_logits(ctx); // set the logit of the eos token (2) to zero to avoid sampling it logits[llama_token_eos()] = 0; //set logits of opening square bracket to zero. logits[518] = 0; logits[29961] = 0; id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); current_context_tokens.push_back(id); } // add it to the context embd.push_back(id); // decrement remaining sampling budget --remaining_tokens; //printf("\nid:%d word:%s\n",id,llama_token_to_str(ctx, id)); concat_output += llama_token_to_str(ctx, id); } else { // some user input remains from prompt or interaction, forward it to processing while ((int)embd_inp_size > input_consumed) { embd.push_back(embd_inp[input_consumed]); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(embd_inp[input_consumed]); current_context_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; if ((int)embd.size() >= params.n_batch) { break; } } } } time2 = timer_check(); float pt1 = (time1*1000.0/(embd_inp_size==0?1:embd_inp_size)); float pt2 = (time2*1000.0/(params.n_predict==0?1:params.n_predict)); printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2)); fflush(stdout); output.status = 1; snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str()); return output; }