mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-12 09:59:41 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # .dockerignore # .github/workflows/build.yml # .github/workflows/docker.yml # Makefile # README.md # examples/infill/infill.cpp # examples/perplexity/perplexity.cpp # examples/server/README.md # examples/speculative/speculative.cpp # flake.lock # ggml/src/CMakeLists.txt # scripts/sync-ggml.last # tests/test-backend-ops.cpp # tests/test-sampling.cpp
This commit is contained in:
commit
ea55f69dc1
39 changed files with 2587 additions and 1564 deletions
138
src/llama.cpp
138
src/llama.cpp
|
@ -225,6 +225,7 @@ enum llm_arch {
|
|||
LLM_ARCH_EXAONE,
|
||||
LLM_ARCH_RWKV6,
|
||||
LLM_ARCH_GRANITE,
|
||||
LLM_ARCH_GRANITE_MOE,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
@ -276,6 +277,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_EXAONE, "exaone" },
|
||||
{ LLM_ARCH_RWKV6, "rwkv6" },
|
||||
{ LLM_ARCH_GRANITE, "granite" },
|
||||
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
|
@ -1477,6 +1479,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
|
@ -1488,6 +1491,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GRANITE_MOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
@ -2410,7 +2431,7 @@ struct llama_hparams {
|
|||
float f_max_alibi_bias = 0.0f;
|
||||
float f_logit_scale = 0.0f;
|
||||
|
||||
// Additional scale factors (Granite)
|
||||
// Additional scale factors (Granite/Granite MoE)
|
||||
float f_residual_scale = 0.0f;
|
||||
float f_embedding_scale = 0.0f;
|
||||
float f_attention_scale = 0.0f;
|
||||
|
@ -3070,18 +3091,14 @@ struct llama_sbatch {
|
|||
} else {
|
||||
// simple split
|
||||
if (batch->n_seq_id) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
|
||||
}
|
||||
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
|
||||
} else {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
|
||||
}
|
||||
}
|
||||
if (batch->seq_id) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.seq_id = batch->seq_id + seq.offset;
|
||||
}
|
||||
ubatch.seq_id = batch->seq_id + seq.offset;
|
||||
} else {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.seq_id[ubatch.n_seqs + i] = &seq.all_seq_id;
|
||||
|
@ -6084,6 +6101,7 @@ static void llm_load_hparams(
|
|||
}
|
||||
} break;
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
||||
|
@ -6092,6 +6110,7 @@ static void llm_load_hparams(
|
|||
ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_3B; break;
|
||||
case 40: model.type = e_model::MODEL_3B; break;
|
||||
// Add additional layer/vocab/etc checks here for other model sizes
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
|
@ -6563,21 +6582,21 @@ static void llm_load_vocab(
|
|||
// for now, we apply this workaround to find the EOT token based on its text
|
||||
if (vocab.special_eot_id == -1) {
|
||||
for (const auto & t : vocab.token_to_id) {
|
||||
if (
|
||||
if (false
|
||||
// TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
|
||||
// need to fix convert script
|
||||
//vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
|
||||
(t.first == "<|eot_id|>" ||
|
||||
t.first == "<|im_end|>" ||
|
||||
t.first == "<|end|>" ||
|
||||
t.first == "<end_of_turn>" ||
|
||||
t.first == "<|endoftext|>"
|
||||
)
|
||||
|| t.first == "<|eot_id|>"
|
||||
|| t.first == "<|im_end|>"
|
||||
|| t.first == "<|end|>"
|
||||
|| t.first == "<end_of_turn>"
|
||||
|| t.first == "<|endoftext|>"
|
||||
|| t.first == "<EOT>"
|
||||
) {
|
||||
vocab.special_eot_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
__func__, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
break;
|
||||
|
@ -6600,6 +6619,44 @@ static void llm_load_vocab(
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
// maintain a list of tokens that cause end-of-generation
|
||||
// this is currently determined based on the token text, which is obviously not ideal
|
||||
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
|
||||
vocab.special_eog_ids.clear();
|
||||
for (const auto & t : vocab.token_to_id) {
|
||||
if (false
|
||||
|| t.first == "<|eot_id|>"
|
||||
|| t.first == "<|im_end|>"
|
||||
|| t.first == "<|end|>"
|
||||
|| t.first == "<end_of_turn>"
|
||||
|| t.first == "<|endoftext|>"
|
||||
|| t.first == "<|eom_id|>"
|
||||
|| t.first == "<EOT>"
|
||||
) {
|
||||
vocab.special_eog_ids.insert(t.second);
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (vocab.special_eos_id != -1 && vocab.special_eog_ids.count(vocab.special_eos_id) == 0) {
|
||||
vocab.special_eog_ids.insert(vocab.special_eos_id);
|
||||
LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||||
}
|
||||
|
||||
if (vocab.special_eot_id != -1 && vocab.special_eog_ids.count(vocab.special_eot_id) == 0) {
|
||||
vocab.special_eog_ids.insert(vocab.special_eot_id);
|
||||
LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||||
}
|
||||
|
||||
if (vocab.special_eom_id != -1 && vocab.special_eog_ids.count(vocab.special_eom_id) == 0) {
|
||||
vocab.special_eog_ids.insert(vocab.special_eom_id);
|
||||
LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
// build special tokens cache
|
||||
|
@ -6803,6 +6860,11 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||
if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
|
||||
if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
|
||||
if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
|
||||
if (vocab.special_eom_id != -1) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, vocab.special_eom_id, vocab.id_to_token[vocab.special_eom_id].text.c_str() ); }
|
||||
|
||||
for (const auto & id : vocab.special_eog_ids) {
|
||||
LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, vocab.id_to_token[id].text.c_str() );
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
|
||||
|
||||
|
@ -6821,7 +6883,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
||||
}
|
||||
|
||||
if (model.arch == LLM_ARCH_GRANITE) {
|
||||
if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||||
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
||||
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
||||
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
||||
|
@ -7004,6 +7066,7 @@ static bool llm_load_tensors(
|
|||
case LLM_ARCH_REFACT:
|
||||
case LLM_ARCH_MINICPM:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
||||
|
@ -9993,17 +10056,36 @@ struct llm_build_context {
|
|||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
struct ggml_tensor * tmp =
|
||||
// we rotate only the first n_rot dimensions
|
||||
ggml_rope_ext_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k_l[il],
|
||||
n_embd_head_k, n_head_kv, n_ctx,
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||||
0),
|
||||
struct ggml_tensor * k =
|
||||
ggml_view_3d(ctx0, kv_self.k_l[il],
|
||||
n_embd_head_k, n_head_kv, n_ctx,
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||||
0);
|
||||
|
||||
struct ggml_tensor * tmp;
|
||||
if (ggml_is_quantized(k->type)) {
|
||||
// dequantize to f32 -> RoPE -> quantize back
|
||||
tmp = ggml_cast(ctx0, k, GGML_TYPE_F32);
|
||||
cb(tmp, "K_f32", il);
|
||||
for (auto * backend : lctx.backends) {
|
||||
// Figure out which backend KV cache belongs to
|
||||
if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft)) {
|
||||
ggml_backend_sched_set_tensor_backend(lctx.sched, tmp, backend);
|
||||
break;
|
||||
}
|
||||
}
|
||||
tmp = ggml_rope_ext_inplace(ctx0, tmp,
|
||||
lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
cb(tmp, "K_shifted_f32", il);
|
||||
tmp = ggml_cpy(ctx0, tmp, k);
|
||||
} else {
|
||||
// we rotate only the first n_rot dimensions
|
||||
tmp = ggml_rope_ext_inplace(ctx0, k,
|
||||
lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
}
|
||||
cb(tmp, "K_shifted", il);
|
||||
ggml_build_forward_expand(gf, tmp);
|
||||
}
|
||||
|
@ -15949,6 +16031,7 @@ static struct ggml_cgraph * llama_build_graph(
|
|||
switch (model.arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
{
|
||||
result = llm.build_llama();
|
||||
} break;
|
||||
|
@ -18719,9 +18802,9 @@ struct llama_model * llama_load_model_from_file(
|
|||
unsigned percentage = (unsigned) (100 * progress);
|
||||
while (percentage > *cur_percentage_p) {
|
||||
*cur_percentage_p = percentage;
|
||||
LLAMA_LOG(".");
|
||||
LLAMA_LOG_CONT(".");
|
||||
if (percentage >= 100) {
|
||||
LLAMA_LOG("\n");
|
||||
LLAMA_LOG_CONT("\n");
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
@ -19236,6 +19319,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||
case LLM_ARCH_DEEPSEEK2:
|
||||
case LLM_ARCH_CHATGLM:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue