From d09770cae71b416c032ec143dda530f7413c4038 Mon Sep 17 00:00:00 2001 From: slaren Date: Sat, 21 Sep 2024 14:24:23 +0200 Subject: [PATCH 01/30] ggml-alloc : fix list of allocated tensors with GGML_ALLOCATOR_DEBUG (#9573) --- ggml/src/ggml-alloc.c | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c index e485326ab..70187b9b6 100644 --- a/ggml/src/ggml-alloc.c +++ b/ggml/src/ggml-alloc.c @@ -294,6 +294,12 @@ static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) { alloc->free_blocks[0].offset = 0; alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows alloc->max_size = 0; + +#ifdef GGML_ALLOCATOR_DEBUG + for (int i = 0; i < 1024; i++) { + alloc->allocated_tensors[i].tensor = NULL; + } +#endif } static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) { From 2a63caaa69fad6c2afddc47bae052cf2afb01529 Mon Sep 17 00:00:00 2001 From: Molly Sophia Date: Sun, 22 Sep 2024 10:29:12 +0800 Subject: [PATCH 02/30] RWKV v6: RWKV_WKV op CUDA implementation (#9454) * ggml: CUDA unary op EXP Signed-off-by: Molly Sophia * ggml: rwkv_wkv op CUDA impl Signed-off-by: Molly Sophia --------- Signed-off-by: Molly Sophia --- ggml/src/ggml-cuda.cu | 8 +++ ggml/src/ggml-cuda/rwkv-wkv.cu | 89 +++++++++++++++++++++++++++++++++ ggml/src/ggml-cuda/rwkv-wkv.cuh | 5 ++ ggml/src/ggml-cuda/unary.cu | 28 +++++++++++ ggml/src/ggml-cuda/unary.cuh | 3 ++ tests/test-backend-ops.cpp | 35 +++++++++++++ 6 files changed, 168 insertions(+) create mode 100644 ggml/src/ggml-cuda/rwkv-wkv.cu create mode 100644 ggml/src/ggml-cuda/rwkv-wkv.cuh diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 895ba4794..f94051198 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -34,6 +34,7 @@ #include "ggml-cuda/tsembd.cuh" #include "ggml-cuda/unary.cuh" #include "ggml-cuda/upscale.cuh" +#include "ggml-cuda/rwkv-wkv.cuh" #include #include @@ -2243,6 +2244,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_UNARY_OP_HARDSWISH: ggml_cuda_op_hardswish(ctx, dst); break; + case GGML_UNARY_OP_EXP: + ggml_cuda_op_exp(ctx, dst); + break; default: return false; } @@ -2345,6 +2349,8 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg case GGML_OP_CROSS_ENTROPY_LOSS: ggml_cuda_cross_entropy_loss(ctx, dst); break; + case GGML_OP_RWKV_WKV: + ggml_cuda_op_rwkv_wkv(ctx, dst); case GGML_OP_CROSS_ENTROPY_LOSS_BACK: ggml_cuda_cross_entropy_loss_back(ctx, dst); break; @@ -2806,6 +2812,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_TANH: + case GGML_UNARY_OP_EXP: return ggml_is_contiguous(op->src[0]); default: return false; @@ -2967,6 +2974,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_ARANGE: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_LEAKY_RELU: + case GGML_OP_RWKV_WKV: return true; case GGML_OP_FLASH_ATTN_EXT: #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) diff --git a/ggml/src/ggml-cuda/rwkv-wkv.cu b/ggml/src/ggml-cuda/rwkv-wkv.cu new file mode 100644 index 000000000..098e92d35 --- /dev/null +++ b/ggml/src/ggml-cuda/rwkv-wkv.cu @@ -0,0 +1,89 @@ +#include "common.cuh" +#include "rwkv-wkv.cuh" + +static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) { + const int tid = threadIdx.x; + const int bid = blockIdx.x; + + const int head_size = CUDA_WKV_BLOCK_SIZE; + const int batch_i = bid / H; + const int head_i = bid % H; + const int state_size = C * head_size; + const int n_seq_tokens = T / B; + + float state[head_size]; + __shared__ float _k[head_size], _r[head_size], _tf[head_size], _td[head_size]; + + #pragma unroll + for (int i = 0; i < head_size; i++) { + state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; + } + + __syncthreads(); + _tf[tid] = tf[head_i * head_size + tid]; + __syncthreads(); + + for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { + __syncthreads(); + _k[tid] = k[t]; + _r[tid] = r[t]; + _td[tid] = td[t]; + __syncthreads(); + + const float _v = v[t]; + float y = 0; + for (int j = 0; j < head_size; j += 4) { + const float4& k = (float4&)(_k[j]); + const float4& r = (float4&)(_r[j]); + const float4& tf = (float4&)(_tf[j]); + const float4& td = (float4&)(_td[j]); + float4& s = (float4&)(state[j]); + float4 kv; + + kv.x = k.x * _v; + kv.y = k.y * _v; + kv.z = k.z * _v; + kv.w = k.w * _v; + + y += r.x * (tf.x * kv.x + s.x); + y += r.y * (tf.y * kv.y + s.y); + y += r.z * (tf.z * kv.z + s.z); + y += r.w * (tf.w * kv.w + s.w); + + s.x = s.x * td.x + kv.x; + s.y = s.y * td.y + kv.y; + s.z = s.z * td.z + kv.z; + s.w = s.w * td.w + kv.w; + } + dst[t] = y; + } + + #pragma unroll + for (int i = 0; i < head_size; i++) { + dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; + } +} + +void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const float * k_d = (const float *)dst->src[0]->data; + const float * v_d = (const float *)dst->src[1]->data; + const float * r_d = (const float *)dst->src[2]->data; + const float * tf_d = (const float *)dst->src[3]->data; + const float * td_d = (const float *)dst->src[4]->data; + const float * s_d = (const float *)dst->src[5]->data; + + const int64_t B = dst->src[5]->ne[1]; + const int64_t T = dst->src[0]->ne[3]; + const int64_t C = dst->ne[0]; + const int64_t H = dst->src[0]->ne[2]; + + float * dst_d = (float *)dst->data; + + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32); + GGML_ASSERT(C % H == 0); + GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE); + + rwkv_wkv_f32<<>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d); +} diff --git a/ggml/src/ggml-cuda/rwkv-wkv.cuh b/ggml/src/ggml-cuda/rwkv-wkv.cuh new file mode 100644 index 000000000..13795247f --- /dev/null +++ b/ggml/src/ggml-cuda/rwkv-wkv.cuh @@ -0,0 +1,5 @@ +#include "common.cuh" + +#define CUDA_WKV_BLOCK_SIZE 64 + +void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/unary.cu b/ggml/src/ggml-cuda/unary.cu index 163b5a8ff..81fc92202 100644 --- a/ggml/src/ggml-cuda/unary.cu +++ b/ggml/src/ggml-cuda/unary.cu @@ -95,6 +95,15 @@ static __global__ void hardswish_f32(const float * x, float * dst, const int k) dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } +static __global__ void exp_f32(const float * x, float * dst, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + dst[i] = expf(x[i]); +} + static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { @@ -189,6 +198,11 @@ static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaSt hardswish_f32<<>>(x, dst, k); } +static void exp_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE; + exp_f32<<>>(x, dst, k); +} + static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) { const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; leaky_relu_f32<<>>(x, dst, k, negative_slope); @@ -354,6 +368,20 @@ void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } +void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const float * src0_d = (const float *)src0->data; + float * dst_d = (float *)dst->data; + cudaStream_t stream = ctx.stream(); + + GGML_ASSERT(ggml_is_contiguous(src0)); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + exp_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); +} + void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; diff --git a/ggml/src/ggml-cuda/unary.cuh b/ggml/src/ggml-cuda/unary.cuh index fe519f6a2..c91936728 100644 --- a/ggml/src/ggml-cuda/unary.cuh +++ b/ggml/src/ggml-cuda/unary.cuh @@ -8,6 +8,7 @@ #define CUDA_RELU_BLOCK_SIZE 256 #define CUDA_SIGMOID_BLOCK_SIZE 256 #define CUDA_HARDSIGMOID_BLOCK_SIZE 256 +#define CUDA_EXP_BLOCK_SIZE 256 #define CUDA_HARDSWISH_BLOCK_SIZE 256 #define CUDA_SQR_BLOCK_SIZE 256 #define CUDA_SQRT_BLOCK_SIZE 256 @@ -32,6 +33,8 @@ void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst); void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 889a19944..efa88688c 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1543,6 +1543,36 @@ struct test_ssm_scan : public test_case { } }; +// GGML_OP_RWKV_WKV +struct test_rwkv_wkv : public test_case { + const ggml_type type; + + const int64_t head_count; + const int64_t head_size; + const int64_t n_seq_tokens; + const int64_t n_seqs; + + std::string vars() override { + return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); + } + + test_rwkv_wkv(ggml_type type = GGML_TYPE_F32, + int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) + : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + const int64_t n_tokens = n_seq_tokens * n_seqs; + ggml_tensor * r = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); + ggml_tensor * k = ggml_new_tensor(ctx, type, 4, std::vector{ head_size, 1, head_count, n_tokens }.data()); + ggml_tensor * v = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); + ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector{ head_size, head_count }.data()); + ggml_tensor * td = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); + ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector{ head_size * head_size * head_count, n_seqs }.data()); + ggml_tensor * out = ggml_rwkv_wkv(ctx, k, v, r, tf, td, s); + return out; + } +}; + // GGML_OP_MUL_MAT struct test_mul_mat : public test_case { const ggml_type type_a; @@ -3337,6 +3367,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4)); + test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 1, 1)); + test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 1)); + test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 4)); + test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 128, 4)); + #if 1 for (ggml_type type_a : base_types) { for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { From ecd5d6b65be08927e62de1587d5fd22778cdc250 Mon Sep 17 00:00:00 2001 From: Shankar Date: Sat, 21 Sep 2024 19:30:34 -0700 Subject: [PATCH 03/30] llama: remove redundant loop when constructing ubatch (#9574) --- src/llama.cpp | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/src/llama.cpp b/src/llama.cpp index af8afd845..bc4e408e0 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -3056,18 +3056,14 @@ struct llama_sbatch { } else { // simple split if (batch->n_seq_id) { - for (size_t i = 0; i < length; ++i) { - ubatch.n_seq_id = batch->n_seq_id + seq.offset; - } + ubatch.n_seq_id = batch->n_seq_id + seq.offset; } else { for (size_t i = 0; i < length; ++i) { ubatch.n_seq_id[ubatch.n_seqs + i] = 1; } } if (batch->seq_id) { - for (size_t i = 0; i < length; ++i) { - ubatch.seq_id = batch->seq_id + seq.offset; - } + ubatch.seq_id = batch->seq_id + seq.offset; } else { for (size_t i = 0; i < length; ++i) { ubatch.seq_id[ubatch.n_seqs + i] = &seq.all_seq_id; From a5b57b08ce1998f7046df75324e86b9e2561c7af Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sun, 22 Sep 2024 09:34:52 +0200 Subject: [PATCH 04/30] CUDA: enable Gemma FA for HIP/Pascal (#9581) --- ggml/src/ggml-cuda.cu | 20 ++++++++++---------- ggml/src/ggml-cuda/fattn.cu | 2 +- tests/test-backend-ops.cpp | 2 +- 3 files changed, 12 insertions(+), 12 deletions(-) diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index f94051198..bf21c643d 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -2976,19 +2976,19 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_LEAKY_RELU: case GGML_OP_RWKV_WKV: return true; - case GGML_OP_FLASH_ATTN_EXT: -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) - return (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) || op->src[0]->ne[0] == 128; -#else - if (op->src[0]->ne[0] == 128) { - return true; - } + case GGML_OP_FLASH_ATTN_EXT: { if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) { return true; } - return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA && - op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; -#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + if (op->src[0]->ne[0] == 128) { + return true; + } + if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) { + return true; + } + const int cc = ggml_cuda_info().devices[cuda_ctx->device].cc; + return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; + } case GGML_OP_CROSS_ENTROPY_LOSS: case GGML_OP_CROSS_ENTROPY_LOSS_BACK: case GGML_OP_OPT_STEP_ADAMW: diff --git a/ggml/src/ggml-cuda/fattn.cu b/ggml/src/ggml-cuda/fattn.cu index f28a19d40..83e5589a1 100644 --- a/ggml/src/ggml-cuda/fattn.cu +++ b/ggml/src/ggml-cuda/fattn.cu @@ -314,7 +314,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst } if (!fast_fp16_available(cc)) { - if (Q->ne[1] <= 8) { + if (Q->ne[1] <= 8 || Q->ne[0] == 256) { ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); } else { ggml_cuda_flash_attn_ext_tile_f32(ctx, dst); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index efa88688c..9a96cfc4c 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -3599,7 +3599,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op if (hs != 128 && logit_softcap != 0.0f) continue; for (int nh : { 32, }) { for (int kv : { 512, 1024, }) { - for (int nb : { 1, 2, 4, 8, }) { + for (int nb : { 1, 3, 32, 35, }) { for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) { test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV)); } From 912c331d3dba3a079815844208dc36164baa8cc7 Mon Sep 17 00:00:00 2001 From: Molly Sophia Date: Sun, 22 Sep 2024 21:26:50 +0800 Subject: [PATCH 05/30] Fix merge error in #9454 (#9589) Signed-off-by: Molly Sophia --- ggml/src/ggml-cuda.cu | 1 + 1 file changed, 1 insertion(+) diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index bf21c643d..5bd4660c3 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -2351,6 +2351,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg break; case GGML_OP_RWKV_WKV: ggml_cuda_op_rwkv_wkv(ctx, dst); + break; case GGML_OP_CROSS_ENTROPY_LOSS_BACK: ggml_cuda_cross_entropy_loss_back(ctx, dst); break; From c35e586ea57221844442c65a1172498c54971cb0 Mon Sep 17 00:00:00 2001 From: R0CKSTAR Date: Sun, 22 Sep 2024 22:55:49 +0800 Subject: [PATCH 06/30] musa: enable building fat binaries, enable unified memory, and disable Flash Attention on QY1 (MTT S80) (#9526) * mtgpu: add mp_21 support Signed-off-by: Xiaodong Ye * mtgpu: disable flash attention on qy1 (MTT S80); disable q3_k and mul_mat_batched_cublas Signed-off-by: Xiaodong Ye * mtgpu: enable unified memory Signed-off-by: Xiaodong Ye * mtgpu: map cublasOperation_t to mublasOperation_t (sync code to latest) Signed-off-by: Xiaodong Ye --------- Signed-off-by: Xiaodong Ye --- Makefile | 2 +- ggml/src/CMakeLists.txt | 2 +- ggml/src/ggml-cuda.cu | 18 ++++++++++++++++-- ggml/src/ggml-cuda/common.cuh | 6 ++++++ ggml/src/ggml-cuda/fattn-tile-f32.cu | 6 +++++- ggml/src/ggml-cuda/vendors/musa.h | 2 ++ 6 files changed, 31 insertions(+), 5 deletions(-) diff --git a/Makefile b/Makefile index f922f7083..8a903d7ed 100644 --- a/Makefile +++ b/Makefile @@ -611,7 +611,7 @@ ifdef GGML_CUDA MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include MK_LDFLAGS += -lmusa -lmublas -lmusart -lpthread -ldl -lrt -L$(CUDA_PATH)/lib -L/usr/lib64 - MK_NVCCFLAGS += -x musa -mtgpu --cuda-gpu-arch=mp_22 + MK_NVCCFLAGS += -x musa -mtgpu --cuda-gpu-arch=mp_21 --cuda-gpu-arch=mp_22 else ifneq ('', '$(wildcard /opt/cuda)') CUDA_PATH ?= /opt/cuda diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 527c22c68..6c691a4c5 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -364,7 +364,7 @@ if (GGML_CUDA) if (GGML_MUSA) set_source_files_properties(${GGML_SOURCES_CUDA} PROPERTIES LANGUAGE CXX) foreach(SOURCE ${GGML_SOURCES_CUDA}) - set_property(SOURCE ${SOURCE} PROPERTY COMPILE_FLAGS "-x musa -mtgpu --cuda-gpu-arch=mp_22") + set_property(SOURCE ${SOURCE} PROPERTY COMPILE_FLAGS "-x musa -mtgpu --cuda-gpu-arch=mp_21 --cuda-gpu-arch=mp_22") endforeach() endif() diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 5bd4660c3..a0d256100 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -136,7 +136,7 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) return res; #else -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) +#if !defined(GGML_USE_HIPBLAS) cudaError_t err; if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr) { @@ -149,7 +149,7 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) return err; #else return cudaMalloc(ptr, size); -#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) +#endif // !defined(GGML_USE_HIPBLAS) #endif } @@ -2830,6 +2830,12 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) { return false; } +#ifdef GGML_USE_MUSA + if (b->type == GGML_TYPE_F16 && b->ne[2]*b->ne[3] > 1 && + !ggml_is_transposed(a) && !ggml_is_transposed(b)) { + return false; + } +#endif // GGML_USE_MUSA switch (a->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: @@ -2853,6 +2859,11 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: +#ifdef GGML_USE_MUSA + if (a->type == GGML_TYPE_Q3_K) { + return false; + } +#endif // GGML_USE_MUSA return true; default: return false; @@ -2978,6 +2989,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_RWKV_WKV: return true; case GGML_OP_FLASH_ATTN_EXT: { +#ifndef FLASH_ATTN_AVAILABLE + return false; +#endif if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) { return true; } diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index 85eb200f0..6a4bcdba0 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -50,6 +50,8 @@ #define CC_RDNA1 (CC_OFFSET_AMD + 1010) #define CC_RDNA2 (CC_OFFSET_AMD + 1030) #define CC_RDNA3 (CC_OFFSET_AMD + 1100) +#define CC_QY1 210 +#define CC_QY2 220 #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses @@ -134,6 +136,10 @@ typedef float2 dfloat2; #define INT8_MMA_AVAILABLE #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING +#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1) +#define FLASH_ATTN_AVAILABLE +#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1) + static constexpr bool fast_fp16_available(const int cc) { return cc >= CC_PASCAL && cc != 610; } diff --git a/ggml/src/ggml-cuda/fattn-tile-f32.cu b/ggml/src/ggml-cuda/fattn-tile-f32.cu index 827437ca0..f402195ce 100644 --- a/ggml/src/ggml-cuda/fattn-tile-f32.cu +++ b/ggml/src/ggml-cuda/fattn-tile-f32.cu @@ -44,13 +44,17 @@ static __global__ void flash_attn_tile_ext_f32( const int ne1, const int ne2, const int ne3) { +#ifndef FLASH_ATTN_AVAILABLE + NO_DEVICE_CODE; + return; +#endif // FLASH_ATTN_AVAILABLE // Skip unused kernel variants for faster compilation: if (use_logit_softcap && !(D == 128 || D == 256)) { NO_DEVICE_CODE; return; } - //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + // In this kernel Q, K, V are matrices while i, j, k are matrix indices. const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. diff --git a/ggml/src/ggml-cuda/vendors/musa.h b/ggml/src/ggml-cuda/vendors/musa.h index 8df571149..1604b8229 100644 --- a/ggml/src/ggml-cuda/vendors/musa.h +++ b/ggml/src/ggml-cuda/vendors/musa.h @@ -26,6 +26,7 @@ #define cublasSetStream mublasSetStream #define cublasSgemm mublasSgemm #define cublasStatus_t mublasStatus_t +#define cublasOperation_t mublasOperation_t #define cublasGetStatusString mublasStatus_to_string #define cudaDataType_t musaDataType_t #define cudaDeviceCanAccessPeer musaDeviceCanAccessPeer @@ -56,6 +57,7 @@ #define cudaLaunchHostFunc musaLaunchHostFunc #define cudaMalloc musaMalloc #define cudaMallocHost musaMallocHost +#define cudaMallocManaged musaMallocManaged #define cudaMemcpy musaMemcpy #define cudaMemcpyAsync musaMemcpyAsync #define cudaMemcpyPeerAsync musaMemcpyPeerAsync From e62e9789cda3bf5573a747e55ec2a7ee32908f56 Mon Sep 17 00:00:00 2001 From: Akarshan Biswas Date: Mon, 23 Sep 2024 08:58:06 +0530 Subject: [PATCH 07/30] Revert "[SYCL] fallback mmvq (#9088)" (#9579) This reverts commit 50addec9a532a6518146ab837a85504850627316. --- ggml/src/ggml-sycl.cpp | 3 +-- ggml/src/ggml-sycl/common.hpp | 1 - 2 files changed, 1 insertion(+), 3 deletions(-) diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp index 16e6be4a0..6978a3192 100644 --- a/ggml/src/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl.cpp @@ -3496,8 +3496,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 - && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE - && (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda || src1->ne[1] > MMVQ_MIN_BATCH_SIZE); + && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; diff --git a/ggml/src/ggml-sycl/common.hpp b/ggml/src/ggml-sycl/common.hpp index 05947ccb7..bc0faa867 100644 --- a/ggml/src/ggml-sycl/common.hpp +++ b/ggml/src/ggml-sycl/common.hpp @@ -134,7 +134,6 @@ typedef sycl::float2 dfloat2; #endif // GGML_SYCL_F16 #define MMVQ_MAX_BATCH_SIZE 8 -#define MMVQ_MIN_BATCH_SIZE 4 static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; From bf9c1013ac40e5f1bd8e60b6d8bf16e0e8401445 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 23 Sep 2024 11:27:47 +0300 Subject: [PATCH 08/30] metal : use F32 prec for K*Q in vec FA (#9595) ggml-ci --- ggml/src/ggml-metal.metal | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index f323ab5f4..2b2000323 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -2631,11 +2631,11 @@ kernel void kernel_flash_attn_ext_vec_f16( const short iv3 = iq3 / rv3; // load the queries from shared memory into local memory - half4 mq[D4]; + float4 mq[D4]; for (short ii = 0; ii < D4; ii += NW) { short i = ii + tiisg; - mq[i] = sq4[i]; + mq[i] = (float4) sq4[i]; } // pointer to the mask @@ -2661,11 +2661,11 @@ kernel void kernel_flash_attn_ext_vec_f16( for (short ii = 0; ii < D4; ii += NW) { const short i = ii + tiisg; - half4x4 mk; - mk[0] = pk4[i + 0*(nb11/8)]; - mk[1] = pk4[i + 1*(nb11/8)]; - mk[2] = pk4[i + 2*(nb11/8)]; - mk[3] = pk4[i + 3*(nb11/8)]; + float4x4 mk; + mk[0] = (float4) pk4[i + 0*(nb11/8)]; + mk[1] = (float4) pk4[i + 1*(nb11/8)]; + mk[2] = (float4) pk4[i + 2*(nb11/8)]; + mk[3] = (float4) pk4[i + 3*(nb11/8)]; mqk += (float4) (mq[i] * mk); } From 37f8c7b4c97784496cfd91040d55fa22f50b1d57 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 23 Sep 2024 11:28:02 +0300 Subject: [PATCH 09/30] perplexity : remove extra new lines after chunks (#9596) --- examples/perplexity/perplexity.cpp | 2 -- 1 file changed, 2 deletions(-) diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index cbd466656..87347135e 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -444,7 +444,6 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & } LOG("%.2f minutes\n", total_seconds / 60.0); } - LOG("\n"); //LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start); for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) { @@ -638,7 +637,6 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par } LOG("%.2f minutes\n", total_seconds / 60.0); } - LOG("\n"); for (int seq = 0; seq < n_seq_batch; seq++) { const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first); From 1e7b9299c6ccb5bbc55d3db7cfa9b51f3ab09b59 Mon Sep 17 00:00:00 2001 From: Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com> Date: Mon, 23 Sep 2024 19:36:38 +0530 Subject: [PATCH 10/30] ggml : AVX512 gemm for Q4_0_8_8 (#9532) * AVX512 version of ggml_gemm_q4_0_8x8_q8_0 * Remove zero vector parameter passing * Rename functions and rearrange order of macros * Edit commments * style : minor adjustments * Update x to start from 0 --------- Co-authored-by: Georgi Gerganov --- ggml/src/ggml-aarch64.c | 537 +++++++++++++++++++++++++++++++++++++--- 1 file changed, 503 insertions(+), 34 deletions(-) diff --git a/ggml/src/ggml-aarch64.c b/ggml/src/ggml-aarch64.c index 27375d0d7..2b01b4f93 100644 --- a/ggml/src/ggml-aarch64.c +++ b/ggml/src/ggml-aarch64.c @@ -39,11 +39,44 @@ // #if defined(__AVX__) #if defined(__F16C__) +#if defined(__AVX512F__) +#define GGML_F32Cx8x2_LOAD(x, y) _mm512_cvtph_ps(_mm256_set_m128i(_mm_loadu_si128((const __m128i *)(y)), _mm_loadu_si128((const __m128i *)(x)))) +#define GGML_F32Cx16_REPEAT_LOAD(x) _mm512_cvtph_ps(_mm256_set_m128i(x, x)) +#endif // the _mm256_cvt intrinsics require F16C #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x))) #define GGML_F32Cx8_REPEAT_LOAD(x, loadMask) _mm256_cvtph_ps(_mm_shuffle_epi32(_mm_maskload_epi32((int const*)(x), loadMask), 68)) #define GGML_F32Cx8_REARRANGE_LOAD(x, arrangeMask) _mm256_cvtph_ps(_mm_shuffle_epi8(_mm_loadu_si128((const __m128i *) x), arrangeMask)) #else +#if defined(__AVX512F__) +static inline __m512 __avx512_f32cx8x2_load(ggml_fp16_t *x, ggml_fp16_t *y) { + float tmp[16]; + + for (int i = 0; i < 8; i++) { + tmp[i] = GGML_FP16_TO_FP32(x[i]); + } + + for (int i = 0; i < 8; i++) { + tmp[i + 8] = GGML_FP16_TO_FP32(y[i]); + } + + return _mm512_loadu_ps(tmp); +} +static inline __m512 __avx512_repeat_f32cx16_load(__m128i x) { + float tmp[16]; + uint16_t tmphalf[8]; + _mm_storeu_si128((__m128i*)tmphalf, x); + + for (int i = 0; i < 4; i++) { + tmp[i] = GGML_FP16_TO_FP32(tmphalf[i]); + tmp[i + 4] = GGML_FP16_TO_FP32(tmphalf[i]); + tmp[i + 8] = GGML_FP16_TO_FP32(tmphalf[i]); + tmp[i + 12] = GGML_FP16_TO_FP32(tmphalf[i]); + } + + return _mm512_loadu_ps(tmp); +} +#endif static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { float tmp[8]; @@ -78,30 +111,65 @@ static inline __m256 __avx_rearranged_f32cx8_load(ggml_fp16_t *x, __m128i arrang #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x) #define GGML_F32Cx8_REPEAT_LOAD(x, loadMask) __avx_repeat_f32cx8_load(x) #define GGML_F32Cx8_REARRANGE_LOAD(x, arrangeMask) __avx_rearranged_f32cx8_load(x, arrangeMask) +#if defined(__AVX512F__) +#define GGML_F32Cx8x2_LOAD(x, y) __avx512_f32cx8x2_load(x, y) +#define GGML_F32Cx16_REPEAT_LOAD(x) __avx512_repeat_f32cx16_load(x) +#endif #endif #endif #if defined(__AVX2__) || defined(__AVX512F__) -static inline __m256i sum_i16_pairs_int(const __m256i x) { +#if defined(__AVX512F__) +// add int16_t pairwise and return as 512 bit int vector +static inline __m512i sum_i16_pairs_int_32x16(const __m512i x) { + const __m512i ones = _mm512_set1_epi16(1); + return _mm512_madd_epi16(ones, x); +} + +static inline __m512i mul_sum_us8_pairs_int32x16(const __m512i ax, const __m512i sy) { +#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__)) + const __m512i zero = _mm512_setzero_si512(); + return _mm512_dpbusd_epi32(zero, ax, sy); +#else + // Perform multiplication and create 16-bit values + const __m512i dot = _mm512_maddubs_epi16(ax, sy); + return sum_i16_pairs_int_32x16(dot); +#endif +} + +// multiply int8_t, add results pairwise twice and return as 512 bit int vector +static inline __m512i mul_sum_i8_pairs_int32x16(const __m512i x, const __m512i y) { + const __m512i zero = _mm512_setzero_si512(); + // Get absolute values of x vectors + const __m512i ax = _mm512_abs_epi8(x); + // Sign the values of the y vectors + __mmask64 blt0 = _mm512_movepi8_mask(x); + const __m512i sy = _mm512_mask_sub_epi8(y, blt0, zero, y); + return mul_sum_us8_pairs_int32x16(ax, sy); +} +#endif + +// add int16_t pairwise and return as 256 bit int vector +static inline __m256i sum_i16_pairs_int32x8(const __m256i x) { const __m256i ones = _mm256_set1_epi16(1); return _mm256_madd_epi16(ones, x); } -static inline __m256i mul_sum_us8_pairs_int(const __m256i ax, const __m256i sy) { +static inline __m256i mul_sum_us8_pairs_int32x8(const __m256i ax, const __m256i sy) { #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__)) const __m256i zero = _mm256_setzero_si256(); return _mm256_dpbusd_epi32(zero, ax, sy); #else // Perform multiplication and create 16-bit values const __m256i dot = _mm256_maddubs_epi16(ax, sy); - return sum_i16_pairs_int(dot); + return sum_i16_pairs_int32x8(dot); #endif } // Integer variant of the function defined in ggml-quants.c -// multiply int8_t, add results pairwise twice and return as float vector -static inline __m256i mul_sum_i8_pairs_int(const __m256i x, const __m256i y) { +// multiply int8_t, add results pairwise twice and return as 256 bit int vector +static inline __m256i mul_sum_i8_pairs_int32x8(const __m256i x, const __m256i y) { #if __AVXVNNIINT8__ const __m256i zero = _mm256_setzero_si256(); return _mm256_dpbssd_epi32(zero, x, y); @@ -110,7 +178,7 @@ static inline __m256i mul_sum_i8_pairs_int(const __m256i x, const __m256i y) { const __m256i ax = _mm256_sign_epi8(x, x); // Sign the values of the y vectors const __m256i sy = _mm256_sign_epi8(y, x); - return mul_sum_us8_pairs_int(ax, sy); + return mul_sum_us8_pairs_int32x8(ax, sy); #endif } #endif @@ -929,17 +997,17 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * // ........................................................................... // B0(28-31) B4(28-31) B1(28-31) B5(28-31) B2(28-31) B6(28-31) B3(28-31) B7(28-31) with A0(28-31) - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_0 ,_mm256_shuffle_epi32(rhs_vec_4567_0, 177), 170), _mm256_shuffle_epi32(lhs_vec_0, 0))); - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_0, 177) ,rhs_vec_4567_0, 170), _mm256_shuffle_epi32(lhs_vec_0, 85))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(rhs_vec_0123_0 ,_mm256_shuffle_epi32(rhs_vec_4567_0, 177), 170), _mm256_shuffle_epi32(lhs_vec_0, 0))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_0, 177) ,rhs_vec_4567_0, 170), _mm256_shuffle_epi32(lhs_vec_0, 85))); - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_1 ,_mm256_shuffle_epi32(rhs_vec_4567_1, 177), 170), _mm256_shuffle_epi32(lhs_vec_0, 170))); - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_1, 177) ,rhs_vec_4567_1, 170), _mm256_shuffle_epi32(lhs_vec_0, 255))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(rhs_vec_0123_1 ,_mm256_shuffle_epi32(rhs_vec_4567_1, 177), 170), _mm256_shuffle_epi32(lhs_vec_0, 170))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_1, 177) ,rhs_vec_4567_1, 170), _mm256_shuffle_epi32(lhs_vec_0, 255))); - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_2 ,_mm256_shuffle_epi32(rhs_vec_4567_2, 177), 170), _mm256_shuffle_epi32(lhs_vec_1, 0))); - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_2, 177) ,rhs_vec_4567_2, 170), _mm256_shuffle_epi32(lhs_vec_1, 85))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(rhs_vec_0123_2 ,_mm256_shuffle_epi32(rhs_vec_4567_2, 177), 170), _mm256_shuffle_epi32(lhs_vec_1, 0))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_2, 177) ,rhs_vec_4567_2, 170), _mm256_shuffle_epi32(lhs_vec_1, 85))); - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(rhs_vec_0123_3 ,_mm256_shuffle_epi32(rhs_vec_4567_3, 177), 170), _mm256_shuffle_epi32(lhs_vec_1, 170))); - iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_3, 177) ,rhs_vec_4567_3, 170), _mm256_shuffle_epi32(lhs_vec_1, 255))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(rhs_vec_0123_3 ,_mm256_shuffle_epi32(rhs_vec_4567_3, 177), 170), _mm256_shuffle_epi32(lhs_vec_1, 170))); + iacc = _mm256_add_epi32(iacc, mul_sum_i8_pairs_int32x8(_mm256_blend_epi32(_mm256_shuffle_epi32(rhs_vec_0123_3, 177) ,rhs_vec_4567_3, 170), _mm256_shuffle_epi32(lhs_vec_1, 255))); // Accumulated values multipled with appropriate scales acc_row = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc), _mm256_mul_ps(col_scale_f32, row_scale_f32), acc_row); @@ -2421,10 +2489,411 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * __m256i signextendlut = _mm256_castsi128_si256(_mm_set_epi8(-1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0)); signextendlut = _mm256_permute2f128_si256(signextendlut, signextendlut, 0); // Permute mask used for easier vector processing at later stages - __m256i requiredOrder = _mm256_set_epi32(3 ,2 ,1 ,0, 7 ,6, 5, 4); + __m256i requiredOrder = _mm256_set_epi32(3, 2, 1, 0, 7, 6, 5, 4); + int64_t xstart = 0; + int anr = nr - nr%16; // Used to align nr with boundary of 16 +#ifdef __AVX512F__ + int anc = nc - nc%16; // Used to align nc with boundary of 16 + // Mask to mask out nibbles from packed bytes expanded to 512 bit length + const __m512i m4bexpanded = _mm512_set1_epi8(0x0F); + // Lookup table to convert signed nibbles to signed bytes expanded to 512 bit length + __m512i signextendlutexpanded = _mm512_inserti32x8(_mm512_castsi256_si512(signextendlut), signextendlut, 1); + + // Take group of four block_q8_0x4 structures at each pass of the loop and perform dot product operation + for (; y < anr / 4; y += 4) { + + const block_q8_0x4 * a_ptrs[4]; + + a_ptrs[0] = a_ptr_start + (y * nb); + for (int i = 0; i < 3; ++i) { + a_ptrs[i + 1] = a_ptrs[i] + nb; + } + + // Take group of two block_q4_0x8 structures at each pass of the loop and perform dot product operation + for (int64_t x = 0; x < anc / 8; x += 2) { + + const block_q4_0x8 * b_ptr_0 = b_ptr_start + ((x) * b_nb); + const block_q4_0x8 * b_ptr_1 = b_ptr_start + ((x + 1) * b_nb); + + // Master FP accumulators + __m512 acc_rows[16]; + for (int i = 0; i < 16; i++) { + acc_rows[i] = _mm512_setzero_ps(); + } + + for (int64_t b = 0; b < nb; b++) { + // Load the sixteen block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....BE,BF + const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs)); + const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 32)); + const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 64)); + const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 96)); + + const __m256i rhs_raw_mat_89AB_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs)); + const __m256i rhs_raw_mat_CDEF_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 32)); + const __m256i rhs_raw_mat_89AB_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 64)); + const __m256i rhs_raw_mat_CDEF_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 96)); + + // Save the values in the following vectors in the formats B0B1B4B5B8B9BCBD, B2B3B6B7BABBBEBF for further processing and storing of values + const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); + const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); + + const __m256i rhs_raw_mat_89CD_0 = _mm256_blend_epi32(rhs_raw_mat_89AB_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_0, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_0, requiredOrder), rhs_raw_mat_CDEF_0, 240); + const __m256i rhs_raw_mat_89CD_1 = _mm256_blend_epi32(rhs_raw_mat_89AB_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_1, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_1, requiredOrder), rhs_raw_mat_CDEF_1, 240); + + const __m512i rhs_raw_mat_014589CD_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_0), rhs_raw_mat_89CD_0, 1); + const __m512i rhs_raw_mat_2367ABEF_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_0), rhs_raw_mat_ABEF_0, 1); + const __m512i rhs_raw_mat_014589CD_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_1), rhs_raw_mat_89CD_1, 1); + const __m512i rhs_raw_mat_2367ABEF_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_1), rhs_raw_mat_ABEF_1, 1); + + // 4-bit -> 8-bit - Sign is maintained + const __m512i rhs_mat_014589CD_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_0, m4bexpanded)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) B8(0-7) B9(0-7) BC(0-7) BD(0-7) + const __m512i rhs_mat_2367ABEF_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_0, m4bexpanded)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) BA(0-7) BB(0-7) BE(0-7) BF(0-7) + + const __m512i rhs_mat_014589CD_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_1, m4bexpanded)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) B8(8-15) B9(8-15) BC(8-15) BD(8-15) + const __m512i rhs_mat_2367ABEF_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_1, m4bexpanded)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) BA(8-15) BB(8-15) BE(8-15) BF(8-15) + + const __m512i rhs_mat_014589CD_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_0, 4), m4bexpanded)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) B8(16-23) B9(16-23) BC(16-23) BD(16-23) + const __m512i rhs_mat_2367ABEF_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_0, 4), m4bexpanded)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) BA(16-23) BB(16-23) BE(16-23) BF(16-23) + + const __m512i rhs_mat_014589CD_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_1, 4), m4bexpanded)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) B8(24-31) B9(24-31) BC(24-31) BD(24-31) + const __m512i rhs_mat_2367ABEF_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_1, 4), m4bexpanded)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) BA(24-31) BB(24-31) BE(24-31) BF(24-31) + + // Shuffle pattern one - right side input + const __m512i rhs_mat_014589CD_0_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) B8(0-3) B9(0-3) B8(0-3) B9(0-3) BC(0-3) BD(0-3) BC(0-3) BD(0-3) + const __m512i rhs_mat_2367ABEF_0_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) BA(0-3) BB(0-3) BA(0-3) BB(0-3) BE(0-3) BF(0-3) BE(0-3) BF(0-3) + + const __m512i rhs_mat_014589CD_1_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) B8(8-11) B9(8-11) B8(8-11) B9(8-11) BC(8-11) BD(8-11) BC(8-11) BD(8-11) + const __m512i rhs_mat_2367ABEF_1_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) BA(8-11) BB(8-11) BA(8-11) BB(8-11) BE(8-11) BF(8-11) BE(8-11) BF(8-11) + + const __m512i rhs_mat_014589CD_2_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) B8(16-19) B9(16-19) B8(16-19) B9(16-19) BC(16-19) BD(16-19) BC(16-19) BD(16-19) + const __m512i rhs_mat_2367ABEF_2_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) BA(16-19) BB(16-19) BA(16-19) BB(16-19) BE(16-19) BF(16-19) BE(16-19) BF(16-19) + + const __m512i rhs_mat_014589CD_3_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) B8(24-27) B9(24-27) B8(24-27) B9(24-27) BC(24-27) BD(24-27) BC(24-27) BD(24-27) + const __m512i rhs_mat_2367ABEF_3_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) BA(24-27) BB(24-27) BA(24-27) BB(24-27) BE(24-27) BF(24-27) BE(24-27) BF(24-27) + + // Shuffle pattern two - right side input + + const __m512i rhs_mat_014589CD_0_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) B8(4-7) B9(4-7) B8(4-7) B9(4-7) BC(4-7) BD(4-7) BC(4-7) BD(4-7) + const __m512i rhs_mat_2367ABEF_0_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) BA(4-7) BB(4-7) BA(4-7) BB(4-7) BE(4-7) BF(4-7) BE(4-7) BF(4-7) + + const __m512i rhs_mat_014589CD_1_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) B8(12-15) B9(12-15) B8(12-15) B9(12-15) BC(12-15) BD(12-15) BC(12-15) BD(12-15) + const __m512i rhs_mat_2367ABEF_1_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) BA(12-15) BB(12-15) BA(12-15) BB(12-15) BE(12-15) BF(12-15) BE(12-15) BF(12-15) + + const __m512i rhs_mat_014589CD_2_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) B8(20-23) B9(20-23) B8(20-23) B9(20-23) BC(20-23) BD(20-23) BC(20-23) BD(20-23) + const __m512i rhs_mat_2367ABEF_2_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) BA(20-23) BB(20-23) BA(20-23) BB(20-23) BE(20-23) BF(20-23) BE(20-23) BF(20-23) + + const __m512i rhs_mat_014589CD_3_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) B8(28-31) B9(28-31) B8(28-31) B9(28-31) BC(28-31) BD(28-31) BC(28-31) BD(28-31) + const __m512i rhs_mat_2367ABEF_3_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) BA(28-31) BB(28-31) BA(28-31) BB(28-31) BE(28-31) BF(28-31) BE(28-31) BF(28-31) + + // Scale values - Load the weight scale values of two block_q4_0x8 + const __m512 col_scale_f32 = GGML_F32Cx8x2_LOAD(b_ptr_0[b].d, b_ptr_1[b].d); + + // Process LHS in pairs of rows + for (int rp = 0; rp < 4; rp++) { + + // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 + // Loaded as set of 128 bit vectors and repeated and stored into a 256 bit vector before again repeating into 512 bit vector + __m256i lhs_mat_ymm_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs))); + __m256i lhs_mat_ymm_01_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 0); + __m256i lhs_mat_ymm_23_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 17); + __m256i lhs_mat_ymm_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 32))); + __m256i lhs_mat_ymm_01_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 0); + __m256i lhs_mat_ymm_23_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 17); + __m256i lhs_mat_ymm_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 64))); + __m256i lhs_mat_ymm_01_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 0); + __m256i lhs_mat_ymm_23_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 17); + __m256i lhs_mat_ymm_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 96))); + __m256i lhs_mat_ymm_01_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 0); + __m256i lhs_mat_ymm_23_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 17); + + __m512i lhs_mat_01_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_0), lhs_mat_ymm_01_0, 1); + __m512i lhs_mat_23_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_0), lhs_mat_ymm_23_0, 1); + __m512i lhs_mat_01_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_1), lhs_mat_ymm_01_1, 1); + __m512i lhs_mat_23_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_1), lhs_mat_ymm_23_1, 1); + __m512i lhs_mat_01_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_2), lhs_mat_ymm_01_2, 1); + __m512i lhs_mat_23_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_2), lhs_mat_ymm_23_2, 1); + __m512i lhs_mat_01_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_3), lhs_mat_ymm_01_3, 1); + __m512i lhs_mat_23_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_3), lhs_mat_ymm_23_3, 1); + + // Shuffle pattern one - left side input + + const __m512i lhs_mat_01_0_sp1 = _mm512_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) + const __m512i lhs_mat_23_0_sp1 = _mm512_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) + + const __m512i lhs_mat_01_1_sp1 = _mm512_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) + const __m512i lhs_mat_23_1_sp1 = _mm512_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) + + const __m512i lhs_mat_01_2_sp1 = _mm512_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) + const __m512i lhs_mat_23_2_sp1 = _mm512_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) + + const __m512i lhs_mat_01_3_sp1 = _mm512_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) + const __m512i lhs_mat_23_3_sp1 = _mm512_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) + + // Shuffle pattern two - left side input + + const __m512i lhs_mat_01_0_sp2 = _mm512_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) + const __m512i lhs_mat_23_0_sp2 = _mm512_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) + + const __m512i lhs_mat_01_1_sp2 = _mm512_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) + const __m512i lhs_mat_23_1_sp2 = _mm512_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) + + const __m512i lhs_mat_01_2_sp2 = _mm512_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) + const __m512i lhs_mat_23_2_sp2 = _mm512_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) + + const __m512i lhs_mat_01_3_sp2 = _mm512_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) + const __m512i lhs_mat_23_3_sp2 = _mm512_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) + + // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane + // Resembles MMLAs into 2x2 matrices in ARM Version + __m512i iacc_mat_00_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_014589CD_0_sp1)); + __m512i iacc_mat_01_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_2367ABEF_0_sp1)); + __m512i iacc_mat_10_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_014589CD_0_sp1)); + __m512i iacc_mat_11_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_2367ABEF_0_sp1)); + __m512i iacc_mat_00_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_014589CD_0_sp2)); + __m512i iacc_mat_01_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_2367ABEF_0_sp2)); + __m512i iacc_mat_10_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_014589CD_0_sp2)); + __m512i iacc_mat_11_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_2367ABEF_0_sp2)); + + // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block + __m512i iacc_mat_00 = _mm512_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); + __m512i iacc_mat_01 = _mm512_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2); + __m512i iacc_mat_10 = _mm512_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2); + __m512i iacc_mat_11 = _mm512_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2); + + + // Straighten out to make 4 row vectors + __m512i iacc_row_0 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_00, _mm512_shuffle_epi32(iacc_mat_01, 78)); + __m512i iacc_row_1 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01); + __m512i iacc_row_2 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_10, _mm512_shuffle_epi32(iacc_mat_11, 78)); + __m512i iacc_row_3 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11); + + // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes + const __m128i row_scale_f16 = _mm_shuffle_epi32(_mm_maskload_epi32((int const*)(a_ptrs[rp][b].d), loadMask), 68); + const __m512 row_scale_f32 = GGML_F32Cx16_REPEAT_LOAD(row_scale_f16); + + // Multiply with appropiate scales and accumulate + acc_rows[rp * 4] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_0), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[rp * 4]); + acc_rows[rp * 4 + 1] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_1), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[rp * 4 + 1]); + acc_rows[rp * 4 + 2] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_2), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[rp * 4 + 2]); + acc_rows[rp * 4 + 3] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_3), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[rp * 4 + 3]); + } + } + + // Store the accumulated values + for (int i = 0; i < 16; i++) { + _mm512_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); + } + } + } + // Take a block_q8_0x4 structures at each pass of the loop and perform dot product operation + for (; y < nr / 4; y ++) { + + const block_q8_0x4 * a_ptr = a_ptr_start + (y * nb); + + // Take group of two block_q4_0x8 structures at each pass of the loop and perform dot product operation + for (int64_t x = 0; x < anc / 8; x += 2) { + + const block_q4_0x8 * b_ptr_0 = b_ptr_start + ((x) * b_nb); + const block_q4_0x8 * b_ptr_1 = b_ptr_start + ((x + 1) * b_nb); + + // Master FP accumulators + __m512 acc_rows[4]; + for (int i = 0; i < 4; i++) { + acc_rows[i] = _mm512_setzero_ps(); + } + + for (int64_t b = 0; b < nb; b++) { + // Load the sixteen block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....BE,BF + const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs)); + const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 32)); + const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 64)); + const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 96)); + + const __m256i rhs_raw_mat_89AB_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs)); + const __m256i rhs_raw_mat_CDEF_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 32)); + const __m256i rhs_raw_mat_89AB_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 64)); + const __m256i rhs_raw_mat_CDEF_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 96)); + + // Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess + const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); + const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); + + const __m256i rhs_raw_mat_89CD_0 = _mm256_blend_epi32(rhs_raw_mat_89AB_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_0, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_0, requiredOrder), rhs_raw_mat_CDEF_0, 240); + const __m256i rhs_raw_mat_89CD_1 = _mm256_blend_epi32(rhs_raw_mat_89AB_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_1, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_1, requiredOrder), rhs_raw_mat_CDEF_1, 240); + + const __m512i rhs_raw_mat_014589CD_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_0), rhs_raw_mat_89CD_0, 1); + const __m512i rhs_raw_mat_2367ABEF_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_0), rhs_raw_mat_ABEF_0, 1); + const __m512i rhs_raw_mat_014589CD_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_1), rhs_raw_mat_89CD_1, 1); + const __m512i rhs_raw_mat_2367ABEF_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_1), rhs_raw_mat_ABEF_1, 1); + + // 4-bit -> 8-bit - Sign is maintained + const __m512i rhs_mat_014589CD_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_0, m4bexpanded)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) B8(0-7) B9(0-7) BC(0-7) BD(0-7) + const __m512i rhs_mat_2367ABEF_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_0, m4bexpanded)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) BA(0-7) BB(0-7) BE(0-7) BF(0-7) + + const __m512i rhs_mat_014589CD_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_1, m4bexpanded)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) B8(8-15) B9(8-15) BC(8-15) BD(8-15) + const __m512i rhs_mat_2367ABEF_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_1, m4bexpanded)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) BA(8-15) BB(8-15) BE(8-15) BF(8-15) + + const __m512i rhs_mat_014589CD_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_0, 4), m4bexpanded)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) B8(16-23) B9(16-23) BC(16-23) BD(16-23) + const __m512i rhs_mat_2367ABEF_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_0, 4), m4bexpanded)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) BA(16-23) BB(16-23) BE(16-23) BF(16-23) + + const __m512i rhs_mat_014589CD_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_1, 4), m4bexpanded)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) B8(24-31) B9(24-31) BC(24-31) BD(24-31) + const __m512i rhs_mat_2367ABEF_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_1, 4), m4bexpanded)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) BA(24-31) BB(24-31) BE(24-31) BF(24-31) + + // Shuffle pattern one - right side input + const __m512i rhs_mat_014589CD_0_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) B8(0-3) B9(0-3) B8(0-3) B9(0-3) BC(0-3) BD(0-3) BC(0-3) BD(0-3) + const __m512i rhs_mat_2367ABEF_0_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) BA(0-3) BB(0-3) BA(0-3) BB(0-3) BE(0-3) BF(0-3) BE(0-3) BF(0-3) + + const __m512i rhs_mat_014589CD_1_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) B8(8-11) B9(8-11) B8(8-11) B9(8-11) BC(8-11) BD(8-11) BC(8-11) BD(8-11) + const __m512i rhs_mat_2367ABEF_1_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) BA(8-11) BB(8-11) BA(8-11) BB(8-11) BE(8-11) BF(8-11) BE(8-11) BF(8-11) + + const __m512i rhs_mat_014589CD_2_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) B8(16-19) B9(16-19) B8(16-19) B9(16-19) BC(16-19) BD(16-19) BC(16-19) BD(16-19) + const __m512i rhs_mat_2367ABEF_2_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) BA(16-19) BB(16-19) BA(16-19) BB(16-19) BE(16-19) BF(16-19) BE(16-19) BF(16-19) + + const __m512i rhs_mat_014589CD_3_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) B8(24-27) B9(24-27) B8(24-27) B9(24-27) BC(24-27) BD(24-27) BC(24-27) BD(24-27) + const __m512i rhs_mat_2367ABEF_3_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) BA(24-27) BB(24-27) BA(24-27) BB(24-27) BE(24-27) BF(24-27) BE(24-27) BF(24-27) + + // Shuffle pattern two - right side input + + const __m512i rhs_mat_014589CD_0_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) B8(4-7) B9(4-7) B8(4-7) B9(4-7) BC(4-7) BD(4-7) BC(4-7) BD(4-7) + const __m512i rhs_mat_2367ABEF_0_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) BA(4-7) BB(4-7) BA(4-7) BB(4-7) BE(4-7) BF(4-7) BE(4-7) BF(4-7) + + const __m512i rhs_mat_014589CD_1_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) B8(12-15) B9(12-15) B8(12-15) B9(12-15) BC(12-15) BD(12-15) BC(12-15) BD(12-15) + const __m512i rhs_mat_2367ABEF_1_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) BA(12-15) BB(12-15) BA(12-15) BB(12-15) BE(12-15) BF(12-15) BE(12-15) BF(12-15) + + const __m512i rhs_mat_014589CD_2_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) B8(20-23) B9(20-23) B8(20-23) B9(20-23) BC(20-23) BD(20-23) BC(20-23) BD(20-23) + const __m512i rhs_mat_2367ABEF_2_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) BA(20-23) BB(20-23) BA(20-23) BB(20-23) BE(20-23) BF(20-23) BE(20-23) BF(20-23) + + const __m512i rhs_mat_014589CD_3_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) B8(28-31) B9(28-31) B8(28-31) B9(28-31) BC(28-31) BD(28-31) BC(28-31) BD(28-31) + const __m512i rhs_mat_2367ABEF_3_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) BA(28-31) BB(28-31) BA(28-31) BB(28-31) BE(28-31) BF(28-31) BE(28-31) BF(28-31) + + + // Scale values - Load the weight scale values of two block_q4_0x8 + const __m512 col_scale_f32 = GGML_F32Cx8x2_LOAD(b_ptr_0[b].d, b_ptr_1[b].d); + + // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 + // Loaded as set of 128 bit vectors and repeated and stored into a 256 bit vector before again repeating into 512 bit vector + __m256i lhs_mat_ymm_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs))); + __m256i lhs_mat_ymm_01_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 0); + __m256i lhs_mat_ymm_23_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 17); + __m256i lhs_mat_ymm_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 32))); + __m256i lhs_mat_ymm_01_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 0); + __m256i lhs_mat_ymm_23_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 17); + __m256i lhs_mat_ymm_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 64))); + __m256i lhs_mat_ymm_01_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 0); + __m256i lhs_mat_ymm_23_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 17); + __m256i lhs_mat_ymm_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 96))); + __m256i lhs_mat_ymm_01_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 0); + __m256i lhs_mat_ymm_23_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 17); + + __m512i lhs_mat_01_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_0), lhs_mat_ymm_01_0, 1); + __m512i lhs_mat_23_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_0), lhs_mat_ymm_23_0, 1); + __m512i lhs_mat_01_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_1), lhs_mat_ymm_01_1, 1); + __m512i lhs_mat_23_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_1), lhs_mat_ymm_23_1, 1); + __m512i lhs_mat_01_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_2), lhs_mat_ymm_01_2, 1); + __m512i lhs_mat_23_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_2), lhs_mat_ymm_23_2, 1); + __m512i lhs_mat_01_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_3), lhs_mat_ymm_01_3, 1); + __m512i lhs_mat_23_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_3), lhs_mat_ymm_23_3, 1); + + // Shuffle pattern one - left side input + + const __m512i lhs_mat_01_0_sp1 = _mm512_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) + const __m512i lhs_mat_23_0_sp1 = _mm512_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) + + const __m512i lhs_mat_01_1_sp1 = _mm512_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) + const __m512i lhs_mat_23_1_sp1 = _mm512_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) + + const __m512i lhs_mat_01_2_sp1 = _mm512_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) + const __m512i lhs_mat_23_2_sp1 = _mm512_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) + + const __m512i lhs_mat_01_3_sp1 = _mm512_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) + const __m512i lhs_mat_23_3_sp1 = _mm512_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) + + // Shuffle pattern two - left side input + + const __m512i lhs_mat_01_0_sp2 = _mm512_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) + const __m512i lhs_mat_23_0_sp2 = _mm512_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) + + const __m512i lhs_mat_01_1_sp2 = _mm512_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) + const __m512i lhs_mat_23_1_sp2 = _mm512_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) + + const __m512i lhs_mat_01_2_sp2 = _mm512_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) + const __m512i lhs_mat_23_2_sp2 = _mm512_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) + + const __m512i lhs_mat_01_3_sp2 = _mm512_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) + const __m512i lhs_mat_23_3_sp2 = _mm512_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) + + // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane + // Resembles MMLAs into 2x2 matrices in ARM Version + __m512i iacc_mat_00_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_014589CD_0_sp1)); + __m512i iacc_mat_01_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_2367ABEF_0_sp1)); + __m512i iacc_mat_10_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_014589CD_0_sp1)); + __m512i iacc_mat_11_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_2367ABEF_0_sp1)); + __m512i iacc_mat_00_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_014589CD_0_sp2)); + __m512i iacc_mat_01_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_2367ABEF_0_sp2)); + __m512i iacc_mat_10_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_014589CD_0_sp2)); + __m512i iacc_mat_11_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_2367ABEF_0_sp2)); + + // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block + __m512i iacc_mat_00 = _mm512_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); + __m512i iacc_mat_01 = _mm512_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2); + __m512i iacc_mat_10 = _mm512_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2); + __m512i iacc_mat_11 = _mm512_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2); + + + // Straighten out to make 4 row vectors + __m512i iacc_row_0 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_00, _mm512_shuffle_epi32(iacc_mat_01, 78)); + __m512i iacc_row_1 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01); + __m512i iacc_row_2 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_10, _mm512_shuffle_epi32(iacc_mat_11, 78)); + __m512i iacc_row_3 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11); + + // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes + const __m128i row_scale_f16 = _mm_shuffle_epi32(_mm_maskload_epi32((int const*)(a_ptr[b].d), loadMask), 68); + const __m512 row_scale_f32 = GGML_F32Cx16_REPEAT_LOAD(row_scale_f16); + + // Multiply with appropiate scales and accumulate + acc_rows[0] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_0), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[0]); + acc_rows[1] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_1), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[1]); + acc_rows[2] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_2), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[2]); + acc_rows[3] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_3), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[3]); + } + + // Store the accumulated values + for (int i = 0; i < 4; i++) { + _mm512_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); + } + } + } + if (anc != nc) { + xstart = anc/8; + y = 0; + } +#endif // __AVX512F__ // Take group of four block_q8_0x4 structures at each pass of the loop and perform dot product operation - int anr = nr - nr %16; // Used to align nr with boundary of 16 for (; y < anr / 4; y += 4) { const block_q8_0x4 * a_ptrs[4]; @@ -2435,7 +2904,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * } // Take group of eight block_q4_0x8 structures at each pass of the loop and perform dot product operation - for (int64_t x = 0; x < nc / 8; x++) { + for (int64_t x = xstart; x < nc / 8; x++) { const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb); @@ -2547,21 +3016,21 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane // Resembles MMLAs into 2x2 matrices in ARM Version __m256i iacc_mat_00_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1)); __m256i iacc_mat_01_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1)); __m256i iacc_mat_10_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1)); __m256i iacc_mat_11_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1)); __m256i iacc_mat_00_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2)); __m256i iacc_mat_01_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2)); __m256i iacc_mat_10_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2)); __m256i iacc_mat_11_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2)); // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block __m256i iacc_mat_00 = _mm256_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); @@ -2599,7 +3068,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * const block_q8_0x4 * a_ptr = a_ptr_start + (y * nb); // Load the eight block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7 - for (int64_t x = 0; x < nc / 8; x++) { + for (int64_t x = xstart; x < nc / 8; x++) { const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb); @@ -2711,21 +3180,21 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane // Resembles MMLAs into 2x2 matrices in ARM Version __m256i iacc_mat_00_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1)); __m256i iacc_mat_01_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1)); __m256i iacc_mat_10_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1)); __m256i iacc_mat_11_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1)); __m256i iacc_mat_00_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2)); __m256i iacc_mat_01_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2)); __m256i iacc_mat_10_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2)); __m256i iacc_mat_11_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2)); + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2)); // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block __m256i iacc_mat_00 = _mm256_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); From f3979df762b75a2b1c0f622a2cd15d1bc60f037f Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 23 Sep 2024 18:43:40 +0300 Subject: [PATCH 11/30] flake.lock: Update (#9586) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Flake lock file updates: • Updated input 'nixpkgs': 'github:NixOS/nixpkgs/4f807e8940284ad7925ebd0a0993d2a1791acb2f?narHash=sha256-IiA3jfbR7K/B5%2B9byVi9BZGWTD4VSbWe8VLpp9B/iYk%3D' (2024-09-11) → 'github:NixOS/nixpkgs/c04d5652cfa9742b1d519688f65d1bbccea9eb7e?narHash=sha256-PmUr/2GQGvFTIJ6/Tvsins7Q43KTMvMFhvG6oaYK%2BWk%3D' (2024-09-19) Co-authored-by: github-actions[bot] --- flake.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/flake.lock b/flake.lock index 0db5ff92a..6333a09f0 100644 --- a/flake.lock +++ b/flake.lock @@ -20,11 +20,11 @@ }, "nixpkgs": { "locked": { - "lastModified": 1726062873, - "narHash": "sha256-IiA3jfbR7K/B5+9byVi9BZGWTD4VSbWe8VLpp9B/iYk=", + "lastModified": 1726755586, + "narHash": "sha256-PmUr/2GQGvFTIJ6/Tvsins7Q43KTMvMFhvG6oaYK+Wk=", "owner": "NixOS", "repo": "nixpkgs", - "rev": "4f807e8940284ad7925ebd0a0993d2a1791acb2f", + "rev": "c04d5652cfa9742b1d519688f65d1bbccea9eb7e", "type": "github" }, "original": { From 1d48e98e4f3316bd2f6b187d288c7b6cb88d5cb3 Mon Sep 17 00:00:00 2001 From: Riceball LEE Date: Mon, 23 Sep 2024 23:58:17 +0800 Subject: [PATCH 12/30] readme : add programmable prompt engine language CLI (#9599) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 4d24dd591..ce954f713 100644 --- a/README.md +++ b/README.md @@ -112,6 +112,7 @@ Typically finetunes of the base models below are supported as well. - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) - Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp) - JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp) +- JS/TS (Programmable Prompt Engine CLI): [offline-ai/cli](https://github.com/offline-ai/cli) - JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm) - Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) From f0c7b5edf82aa200656fd88c11ae3a805d7130bf Mon Sep 17 00:00:00 2001 From: Max Krasnyansky Date: Mon, 23 Sep 2024 11:42:43 -0700 Subject: [PATCH 13/30] threads: improve ggml_barrier scaling with large number of threads (#9598) Make sure n_barrier and n_barrier_passed do not share the cache line to avoid cache line bouncing. This optimization shows performance improvements even for n_threads <= 8 cases. Resurect TSAN (Thread Sanitizer) check so that we can avoid doing expensive read-modify-write in the normal case and just use thread-fence as originally intended. --- Here is the original description and suggestions from Willy Tarreau : There's currently some false sharing between n_barrier and n_barrier_passed that is amplified in ggml_barrier() by the fact that all threads need to increment n_barrier when entering, while all previous threads continue to read n_barrier_passed, waiting for the last one to release them all. The side effect is that all these readers are slowing down all new threads by making the cache line bounce back and forth between readers and writers. Just placing them in two distinct cache lines is sufficient to boost the performance by 21% on a 80-core ARM server compared to the no-openmp version, and by 3% compared to the openmp version. Note that the variables could have been spread apart in the structure as well, but it doesn't seem that the size of this threadpool struct is critical so here we're simply aligning them. Finally, the same issue was present when leaving the barrier since all threads had to update the n_barrier_passed counter, though only one would add a non-zero value. This alone is responsible for half of the cost due to undesired serialization. It might be possible that using a small array of n_barrier counters could make things even faster on many-core systems, but it would likely complicate the logic needed to detect the last thread. Co-authored-by: Willy Tarreau --- ggml/src/ggml.c | 59 +++++++++++++++++++++++++++++++++++++------------ 1 file changed, 45 insertions(+), 14 deletions(-) diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 201d5466a..96c09ca89 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -63,6 +63,25 @@ int ggml_sve_cnt_b = 0; #pragma warning(disable: 4702) #endif +// Note: once we move threading into a separate C++ file +// will use std::hardware_destructive_interference_size instead of hardcoding it here +// and we'll use C++ attribute syntax. +#define GGML_CACHE_LINE 64 + +#if defined(__clang__) || defined(__GNUC__) +#define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE))) +#endif + +#if defined(__has_feature) +#if __has_feature(thread_sanitizer) +#define GGML_TSAN_ENABLED 1 +#endif +#else // __has_feature +#if defined(__SANITIZE_THREAD__) +#define GGML_TSAN_ENABLED 1 +#endif +#endif // __has_feature + #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN @@ -72,6 +91,8 @@ int ggml_sve_cnt_b = 0; #include #if !defined(__clang__) +#define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE)) + typedef volatile LONG atomic_int; typedef atomic_int atomic_bool; typedef atomic_int atomic_flag; @@ -2007,8 +2028,8 @@ struct ggml_threadpool { // synchronization primitives atomic_int n_graph; // incremented when there is work to be done (i.e each graph) - atomic_int n_barrier; - atomic_int n_barrier_passed; + atomic_int GGML_CACHE_ALIGN n_barrier; + atomic_int GGML_CACHE_ALIGN n_barrier_passed; atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads. // these are atomic as an annotation for thread-sanitizer @@ -3196,20 +3217,27 @@ static void ggml_barrier(struct ggml_threadpool * tp) { // enter barrier (full seq-cst fence) int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst); - int last = 0; if (n_barrier == (n_threads - 1)) { // last thread atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed); - last = 1; - } else { - // wait for other threads - while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) { - ggml_thread_cpu_relax(); - } + + // exit barrier (fill seq-cst fence) + atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst); + return; + } + + // wait for other threads + while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) { + ggml_thread_cpu_relax(); } // exit barrier (full seq-cst fence) - atomic_fetch_add_explicit(&tp->n_barrier_passed, last, memory_order_seq_cst); + // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead + #ifdef GGML_TSAN_ENABLED + atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst); + #else + atomic_thread_fence(memory_order_seq_cst); + #endif #endif } @@ -20240,10 +20268,13 @@ static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * s // sync thread state after polling static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) { - struct ggml_threadpool * threadpool = state->threadpool; - // this should just be atomic_thread_fence(seq_cst) but it confuses thread-sanitizer - // so instead we just use a dummy read-modify-write - atomic_fetch_add_explicit(&threadpool->n_graph, 0, memory_order_seq_cst); + // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead + #ifdef GGML_TSAN_ENABLED + atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst); + #else + atomic_thread_fence(memory_order_seq_cst); + #endif + UNUSED(state); } static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) { From 0b3bf966f47bf2ba88e5d4e3ed429602008c7e63 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Mon, 23 Sep 2024 22:23:54 +0200 Subject: [PATCH 14/30] server : add --no-context-shift option (#9607) * server : add --no-context-shift option * small fix * Update examples/server/tests/features/embeddings.feature Co-authored-by: Georgi Gerganov * tests : minor fix * revert usage of GGML_ASSERT * update server documentation --------- Co-authored-by: Georgi Gerganov --- common/arg.cpp | 2 +- examples/server/README.md | 20 +++--- examples/server/server.cpp | 27 +++++++- .../server/tests/features/ctx_shift.feature | 62 +++++++++++++++++++ .../server/tests/features/embeddings.feature | 22 +++++-- examples/server/tests/features/steps/steps.py | 28 ++++++--- 6 files changed, 139 insertions(+), 22 deletions(-) create mode 100644 examples/server/tests/features/ctx_shift.feature diff --git a/common/arg.cpp b/common/arg.cpp index 922391069..c1ec3c4f9 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -691,7 +691,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params) { params.ctx_shift = false; } - ).set_examples({LLAMA_EXAMPLE_MAIN})); + ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--chunks"}, "N", format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), diff --git a/examples/server/README.md b/examples/server/README.md index 326e05e1e..741950c8a 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -21,8 +21,6 @@ The project is under active development, and we are [looking for feedback and co | -------- | ----------- | | `-h, --help, --usage` | print usage and exit | | `--version` | show version and build info | -| `-v, --verbose` | print verbose information | -| `--verbosity N` | set specific verbosity level (default: 0) | | `-t, --threads N` | number of threads to use during generation (default: -1)
(env: LLAMA_ARG_THREADS) | | `-tb, --threads-batch N` | number of threads to use during batch and prompt processing (default: same as --threads) | | `-C, --cpu-mask M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") | @@ -40,15 +38,18 @@ The project is under active development, and we are [looking for feedback and co | `-b, --batch-size N` | logical maximum batch size (default: 2048)
(env: LLAMA_ARG_BATCH) | | `-ub, --ubatch-size N` | physical maximum batch size (default: 512)
(env: LLAMA_ARG_UBATCH) | | `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) | +| `--no-context-shift` | disables context shift on inifinite text generation (default: disabled) | | `-fa, --flash-attn` | enable Flash Attention (default: disabled)
(env: LLAMA_ARG_FLASH_ATTN) | | `-p, --prompt PROMPT` | prompt to start generation with | +| `--no-perf` | disable internal libllama performance timings (default: false)
(env: LLAMA_ARG_NO_PERF) | | `-f, --file FNAME` | a file containing the prompt (default: none) | | `-bf, --binary-file FNAME` | binary file containing the prompt (default: none) | | `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) | | `--no-escape` | do not process escape sequences | +| `-sp, --special` | special tokens output enabled (default: false) | | `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) | | `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'
(default: top_k;tfs_z;typ_p;top_p;min_p;temperature) | -| `-s, --seed SEED` | RNG seed (default: -1, use random seed for < 0) | +| `-s, --seed SEED` | RNG seed (default: 4294967295, use random seed for 4294967295) | | `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) | | `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) | | `--penalize-nl` | penalize newline tokens (default: false) | @@ -87,7 +88,7 @@ The project is under active development, and we are [looking for feedback and co | `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16) | | `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16) | | `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)
(env: LLAMA_ARG_DEFRAG_THOLD) | -| `-np, --parallel N` | number of parallel sequences to decode (default: 1)
(env: LLAMA_ARG_N_PARALLEL) | +| `-np, --parallel N` | number of parallel sequences to decode (default: 1)
(env: LLAMA_ARG_N_PARALLEL) | | `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)
(env: LLAMA_ARG_CONT_BATCHING) | | `-nocb, --no-cont-batching` | disable continuous batching
(env: LLAMA_ARG_NO_CONT_BATCHING) | | `--mlock` | force system to keep model in RAM rather than swapping or compressing | @@ -128,12 +129,13 @@ The project is under active development, and we are [looking for feedback and co | `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)
| | `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) | | `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) | -| `--log-test` | Log test | | `--log-disable` | Log disable | -| `--log-enable` | Log enable | -| `--log-new` | Log new | -| `--log-append` | Log append | -| `--log-file FNAME` | Log file | +| `--log-file FNAME` | Log to file | +| `--log-colors` | Enable colored logging
(env: LLAMA_LOG_COLORS) | +| `-v, --verbose, --log-verbose` | Set verbosity level to infinity (i.e. log all messages, useful for debugging) | +| `-lv, --verbosity, --log-verbosity N` | Set the verbosity threshold. Messages with a higher verbosity will be ignored.
(env: LLAMA_LOG_VERBOSITY) | +| `--log-prefix` | Enable prefx in log messages
(env: LLAMA_LOG_PREFIX) | +| `--log-timestamps` | Enable timestamps in log messages
(env: LLAMA_LOG_TIMESTAMPS) | Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var. diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 0ca999994..8655c097a 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1180,6 +1180,15 @@ struct server_context { SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict); } + // if context shift is disabled, we stop when it reaches the context limit + if (slot.n_decoded >= slot.n_ctx) { + slot.truncated = true; + slot.stopped_limit = true; + slot.has_next_token = false; + + SLT_DBG(slot, "stopped due to running out of context capacity, n_decoded = %d, n_ctx = %d\n", slot.n_decoded, slot.n_ctx); + } + if (llama_token_is_eog(model, result.tok)) { slot.stopped_eos = true; slot.has_next_token = false; @@ -1480,7 +1489,7 @@ struct server_context { if (result.error) { error_handler(result.data); cancel_tasks(id_tasks); - break; + return; } size_t idx = result.data["index"]; @@ -1827,6 +1836,14 @@ struct server_context { for (server_slot & slot : slots) { if (slot.ga_n == 1) { if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) { + if (!params.ctx_shift) { + // this check is redundant (for good) + // we should never get here, because generation should already stopped in process_token() + slot.release(); + send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER); + continue; + } + // Shift context const int n_keep = slot.params.n_keep + add_bos_token; const int n_left = (int) system_tokens.size() + slot.n_past - n_keep; @@ -1961,6 +1978,14 @@ struct server_context { continue; } } else { + if (!params.ctx_shift) { + // if context shift is disabled, we make sure prompt size is smaller than KV size + if ((int) system_tokens.size() + slot.n_prompt_tokens >= slot.n_ctx) { + slot.release(); + send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST); + continue; + } + } if (slot.params.n_keep < 0) { slot.params.n_keep = slot.n_prompt_tokens; } diff --git a/examples/server/tests/features/ctx_shift.feature b/examples/server/tests/features/ctx_shift.feature new file mode 100644 index 000000000..ba3afcf06 --- /dev/null +++ b/examples/server/tests/features/ctx_shift.feature @@ -0,0 +1,62 @@ +@llama.cpp +@ctx_shift +Feature: llama.cpp server + + Background: Server startup + Given a server listening on localhost:8080 + And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models + And a model file test-model.gguf + And a model alias tinyllama-2 + And BOS token is 1 + And 42 as server seed + And 256 KV cache size + And 32 as batch size + And 2 slots + + Scenario: Inference with context shift + And 64 server max tokens to predict + Then the server is starting + Then the server is healthy + Given a prompt: + """ + Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. + Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. + Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. + Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. + """ + And a completion request with no api error + Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl + And the completion is truncated + And 109 prompt tokens are processed + + Scenario Outline: Inference without context shift + And server max tokens to predict + And disable context shifting + Then the server is starting + Then the server is healthy + Given a prompt: + """ + Hi how are you + """ + And a completion request with no api error + Then tokens are predicted matching twind|Anna + And the completion is truncated + And 8 prompt tokens are processed + Examples: + | n_predict | n_token_output | truncated | + | 64 | 64 | not | + | -1 | 120 | | + + Scenario: Inference without context shift (expected error: prompt too long) + And disable context shifting + Then the server is starting + Then the server is healthy + Given a prompt: + """ + Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. + Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. + Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. + Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. + """ + And a completion request with 400 api error + diff --git a/examples/server/tests/features/embeddings.feature b/examples/server/tests/features/embeddings.feature index e1eade6cd..818ea3beb 100644 --- a/examples/server/tests/features/embeddings.feature +++ b/examples/server/tests/features/embeddings.feature @@ -10,11 +10,11 @@ Feature: llama.cpp server And 42 as server seed And 2 slots # the bert-bge-small model has context size of 512 - # since the generated prompts are as big as the batch size, we need to set the batch size to 512 + # since the generated prompts are as big as the batch size, we need to set the batch size to <= 512 # ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20 - And 512 as batch size - And 512 as ubatch size - And 2048 KV cache size + And 128 as batch size + And 128 as ubatch size + And 512 KV cache size And embeddings extraction Then the server is starting Then the server is healthy @@ -26,6 +26,20 @@ Feature: llama.cpp server """ Then embeddings are generated + Scenario: Embedding (error: prompt too long) + When embeddings are computed for: + """ + Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. + Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. + Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. + Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. + Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. + Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. + Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. + Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. + """ + And embeddings request with 500 api error + Scenario: OAI Embeddings compatibility Given a model bert-bge-small When an OAI compatible embeddings computation request for: diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py index 062f084be..0fea0fe87 100644 --- a/examples/server/tests/features/steps/steps.py +++ b/examples/server/tests/features/steps/steps.py @@ -77,6 +77,7 @@ def step_server_config(context, server_fqdn: str, server_port: str): context.response_format = None context.temperature = None context.lora_file = None + context.disable_ctx_shift = False context.tasks_result = [] context.concurrent_tasks = [] @@ -148,7 +149,7 @@ def step_n_slots(context, n_slots: int): @step('{n_predict:d} server max tokens to predict') def step_server_n_predict(context, n_predict: int): - context.n_server_predict = n_predict + context.n_server_predict = n_predict if n_predict > 0 else None @step('{slot_save_path} as slot save path') @@ -180,6 +181,9 @@ def step_server_embeddings(context): def step_server_metrics(context): context.server_metrics = True +@step('disable context shifting') +def step_server_disable_ctx_shift(context): + context.disable_ctx_shift = True @step("the server is starting") def step_start_server(context): @@ -257,7 +261,7 @@ async def step_all_slots_status(context, expected_slot_status_string: Literal['i @step('a completion request with {api_error} api error') @async_run_until_complete async def step_request_completion(context, api_error: Literal['raised'] | str): - expect_api_error = api_error == 'raised' + expect_api_error = api_error == 'raised' or api_error != 'no' seeds = await completions_seed(context, num_seeds=1) completion = await request_completion(context.prompts.pop(), seeds[0] if seeds is not None else seeds, @@ -272,8 +276,11 @@ async def step_request_completion(context, api_error: Literal['raised'] | str): context.tasks_result.append(completion) if context.debug: print(f"Completion response: {completion}") - if expect_api_error: + if api_error == 'raised': assert completion == 401, f"completion must be an 401 status code: {completion}" + elif api_error.isdigit(): + api_error_code = int(api_error) + assert completion == api_error_code, f"completion must be an {api_error_code} status code: {completion}" @step('{predicted_n:d} tokens are predicted matching {re_content}') @@ -645,6 +652,9 @@ def step_assert_embeddings(context): for embedding in context.embeddings: assert_embeddings(embedding) +@step('embeddings request with {api_error_code:d} api error') +def step_assert_embeddings(context, api_error_code: int): + assert context.embeddings == api_error_code, f"embeddings request must return code {api_error_code}, but got {context.embeddings}" @step('an OAI compatible embeddings computation request for') @async_run_until_complete @@ -1089,15 +1099,17 @@ async def oai_chat_completions(user_prompt, return completion_response -async def request_embedding(content, seed, base_url=None) -> list[list[float]]: +async def request_embedding(content, seed, base_url=None) -> list[list[float]] | int: async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session: async with session.post(f'{base_url}/embedding', json={ "content": content, }) as response: - assert response.status == 200 - response_json = await response.json() - return [response_json['embedding']] + if response.status == 200: + response_json = await response.json() + return [response_json['embedding']] + else: + return response.status async def request_oai_embeddings(input, seed, @@ -1372,6 +1384,8 @@ def start_server_background(context): server_args.append('--verbose') if context.lora_file: server_args.extend(['--lora', context.lora_file]) + if context.disable_ctx_shift: + server_args.extend(['--no-context-shift']) args = [str(arg) for arg in [context.server_path, *server_args]] print(f"bench: starting server with: {' '.join(args)}") From 116efee0eef09d8c3c4c60b52fa01b56ddeb432c Mon Sep 17 00:00:00 2001 From: Ivan Date: Tue, 24 Sep 2024 03:14:24 +0300 Subject: [PATCH 15/30] cuda: add q8_0->f32 cpy operation (#9571) llama: enable K-shift for quantized KV cache It will fail on unsupported backends or quant types. --- ggml/src/ggml-cuda.cu | 3 +++ ggml/src/ggml-cuda/cpy.cu | 51 +++++++++++++++++++++++++++++++++++++++ src/llama.cpp | 37 +++++++++++++++++++++------- 3 files changed, 82 insertions(+), 9 deletions(-) diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index a0d256100..0bb7f2d99 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -2899,6 +2899,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) { return true; } + if (src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_F32) { + return true; + } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) { return true; } diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu index 51deb75fd..54c0f66d2 100644 --- a/ggml/src/ggml-cuda/cpy.cu +++ b/ggml/src/ggml-cuda/cpy.cu @@ -81,6 +81,17 @@ static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) { } } +static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) { + const block_q8_0 * xi = (const block_q8_0 *) cxi; + float * dsti = (float *) cdsti; + + const float d = (float)xi->d; + + for (int j = 0; j < QK8_0; j++) { + dsti[j] = xi->qs[j] * d; + } +} + static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) { const float * xi = (const float *) cxi; block_q4_0 * dsti = (block_q4_0 *) cdsti; @@ -288,6 +299,32 @@ static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne, cpy_blck(cx + x_offset, cdst + dst_offset); } +template +static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne, + const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, + const int nb12, const int nb13) { + const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk; + + if (i >= ne) { + return; + } + + const int i03 = i/(ne00 * ne01 * ne02); + const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); + const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; + const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; + const int x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; + + const int i13 = i/(ne10 * ne11 * ne12); + const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); + const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; + const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; + const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13; + + cpy_blck(cx + x_offset, cdst + dst_offset); +} + static void ggml_cpy_f16_f32_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, @@ -329,6 +366,16 @@ static void ggml_cpy_f32_q8_0_cuda( (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); } +static void ggml_cpy_q8_0_f32_cuda( + const char * cx, char * cdst, const int ne, + const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, + const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) { + + const int num_blocks = ne; + cpy_q_f32<<>> + (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13); +} + static void ggml_cpy_f32_q4_0_cuda( const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, @@ -437,6 +484,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { + ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) { ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { @@ -471,6 +520,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) { return (void*) cpy_f32_f16; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) { return (void*) cpy_f32_q; + } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) { + return (void*) cpy_q_f32; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) { return (void*) cpy_f32_q; } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) { diff --git a/src/llama.cpp b/src/llama.cpp index bc4e408e0..e5e0d1a66 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -9930,17 +9930,36 @@ struct llm_build_context { const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); struct ggml_tensor * rope_factors = build_rope_factors(il); - struct ggml_tensor * tmp = - // we rotate only the first n_rot dimensions - ggml_rope_ext_inplace(ctx0, - ggml_view_3d(ctx0, kv_self.k_l[il], - n_embd_head_k, n_head_kv, n_ctx, - ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), - 0), + struct ggml_tensor * k = + ggml_view_3d(ctx0, kv_self.k_l[il], + n_embd_head_k, n_head_kv, n_ctx, + ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + 0); + + struct ggml_tensor * tmp; + if (ggml_is_quantized(k->type)) { + // dequantize to f32 -> RoPE -> quantize back + tmp = ggml_cast(ctx0, k, GGML_TYPE_F32); + cb(tmp, "K_f32", il); + for (auto * backend : lctx.backends) { + // Figure out which backend KV cache belongs to + if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft)) { + ggml_backend_sched_set_tensor_backend(lctx.sched, tmp, backend); + break; + } + } + tmp = ggml_rope_ext_inplace(ctx0, tmp, lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); - + cb(tmp, "K_shifted_f32", il); + tmp = ggml_cpy(ctx0, tmp, k); + } else { + // we rotate only the first n_rot dimensions + tmp = ggml_rope_ext_inplace(ctx0, k, + lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + } cb(tmp, "K_shifted", il); ggml_build_forward_expand(gf, tmp); } From c087b6f11d3385f4293b6841ebfb755063479490 Mon Sep 17 00:00:00 2001 From: Max Krasnyansky Date: Mon, 23 Sep 2024 21:18:48 -0700 Subject: [PATCH 16/30] threads: fix msvc build without openmp (#9615) We're missing atomic_thread_fence() in MSVC builds when openmp is disabled. --- ggml/src/ggml.c | 3 +++ 1 file changed, 3 insertions(+) diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 96c09ca89..d4aa0a81b 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -135,6 +135,9 @@ static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) { static void atomic_flag_clear(atomic_flag * ptr) { InterlockedExchange(ptr, 0); } +static void atomic_thread_fence(memory_order mo) { + MemoryBarrier(); +} #else // clang #include #endif From b0f27361f3539a81d983a8b045f3c61e682d9fc0 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 24 Sep 2024 09:03:17 +0300 Subject: [PATCH 17/30] sampling : avoid expensive softmax during greedy sampling (#9605) * sampling : avoid expensive softmax during greedy sampling ggml-ci * speculative : fix default RNG seed + set sparams.n_probs * Update tests/test-sampling.cpp Co-authored-by: slaren * sampling : add clarifying comment [no ci] --------- Co-authored-by: slaren --- common/sampling.cpp | 10 ++++++- examples/speculative/speculative.cpp | 5 +++- include/llama.h | 1 + src/llama-sampling.cpp | 7 +++-- tests/test-sampling.cpp | 42 +++++++++++++++++++++++++++- 5 files changed, 59 insertions(+), 6 deletions(-) diff --git a/common/sampling.cpp b/common/sampling.cpp index e51d07611..3dc7f1120 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -209,7 +209,15 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st GGML_ASSERT(false && "unknown mirostat version"); } } else { - llama_sampler_chain_add(result->chain, llama_sampler_init_softmax()); + if (params.n_probs > 0) { + // some use cases require to sample greedily, but still obtain the probabilities of the top tokens + // ref: https://github.com/ggerganov/llama.cpp/pull/9605 + // + // the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but + // it is much faster, since we avoid sorting all tokens and should give a good approximation + llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs)); + llama_sampler_chain_add(result->chain, llama_sampler_init_softmax()); + } llama_sampler_chain_add(result->chain, llama_sampler_init_greedy()); } diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index fbac21811..adf6255e1 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -32,6 +32,9 @@ struct seq_draft { int main(int argc, char ** argv) { gpt_params params; + // needed to get candidate probs even for temp <= 0.0 + params.sparams.n_probs = 128; + if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) { return 1; } @@ -49,7 +52,7 @@ int main(int argc, char ** argv) { // probability threshold for splitting a draft branch (only for n_seq_dft > 1) const float p_split = params.p_split; - std::default_random_engine rng(params.sparams.seed); + std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed); std::uniform_real_distribution<> u_dist; // init llama.cpp diff --git a/include/llama.h b/include/llama.h index f316a87ba..132937a07 100644 --- a/include/llama.h +++ b/include/llama.h @@ -1066,6 +1066,7 @@ extern "C" { LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed); /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. + /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first. LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void); /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp index 5299f5116..e255a8fc4 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampling.cpp @@ -3,13 +3,14 @@ #include "llama-vocab.h" #include "llama-grammar.h" -#include #include -#include -#include +#include #include #include #include +#include +#include +#include #include #include #include diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp index d738b7a45..6e021c4c7 100644 --- a/tests/test-sampling.cpp +++ b/tests/test-sampling.cpp @@ -1,6 +1,5 @@ #include "ggml.h" #include "llama.h" -#include "llama-sampling.h" #ifdef NDEBUG #undef NDEBUG @@ -249,6 +248,45 @@ static void test_sampler_queue(const size_t n_vocab, const std::string & sampler samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p); } +static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector & data, int n_iter) { + std::vector cur(data.size()); + std::copy(data.begin(), data.end(), cur.begin()); + llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false }; + llama_sampler_apply(cnstr, &cur_p); + llama_sampler_reset(cnstr); + const int64_t t_start = ggml_time_us(); + for (int i = 0; i < n_iter; i++) { + std::copy(data.begin(), data.end(), cur.begin()); + llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false }; + llama_sampler_apply(cnstr, &cur_p); + llama_sampler_reset(cnstr); + } + const int64_t t_end = ggml_time_us(); + llama_sampler_free(cnstr); + printf("%-42s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter); +} + +#define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter)) + +static void test_perf() { + const int n_vocab = 1 << 17; + + std::vector data; + + data.reserve(n_vocab); + for (int i = 0; i < n_vocab; i++) { + const float logit = 2.0f*((float)(rand())/RAND_MAX - 0.5f); + data.emplace_back(llama_token_data{i, logit, 0.0f}); + } + + BENCH(llama_sampler_init_top_k (40), data, 32); + BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32); + BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32); + BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32); + BENCH(llama_sampler_init_typical (0.5f, 1), data, 32); + BENCH(llama_sampler_init_softmax (), data, 32); +} + int main(void) { ggml_time_init(); @@ -316,5 +354,7 @@ int main(void) { printf("OK\n"); + test_perf(); + return 0; } From 0aa15011e315659640504731d1d05663837130fa Mon Sep 17 00:00:00 2001 From: StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com> Date: Mon, 23 Sep 2024 23:04:39 -0700 Subject: [PATCH 18/30] server : add newline after chat example (#9616) --- examples/server/server.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 8655c097a..e5275a514 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -3179,7 +3179,7 @@ int main(int argc, char ** argv) { } // print sample chat example to make it clear which template is used - LOG_INF("%s: chat template, built_in: %d, chat_example: '%s\n'", __func__, params.chat_template.empty(), llama_chat_format_example(ctx_server.model, params.chat_template).c_str()); + LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), llama_chat_format_example(ctx_server.model, params.chat_template).c_str()); ctx_server.queue_tasks.on_new_task(std::bind( &server_context::process_single_task, &ctx_server, std::placeholders::_1)); From cea1486ecf34a1c7e014a9e290eb458f5a11f876 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 24 Sep 2024 10:15:35 +0300 Subject: [PATCH 19/30] log : add CONT level for continuing previous log entry (#9610) --- common/log.cpp | 2 +- common/log.h | 2 ++ examples/infill/infill.cpp | 14 +++++++------- examples/main/main.cpp | 28 ++++++++++++++-------------- ggml/include/ggml.h | 1 + src/llama-impl.h | 2 ++ src/llama.cpp | 4 ++-- 7 files changed, 29 insertions(+), 24 deletions(-) diff --git a/common/log.cpp b/common/log.cpp index 2825a227e..5a844ed59 100644 --- a/common/log.cpp +++ b/common/log.cpp @@ -82,7 +82,7 @@ struct gpt_log_entry { } } - if (level != GGML_LOG_LEVEL_NONE && prefix) { + if (level != GGML_LOG_LEVEL_NONE && level != GGML_LOG_LEVEL_CONT && prefix) { if (timestamp) { // [M.s.ms.us] fprintf(fcur, "%s%d.%02d.%03d.%03d%s ", diff --git a/common/log.h b/common/log.h index d13f72d89..84f9b3ed7 100644 --- a/common/log.h +++ b/common/log.h @@ -83,8 +83,10 @@ void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // w #define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__) #define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__) #define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__) +#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__) #define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__) #define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__) #define LOG_ERRV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, verbosity, __VA_ARGS__) #define LOG_DBGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, verbosity, __VA_ARGS__) +#define LOG_CNTV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_CONT, verbosity, __VA_ARGS__) diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 35607276a..d52425ae6 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -263,9 +263,9 @@ int main(int argc, char ** argv) { if (params.n_keep > 0) { LOG_INF("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { - LOG("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); + LOG_CNT("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); } - LOG("'\n"); + LOG_CNT("'\n"); } LOG_INF("\n"); } @@ -306,8 +306,8 @@ int main(int argc, char ** argv) { LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); - LOG("\n"); - LOG("\n##### Infill mode #####\n\n"); + LOG_INF("\n"); + LOG_INF("\n##### Infill mode #####\n\n"); if (params.interactive) { const char *control_message; if (params.multiline_input) { @@ -318,11 +318,11 @@ int main(int argc, char ** argv) { " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; } - LOG("== Running in interactive mode. ==\n"); + LOG_INF("== Running in interactive mode. ==\n"); #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) - LOG( " - Press Ctrl+C to interject at any time.\n"); + LOG_INF( " - Press Ctrl+C to interject at any time.\n"); #endif - LOG( "%s\n", control_message); + LOG_INF( "%s\n", control_message); is_interacting = params.interactive_first; } diff --git a/examples/main/main.cpp b/examples/main/main.cpp index c3041f1fb..6bbb1e13e 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -385,9 +385,9 @@ int main(int argc, char ** argv) { if (params.n_keep > add_bos) { LOG_INF("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { - LOG("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); + LOG_CNT("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); } - LOG("'\n"); + LOG_CNT("'\n"); } LOG_INF("\n"); } @@ -409,40 +409,40 @@ int main(int argc, char ** argv) { } if (params.interactive) { - LOG("%s: interactive mode on.\n", __func__); + LOG_INF("%s: interactive mode on.\n", __func__); if (!params.antiprompt.empty()) { for (const auto & antiprompt : params.antiprompt) { - LOG("Reverse prompt: '%s'\n", antiprompt.c_str()); + LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str()); if (params.verbose_prompt) { auto tmp = ::llama_tokenize(ctx, antiprompt, false, true); for (int i = 0; i < (int) tmp.size(); i++) { - LOG("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); + LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); } } } } if (params.input_prefix_bos) { - LOG("Input prefix with BOS\n"); + LOG_INF("Input prefix with BOS\n"); } if (!params.input_prefix.empty()) { - LOG("Input prefix: '%s'\n", params.input_prefix.c_str()); + LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str()); if (params.verbose_prompt) { auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true); for (int i = 0; i < (int) tmp.size(); i++) { - LOG("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); + LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); } } } if (!params.input_suffix.empty()) { - LOG("Input suffix: '%s'\n", params.input_suffix.c_str()); + LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str()); if (params.verbose_prompt) { auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true); for (int i = 0; i < (int) tmp.size(); i++) { - LOG("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); + LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str()); } } } @@ -474,7 +474,7 @@ int main(int argc, char ** argv) { //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w); } - LOG("\n"); + LOG_INF("\n"); if (params.interactive) { const char * control_message; @@ -486,11 +486,11 @@ int main(int argc, char ** argv) { " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; } - LOG("== Running in interactive mode. ==\n"); + LOG_INF("== Running in interactive mode. ==\n"); #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) - LOG( " - Press Ctrl+C to interject at any time.\n"); + LOG_INF( " - Press Ctrl+C to interject at any time.\n"); #endif - LOG( "%s\n", control_message); + LOG_INF( "%s\n", control_message); is_interacting = params.interactive_first; } diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 2035001e9..d6c45c948 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -570,6 +570,7 @@ extern "C" { GGML_LOG_LEVEL_WARN = 2, GGML_LOG_LEVEL_ERROR = 3, GGML_LOG_LEVEL_DEBUG = 4, + GGML_LOG_LEVEL_CONT = 5, // continue previous log }; // this tensor... diff --git a/src/llama-impl.h b/src/llama-impl.h index 2bde75ec1..70f16b61c 100644 --- a/src/llama-impl.h +++ b/src/llama-impl.h @@ -28,6 +28,8 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void * #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) +#define LLAMA_LOG_DEBUG(...) llama_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__) +#define LLAMA_LOG_CONT(...) llama_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__) // // helpers diff --git a/src/llama.cpp b/src/llama.cpp index e5e0d1a66..c1ba2b301 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -18671,9 +18671,9 @@ struct llama_model * llama_load_model_from_file( unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { *cur_percentage_p = percentage; - LLAMA_LOG("."); + LLAMA_LOG_CONT("."); if (percentage >= 100) { - LLAMA_LOG("\n"); + LLAMA_LOG_CONT("\n"); } } return true; From 31ac5834fe75c296476658a124c06c84772aa641 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 24 Sep 2024 10:16:06 +0300 Subject: [PATCH 20/30] llama : keep track of all EOG tokens in the vocab (#9609) ggml-ci --- src/llama-vocab.cpp | 6 +---- src/llama-vocab.h | 14 +++++++---- src/llama.cpp | 59 +++++++++++++++++++++++++++++++++++++++------ 3 files changed, 61 insertions(+), 18 deletions(-) diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 2c007477e..a771eccda 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1570,11 +1570,7 @@ llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, lla } bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) { - return token != -1 && ( - token == llama_token_eos_impl(vocab) || - token == llama_token_eot_impl(vocab) || - token == llama_token_eom_impl(vocab) - ); + return token != -1 && vocab.special_eog_ids.count(token) > 0; } bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) { diff --git a/src/llama-vocab.h b/src/llama-vocab.h index dc4b5f12f..cc46f642b 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -6,6 +6,7 @@ #include #include #include +#include struct llama_vocab { using id = llama_token; @@ -49,12 +50,15 @@ struct llama_vocab { id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token id special_eom_id = -1; + // set of all tokens that cause "end of generation" + std::set special_eog_ids; + // tokenizer flags - bool tokenizer_add_space_prefix = false; - bool tokenizer_add_bos = false; - bool tokenizer_add_eos = false; - bool tokenizer_ignore_merges = false; - bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces + bool tokenizer_add_space_prefix = false; + bool tokenizer_add_bos = false; + bool tokenizer_add_eos = false; + bool tokenizer_ignore_merges = false; + bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces bool tokenizer_remove_extra_whitespaces = false; bool tokenizer_escape_whitespaces = true; bool tokenizer_treat_whitespace_as_suffix = false; diff --git a/src/llama.cpp b/src/llama.cpp index c1ba2b301..a718de054 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -6509,21 +6509,21 @@ static void llm_load_vocab( // for now, we apply this workaround to find the EOT token based on its text if (vocab.special_eot_id == -1) { for (const auto & t : vocab.token_to_id) { - if ( + if (false // TODO: gemma "" is exported as a normal token, so the following check does not work // need to fix convert script //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL && - (t.first == "<|eot_id|>" || - t.first == "<|im_end|>" || - t.first == "<|end|>" || - t.first == "" || - t.first == "<|endoftext|>" - ) + || t.first == "<|eot_id|>" + || t.first == "<|im_end|>" + || t.first == "<|end|>" + || t.first == "" + || t.first == "<|endoftext|>" + || t.first == "" ) { vocab.special_eot_id = t.second; if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", - __func__, t.first.c_str()); + __func__, t.first.c_str()); vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; } break; @@ -6546,6 +6546,44 @@ static void llm_load_vocab( } } } + + // maintain a list of tokens that cause end-of-generation + // this is currently determined based on the token text, which is obviously not ideal + // ref: https://github.com/ggerganov/llama.cpp/issues/9606 + vocab.special_eog_ids.clear(); + for (const auto & t : vocab.token_to_id) { + if (false + || t.first == "<|eot_id|>" + || t.first == "<|im_end|>" + || t.first == "<|end|>" + || t.first == "" + || t.first == "<|endoftext|>" + || t.first == "<|eom_id|>" + || t.first == "" + ) { + vocab.special_eog_ids.insert(t.second); + if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { + LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", + __func__, t.first.c_str()); + vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; + } + } + } + + if (vocab.special_eos_id != -1 && vocab.special_eog_ids.count(vocab.special_eos_id) == 0) { + vocab.special_eog_ids.insert(vocab.special_eos_id); + LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__); + } + + if (vocab.special_eot_id != -1 && vocab.special_eog_ids.count(vocab.special_eot_id) == 0) { + vocab.special_eog_ids.insert(vocab.special_eot_id); + LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__); + } + + if (vocab.special_eom_id != -1 && vocab.special_eog_ids.count(vocab.special_eom_id) == 0) { + vocab.special_eog_ids.insert(vocab.special_eom_id); + LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__); + } } // build special tokens cache @@ -6749,6 +6787,11 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); } if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); } if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); } + if (vocab.special_eom_id != -1) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, vocab.special_eom_id, vocab.id_to_token[vocab.special_eom_id].text.c_str() ); } + + for (const auto & id : vocab.special_eog_ids) { + LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, vocab.id_to_token[id].text.c_str() ); + } LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len); From c038931615d2525d732943fa8661e29aa361b192 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 20 Sep 2024 21:50:16 +0300 Subject: [PATCH 21/30] examples : adapt to ggml.h changes (ggml/0) ggml-ci --- ggml/include/ggml.h | 3 +++ ggml/src/ggml.c | 1 - 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index d6c45c948..e24b8a319 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -1980,6 +1980,9 @@ extern "C" { typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata); typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata); +#define GGML_N_TASKS_MAX (-1) + // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks + GGML_API struct ggml_tensor * ggml_map_custom1( struct ggml_context * ctx, struct ggml_tensor * a, diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index d4aa0a81b..4b782b0c1 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -313,7 +313,6 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) { #define GGML_DEBUG 0 #define GGML_GELU_FP16 #define GGML_GELU_QUICK_FP16 -#define GGML_N_TASKS_MAX (-1) #define GGML_SOFT_MAX_UNROLL 4 #define GGML_VEC_DOT_UNROLL 2 From bb5f8199754b5f055cf436711d14c58e7be28e12 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 24 Sep 2024 11:01:18 +0300 Subject: [PATCH 22/30] sync : ggml --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index cf7b97d45..36eeed0cc 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -e7b23907cb2816e9951fe9b524d7127ab777297a +336c10a4c3c8ec99af484b25a0cddd397a09cdb2 From 70392f1f81470607ba3afef04aa56c9f65587664 Mon Sep 17 00:00:00 2001 From: Eric Zhang <34133756+EZForever@users.noreply.github.com> Date: Tue, 24 Sep 2024 16:03:21 +0800 Subject: [PATCH 23/30] ggml : add AVX512DQ requirement for AVX512 builds (#9622) --- ggml/src/CMakeLists.txt | 1 + 1 file changed, 1 insertion(+) diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 6c691a4c5..cbc349500 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -1186,6 +1186,7 @@ elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LW endif() if (GGML_AVX512) list(APPEND ARCH_FLAGS -mavx512f) + list(APPEND ARCH_FLAGS -mavx512dq) list(APPEND ARCH_FLAGS -mavx512bw) endif() if (GGML_AVX512_VBMI) From 904837e0cb2f5f01bf5d5901b7aa57a026860ae4 Mon Sep 17 00:00:00 2001 From: Dou Xinpeng <15529241576@163.com> Date: Wed, 25 Sep 2024 11:30:38 +0800 Subject: [PATCH 24/30] cann: fix crash when llama-bench is running on multiple cann devices (#9627) --- ggml/src/ggml-cann/common.h | 1 + 1 file changed, 1 insertion(+) diff --git a/ggml/src/ggml-cann/common.h b/ggml/src/ggml-cann/common.h index e6a570107..edfa49614 100644 --- a/ggml/src/ggml-cann/common.h +++ b/ggml/src/ggml-cann/common.h @@ -227,6 +227,7 @@ struct ggml_backend_cann_context { * @brief Destructor for cleaning up resources. */ ~ggml_backend_cann_context() { + ggml_cann_set_device(device); if (copy_event != nullptr) { ACL_CHECK(aclrtDestroyEvent(copy_event)); } From 3d6bf6919f7b10726421779cd344f2da05421c68 Mon Sep 17 00:00:00 2001 From: Gabe Goodhart Date: Wed, 25 Sep 2024 01:06:52 -0600 Subject: [PATCH 25/30] llama : add IBM Granite MoE architecture (#9438) * feat(gguf-py): Add granitemoe architecture This includes the addition of new tensor names for the new moe layers. These may not be correct at this point due to the need for the hack in gguf_writer.py to double-check the length of the shape for these layers. Branch: GraniteMoE Signed-off-by: Gabe Goodhart * feat(convert_hf_to_gguf): Add GraniteMoeModel GraniteMoe has the same configuration deltas as Granite Branch: GraniteMoE Signed-off-by: Gabe Goodhart * fix(granitemoe convert): Split the double-sized input layer into gate and up After a lot of staring and squinting, it's clear that the standard mixtral expert implementation is equivalent to the vectorized parallel experts in granite. The difference is that in granite, the w1 and w3 are concatenated into a single tensor "input_linear." Rather than reimplementing all of the math on the llama.cpp side, the much simpler route is to just split this tensor during conversion and follow the standard mixtral route. Branch: GraniteMoE Co-Authored-By: alex.brooks@ibm.com Signed-off-by: Gabe Goodhart * feat(granitemoe): Implement granitemoe GraniteMoE follows the mixtral architecture (once the input_linear layers are split into gate_exps/up_exps). The main delta is the addition of the same four multipliers used in Granite. Branch: GraniteMoE Signed-off-by: Gabe Goodhart * Typo fix in docstring Co-Authored-By: ggerganov@gmail.com Co-authored-by: Georgi Gerganov Signed-off-by: Gabe Goodhart * fix(conversion): Simplify tensor name mapping in conversion Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart * fix(convert): Remove unused tensor name mappings Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart * fix(convert): Sanity check on merged FFN tensor sizes Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart * fix: Allow "output" layer in granite moe architecture (convert and cpp) Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart * fix(granite): Add missing 'output' tensor for Granite This is a fix for the previous `granite` architecture PR. Recent snapshots have included this (`lm_head.weights`) as part of the architecture Branch: GraniteMoE Signed-off-by: Gabe Goodhart --------- Signed-off-by: Gabe Goodhart Co-authored-by: Georgi Gerganov --- convert_hf_to_gguf.py | 33 +++++++++++++++++++++++++++++++-- gguf-py/gguf/constants.py | 18 ++++++++++++++++++ gguf-py/gguf/tensor_mapping.py | 20 +++++++++++--------- src/llama.cpp | 30 ++++++++++++++++++++++++++++-- 4 files changed, 88 insertions(+), 13 deletions(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index ff4c9226f..7be609054 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -4102,16 +4102,45 @@ class GraniteModel(LlamaModel): # consistency if attention_scale := self.hparams.get("attention_multiplier"): self.gguf_writer.add_attention_scale(attention_scale) + logger.info("gguf: (granite) attention_scale = %s", attention_scale) if embedding_scale := self.hparams.get("embedding_multiplier"): self.gguf_writer.add_embedding_scale(embedding_scale) + logger.info("gguf: (granite) embedding_scale = %s", embedding_scale) if residual_scale := self.hparams.get("residual_multiplier"): self.gguf_writer.add_residual_scale(residual_scale) - if logits_scaling := self.hparams.get("logits_scaling"): - self.gguf_writer.add_logit_scale(logits_scaling) + logger.info("gguf: (granite) residual_scale = %s", residual_scale) + if logits_scale := self.hparams.get("logits_scaling"): + self.gguf_writer.add_logit_scale(logits_scale) + logger.info("gguf: (granite) logits_scale = %s", logits_scale) + + +@Model.register("GraniteMoeForCausalLM") +class GraniteMoeModel(GraniteModel): + """Conversion for IBM's GraniteMoeForCausalLM""" + model_arch = gguf.MODEL_ARCH.GRANITE_MOE + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + """In modeling_granitemoe, the JetMoe implementation of parallel experts + is used. This essentially merges w1 and w3 into a single tensor with 2x + the hidden size that is then split during forward. To keep compatibility + with existing mixtral support, we pull them apart here. + """ + + if name.endswith("block_sparse_moe.input_linear.weight"): + ffn_dim = self.hparams["intermediate_size"] + assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size" + gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :] + return [ + (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate), + (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up), + ] + + return super().modify_tensors(data_torch, name, bid) ###### CONVERSION LOGIC ###### + # tree of lazy tensors class LazyTorchTensor(gguf.LazyBase): _tensor_type = torch.Tensor diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index b36a60d49..560eee916 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -235,6 +235,7 @@ class MODEL_ARCH(IntEnum): NEMOTRON = auto() EXAONE = auto() GRANITE = auto() + GRANITE_MOE = auto() class MODEL_TENSOR(IntEnum): @@ -392,6 +393,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.NEMOTRON: "nemotron", MODEL_ARCH.EXAONE: "exaone", MODEL_ARCH.GRANITE: "granite", + MODEL_ARCH.GRANITE_MOE: "granitemoe", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -1232,6 +1234,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_ARCH.GRANITE: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, MODEL_TENSOR.ATTN_NORM, MODEL_TENSOR.ATTN_Q, MODEL_TENSOR.ATTN_K, @@ -1242,6 +1245,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.GRANITE_MOE: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + ], # TODO } diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 2ebfa2b43..4e850726e 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -251,11 +251,12 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_GATE_INP: ( - "layers.{bid}.feed_forward.gate", # mixtral - "model.layers.{bid}.block_sparse_moe.gate", # mixtral - "model.layers.{bid}.mlp.gate", # qwen2moe olmoe - "transformer.decoder_layer.{bid}.router", # Grok - "transformer.blocks.{bid}.ffn.router.layer", # dbrx + "layers.{bid}.feed_forward.gate", # mixtral + "model.layers.{bid}.block_sparse_moe.gate", # mixtral + "model.layers.{bid}.mlp.gate", # qwen2moe olmoe + "transformer.decoder_layer.{bid}.router", # Grok + "transformer.blocks.{bid}.ffn.router.layer", # dbrx + "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe ), MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( @@ -364,10 +365,11 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_DOWN_EXP: ( - "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) - "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) - "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx - "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) + "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) + "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx + "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) + "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe ), MODEL_TENSOR.FFN_DOWN_SHEXP: ( diff --git a/src/llama.cpp b/src/llama.cpp index a718de054..0accb1492 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -215,6 +215,7 @@ enum llm_arch { LLM_ARCH_EXAONE, LLM_ARCH_RWKV6, LLM_ARCH_GRANITE, + LLM_ARCH_GRANITE_MOE, LLM_ARCH_UNKNOWN, }; @@ -266,6 +267,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_GRANITE, "granite" }, + { LLM_ARCH_GRANITE_MOE, "granitemoe" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1467,6 +1469,7 @@ static const std::map> LLM_TENSOR_NA { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, @@ -1478,6 +1481,24 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_GRANITE_MOE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -2396,7 +2417,7 @@ struct llama_hparams { float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; - // Additional scale factors (Granite) + // Additional scale factors (Granite/Granite MoE) float f_residual_scale = 0.0f; float f_embedding_scale = 0.0f; float f_attention_scale = 0.0f; @@ -6048,6 +6069,7 @@ static void llm_load_hparams( } } break; case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); @@ -6056,6 +6078,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale); switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_3B; break; case 40: model.type = e_model::MODEL_3B; break; // Add additional layer/vocab/etc checks here for other model sizes default: model.type = e_model::MODEL_UNKNOWN; @@ -6810,7 +6833,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); } - if (model.arch == LLM_ARCH_GRANITE) { + if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) { LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale); LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale); LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale); @@ -6984,6 +7007,7 @@ static bool llm_load_tensors( case LLM_ARCH_REFACT: case LLM_ARCH_MINICPM: case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -15930,6 +15954,7 @@ static struct ggml_cgraph * llama_build_graph( switch (model.arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: { result = llm.build_llama(); } break; @@ -19231,6 +19256,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_CHATGLM: case LLM_ARCH_GRANITE: + case LLM_ARCH_GRANITE_MOE: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2 From afbbfaa537a96f562c34df4542930fa951b40d9e Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Wed, 25 Sep 2024 14:05:13 +0200 Subject: [PATCH 26/30] server : add more env vars, improve gen-docs (#9635) * server : add more env vars, improve gen-docs * update server docs * LLAMA_ARG_NO_CONTEXT_SHIFT --- common/arg.cpp | 56 ++++++++-------- examples/gen-docs/gen-docs.cpp | 85 +++++++++++++++-------- examples/server/README.md | 119 +++++++++++++++++++-------------- examples/server/server.cpp | 4 ++ 4 files changed, 157 insertions(+), 107 deletions(-) diff --git a/common/arg.cpp b/common/arg.cpp index c1ec3c4f9..6880117ed 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -691,7 +691,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params) { params.ctx_shift = false; } - ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); + ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT")); add_opt(llama_arg( {"--chunks"}, "N", format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), @@ -1102,7 +1102,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } else { throw std::invalid_argument("invalid value"); } } - ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); + ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING")); add_opt(llama_arg( {"--attention"}, "{causal,non,causal}", "attention type for embeddings, use model default if unspecified", @@ -1121,77 +1121,77 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { throw std::invalid_argument("invalid value"); } } - )); + ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE")); add_opt(llama_arg( {"--rope-scale"}, "N", "RoPE context scaling factor, expands context by a factor of N", [](gpt_params & params, const std::string & value) { params.rope_freq_scale = 1.0f / std::stof(value); } - )); + ).set_env("LLAMA_ARG_ROPE_SCALE")); add_opt(llama_arg( {"--rope-freq-base"}, "N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)", [](gpt_params & params, const std::string & value) { params.rope_freq_base = std::stof(value); } - )); + ).set_env("LLAMA_ARG_ROPE_FREQ_BASE")); add_opt(llama_arg( {"--rope-freq-scale"}, "N", "RoPE frequency scaling factor, expands context by a factor of 1/N", [](gpt_params & params, const std::string & value) { params.rope_freq_scale = std::stof(value); } - )); + ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE")); add_opt(llama_arg( {"--yarn-orig-ctx"}, "N", format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx), [](gpt_params & params, int value) { params.yarn_orig_ctx = value; } - )); + ).set_env("LLAMA_ARG_YARN_ORIG_CTX")); add_opt(llama_arg( {"--yarn-ext-factor"}, "N", format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor), [](gpt_params & params, const std::string & value) { params.yarn_ext_factor = std::stof(value); } - )); + ).set_env("LLAMA_ARG_YARN_EXT_FACTOR")); add_opt(llama_arg( {"--yarn-attn-factor"}, "N", format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor), [](gpt_params & params, const std::string & value) { params.yarn_attn_factor = std::stof(value); } - )); + ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR")); add_opt(llama_arg( {"--yarn-beta-slow"}, "N", format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow), [](gpt_params & params, const std::string & value) { params.yarn_beta_slow = std::stof(value); } - )); + ).set_env("LLAMA_ARG_YARN_BETA_SLOW")); add_opt(llama_arg( {"--yarn-beta-fast"}, "N", format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast), [](gpt_params & params, const std::string & value) { params.yarn_beta_fast = std::stof(value); } - )); + ).set_env("LLAMA_ARG_YARN_BETA_FAST")); add_opt(llama_arg( {"-gan", "--grp-attn-n"}, "N", format("group-attention factor (default: %d)", params.grp_attn_n), [](gpt_params & params, int value) { params.grp_attn_n = value; } - )); + ).set_env("LLAMA_ARG_GRP_ATTN_N")); add_opt(llama_arg( {"-gaw", "--grp-attn-w"}, "N", format("group-attention width (default: %.1f)", (double)params.grp_attn_w), [](gpt_params & params, int value) { params.grp_attn_w = value; } - )); + ).set_env("LLAMA_ARG_GRP_ATTN_W")); add_opt(llama_arg( {"-dkvc", "--dump-kv-cache"}, "verbose print of the KV cache", @@ -1205,7 +1205,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params) { params.no_kv_offload = true; } - )); + ).set_env("LLAMA_ARG_NO_KV_OFFLOAD")); add_opt(llama_arg( {"-ctk", "--cache-type-k"}, "TYPE", format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()), @@ -1213,7 +1213,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, // TODO: get the type right here params.cache_type_k = value; } - )); + ).set_env("LLAMA_ARG_CACHE_TYPE_K")); add_opt(llama_arg( {"-ctv", "--cache-type-v"}, "TYPE", format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()), @@ -1221,7 +1221,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, // TODO: get the type right here params.cache_type_v = value; } - )); + ).set_env("LLAMA_ARG_CACHE_TYPE_V")); add_opt(llama_arg( {"--perplexity", "--all-logits"}, format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"), @@ -1355,7 +1355,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params, const std::string & value) { params.rpc_servers = value; } - )); + ).set_env("LLAMA_ARG_RPC")); #endif add_opt(llama_arg( {"--mlock"}, @@ -1363,14 +1363,14 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params) { params.use_mlock = true; } - )); + ).set_env("LLAMA_ARG_MLOCK")); add_opt(llama_arg( {"--no-mmap"}, "do not memory-map model (slower load but may reduce pageouts if not using mlock)", [](gpt_params & params) { params.use_mmap = false; } - )); + ).set_env("LLAMA_ARG_NO_MMAP")); add_opt(llama_arg( {"--numa"}, "TYPE", "attempt optimizations that help on some NUMA systems\n" @@ -1385,7 +1385,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } else { throw std::invalid_argument("invalid value"); } } - )); + ).set_env("LLAMA_ARG_NUMA")); add_opt(llama_arg( {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", "number of layers to store in VRAM", @@ -1433,7 +1433,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n"); } } - )); + ).set_env("LLAMA_ARG_SPLIT_MODE")); add_opt(llama_arg( {"-ts", "--tensor-split"}, "N0,N1,N2,...", "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1", @@ -1460,7 +1460,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n"); } } - )); + ).set_env("LLAMA_ARG_TENSOR_SPLIT")); add_opt(llama_arg( {"-mg", "--main-gpu"}, "INDEX", format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu), @@ -1470,7 +1470,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n"); } } - )); + ).set_env("LLAMA_ARG_MAIN_GPU")); add_opt(llama_arg( {"--check-tensors"}, format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"), @@ -1533,7 +1533,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params, const std::string & value) { params.model_alias = value; } - ).set_examples({LLAMA_EXAMPLE_SERVER})); + ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS")); add_opt(llama_arg( {"-m", "--model"}, "FNAME", ex == LLAMA_EXAMPLE_EXPORT_LORA @@ -1741,7 +1741,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params, const std::string & value) { params.public_path = value; } - ).set_examples({LLAMA_EXAMPLE_SERVER})); + ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH")); add_opt(llama_arg( {"--embedding", "--embeddings"}, format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"), @@ -1779,14 +1779,14 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, [](gpt_params & params, const std::string & value) { params.ssl_file_key = value; } - ).set_examples({LLAMA_EXAMPLE_SERVER})); + ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE")); add_opt(llama_arg( {"--ssl-cert-file"}, "FNAME", "path to file a PEM-encoded SSL certificate", [](gpt_params & params, const std::string & value) { params.ssl_file_cert = value; } - ).set_examples({LLAMA_EXAMPLE_SERVER})); + ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE")); add_opt(llama_arg( {"-to", "--timeout"}, "N", format("server read/write timeout in seconds (default: %d)", params.timeout_read), @@ -1794,7 +1794,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, params.timeout_read = value; params.timeout_write = value; } - ).set_examples({LLAMA_EXAMPLE_SERVER})); + ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT")); add_opt(llama_arg( {"--threads-http"}, "N", format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http), diff --git a/examples/gen-docs/gen-docs.cpp b/examples/gen-docs/gen-docs.cpp index b6d4725fd..4b19a9dc2 100644 --- a/examples/gen-docs/gen-docs.cpp +++ b/examples/gen-docs/gen-docs.cpp @@ -6,42 +6,73 @@ // Export usage message (-h) to markdown format +static void write_table_header(std::ofstream & file) { + file << "| Argument | Explanation |\n"; + file << "| -------- | ----------- |\n"; +} + +static void write_table_entry(std::ofstream & file, const llama_arg & opt) { + file << "| `"; + // args + for (const auto & arg : opt.args) { + if (arg == opt.args.front()) { + file << arg; + if (opt.args.size() > 1) file << ", "; + } else { + file << arg << (arg != opt.args.back() ? ", " : ""); + } + } + // value hint + if (opt.value_hint) { + std::string md_value_hint(opt.value_hint); + string_replace_all(md_value_hint, "|", "\\|"); + file << " " << md_value_hint; + } + if (opt.value_hint_2) { + std::string md_value_hint_2(opt.value_hint_2); + string_replace_all(md_value_hint_2, "|", "\\|"); + file << " " << md_value_hint_2; + } + // help text + std::string md_help(opt.help); + string_replace_all(md_help, "\n", "
"); + string_replace_all(md_help, "|", "\\|"); + file << "` | " << md_help << " |\n"; +} + +static void write_table(std::ofstream & file, std::vector & opts) { + write_table_header(file); + for (const auto & opt : opts) { + write_table_entry(file, *opt); + } +} + static void export_md(std::string fname, llama_example ex) { std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc); gpt_params params; auto ctx_arg = gpt_params_parser_init(params, ex); - file << "| Argument | Explanation |\n"; - file << "| -------- | ----------- |\n"; + std::vector common_options; + std::vector sparam_options; + std::vector specific_options; for (auto & opt : ctx_arg.options) { - file << "| `"; - // args - for (const auto & arg : opt.args) { - if (arg == opt.args.front()) { - file << arg; - if (opt.args.size() > 1) file << ", "; - } else { - file << arg << (arg != opt.args.back() ? ", " : ""); - } + // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example + if (opt.is_sparam) { + sparam_options.push_back(&opt); + } else if (opt.in_example(ctx_arg.ex)) { + specific_options.push_back(&opt); + } else { + common_options.push_back(&opt); } - // value hint - if (opt.value_hint) { - std::string md_value_hint(opt.value_hint); - string_replace_all(md_value_hint, "|", "\\|"); - file << " " << md_value_hint; - } - if (opt.value_hint_2) { - std::string md_value_hint_2(opt.value_hint_2); - string_replace_all(md_value_hint_2, "|", "\\|"); - file << " " << md_value_hint_2; - } - // help text - std::string md_help(opt.help); - string_replace_all(md_help, "\n", "
"); - string_replace_all(md_help, "|", "\\|"); - file << "` | " << md_help << " |\n"; } + + file << "**Common params**\n\n"; + write_table(file, common_options); + file << "\n\n**Sampling params**\n\n"; + write_table(file, sparam_options); + file << "\n\n**Example-specific params**\n\n"; + write_table(file, specific_options); } int main(int, char **) { diff --git a/examples/server/README.md b/examples/server/README.md index 741950c8a..dfca07f98 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -17,6 +17,8 @@ The project is under active development, and we are [looking for feedback and co ## Usage +**Common params** + | Argument | Explanation | | -------- | ----------- | | `-h, --help, --usage` | print usage and exit | @@ -38,7 +40,6 @@ The project is under active development, and we are [looking for feedback and co | `-b, --batch-size N` | logical maximum batch size (default: 2048)
(env: LLAMA_ARG_BATCH) | | `-ub, --ubatch-size N` | physical maximum batch size (default: 512)
(env: LLAMA_ARG_UBATCH) | | `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) | -| `--no-context-shift` | disables context shift on inifinite text generation (default: disabled) | | `-fa, --flash-attn` | enable Flash Attention (default: disabled)
(env: LLAMA_ARG_FLASH_ATTN) | | `-p, --prompt PROMPT` | prompt to start generation with | | `--no-perf` | disable internal libllama performance timings (default: false)
(env: LLAMA_ARG_NO_PERF) | @@ -46,8 +47,56 @@ The project is under active development, and we are [looking for feedback and co | `-bf, --binary-file FNAME` | binary file containing the prompt (default: none) | | `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) | | `--no-escape` | do not process escape sequences | -| `-sp, --special` | special tokens output enabled (default: false) | -| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) | +| `--rope-scaling {none,linear,yarn}` | RoPE frequency scaling method, defaults to linear unless specified by the model
(env: LLAMA_ARG_ROPE_SCALING_TYPE) | +| `--rope-scale N` | RoPE context scaling factor, expands context by a factor of N
(env: LLAMA_ARG_ROPE_SCALE) | +| `--rope-freq-base N` | RoPE base frequency, used by NTK-aware scaling (default: loaded from model)
(env: LLAMA_ARG_ROPE_FREQ_BASE) | +| `--rope-freq-scale N` | RoPE frequency scaling factor, expands context by a factor of 1/N
(env: LLAMA_ARG_ROPE_FREQ_SCALE) | +| `--yarn-orig-ctx N` | YaRN: original context size of model (default: 0 = model training context size)
(env: LLAMA_ARG_YARN_ORIG_CTX) | +| `--yarn-ext-factor N` | YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation)
(env: LLAMA_ARG_YARN_EXT_FACTOR) | +| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
(env: LLAMA_ARG_YARN_ATTN_FACTOR) | +| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: 1.0)
(env: LLAMA_ARG_YARN_BETA_SLOW) | +| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0)
(env: LLAMA_ARG_YARN_BETA_FAST) | +| `-gan, --grp-attn-n N` | group-attention factor (default: 1)
(env: LLAMA_ARG_GRP_ATTN_N) | +| `-gaw, --grp-attn-w N` | group-attention width (default: 512.0)
(env: LLAMA_ARG_GRP_ATTN_W) | +| `-dkvc, --dump-kv-cache` | verbose print of the KV cache | +| `-nkvo, --no-kv-offload` | disable KV offload
(env: LLAMA_ARG_NO_KV_OFFLOAD) | +| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16)
(env: LLAMA_ARG_CACHE_TYPE_K) | +| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16)
(env: LLAMA_ARG_CACHE_TYPE_V) | +| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)
(env: LLAMA_ARG_DEFRAG_THOLD) | +| `-np, --parallel N` | number of parallel sequences to decode (default: 1)
(env: LLAMA_ARG_N_PARALLEL) | +| `--mlock` | force system to keep model in RAM rather than swapping or compressing
(env: LLAMA_ARG_MLOCK) | +| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)
(env: LLAMA_ARG_NO_MMAP) | +| `--numa TYPE` | attempt optimizations that help on some NUMA systems
- distribute: spread execution evenly over all nodes
- isolate: only spawn threads on CPUs on the node that execution started on
- numactl: use the CPU map provided by numactl
if run without this previously, it is recommended to drop the system page cache before using this
see https://github.com/ggerganov/llama.cpp/issues/1437
(env: LLAMA_ARG_NUMA) | +| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM
(env: LLAMA_ARG_N_GPU_LAYERS) | +| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:
- none: use one GPU only
- layer (default): split layers and KV across GPUs
- row: split rows across GPUs
(env: LLAMA_ARG_SPLIT_MODE) | +| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1
(env: LLAMA_ARG_TENSOR_SPLIT) | +| `-mg, --main-gpu INDEX` | the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0)
(env: LLAMA_ARG_MAIN_GPU) | +| `--check-tensors` | check model tensor data for invalid values (default: false) | +| `--override-kv KEY=TYPE:VALUE` | advanced option to override model metadata by key. may be specified multiple times.
types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false | +| `--lora FNAME` | path to LoRA adapter (can be repeated to use multiple adapters) | +| `--lora-scaled FNAME SCALE` | path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters) | +| `--control-vector FNAME` | add a control vector
note: this argument can be repeated to add multiple control vectors | +| `--control-vector-scaled FNAME SCALE` | add a control vector with user defined scaling SCALE
note: this argument can be repeated to add multiple scaled control vectors | +| `--control-vector-layer-range START END` | layer range to apply the control vector(s) to, start and end inclusive | +| `-m, --model FNAME` | model path (default: `models/$filename` with filename from `--hf-file` or `--model-url` if set, otherwise models/7B/ggml-model-f16.gguf)
(env: LLAMA_ARG_MODEL) | +| `-mu, --model-url MODEL_URL` | model download url (default: unused)
(env: LLAMA_ARG_MODEL_URL) | +| `-hfr, --hf-repo REPO` | Hugging Face model repository (default: unused)
(env: LLAMA_ARG_HF_REPO) | +| `-hff, --hf-file FILE` | Hugging Face model file (default: unused)
(env: LLAMA_ARG_HF_FILE) | +| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)
(env: HF_TOKEN) | +| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) | +| `--log-disable` | Log disable | +| `--log-file FNAME` | Log to file | +| `--log-colors` | Enable colored logging
(env: LLAMA_LOG_COLORS) | +| `-v, --verbose, --log-verbose` | Set verbosity level to infinity (i.e. log all messages, useful for debugging) | +| `-lv, --verbosity, --log-verbosity N` | Set the verbosity threshold. Messages with a higher verbosity will be ignored.
(env: LLAMA_LOG_VERBOSITY) | +| `--log-prefix` | Enable prefx in log messages
(env: LLAMA_LOG_PREFIX) | +| `--log-timestamps` | Enable timestamps in log messages
(env: LLAMA_LOG_TIMESTAMPS) | + + +**Sampling params** + +| Argument | Explanation | +| -------- | ----------- | | `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'
(default: top_k;tfs_z;typ_p;top_p;min_p;temperature) | | `-s, --seed SEED` | RNG seed (default: 4294967295, use random seed for 4294967295) | | `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) | @@ -72,54 +121,28 @@ The project is under active development, and we are [looking for feedback and co | `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') | | `--grammar-file FNAME` | file to read grammar from | | `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object
For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead | -| `--rope-scaling {none,linear,yarn}` | RoPE frequency scaling method, defaults to linear unless specified by the model | -| `--rope-scale N` | RoPE context scaling factor, expands context by a factor of N | -| `--rope-freq-base N` | RoPE base frequency, used by NTK-aware scaling (default: loaded from model) | -| `--rope-freq-scale N` | RoPE frequency scaling factor, expands context by a factor of 1/N | -| `--yarn-orig-ctx N` | YaRN: original context size of model (default: 0 = model training context size) | -| `--yarn-ext-factor N` | YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation) | -| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: 1.0) | -| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: 1.0) | -| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0) | -| `-gan, --grp-attn-n N` | group-attention factor (default: 1) | -| `-gaw, --grp-attn-w N` | group-attention width (default: 512.0) | -| `-dkvc, --dump-kv-cache` | verbose print of the KV cache | -| `-nkvo, --no-kv-offload` | disable KV offload | -| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16) | -| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16) | -| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)
(env: LLAMA_ARG_DEFRAG_THOLD) | -| `-np, --parallel N` | number of parallel sequences to decode (default: 1)
(env: LLAMA_ARG_N_PARALLEL) | + + +**Example-specific params** + +| Argument | Explanation | +| -------- | ----------- | +| `--no-context-shift` | disables context shift on inifinite text generation (default: disabled)
(env: LLAMA_ARG_NO_CONTEXT_SHIFT) | +| `-sp, --special` | special tokens output enabled (default: false) | +| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) | +| `--pooling {none,mean,cls,last}` | pooling type for embeddings, use model default if unspecified
(env: LLAMA_ARG_POOLING) | | `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)
(env: LLAMA_ARG_CONT_BATCHING) | | `-nocb, --no-cont-batching` | disable continuous batching
(env: LLAMA_ARG_NO_CONT_BATCHING) | -| `--mlock` | force system to keep model in RAM rather than swapping or compressing | -| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock) | -| `--numa TYPE` | attempt optimizations that help on some NUMA systems
- distribute: spread execution evenly over all nodes
- isolate: only spawn threads on CPUs on the node that execution started on
- numactl: use the CPU map provided by numactl
if run without this previously, it is recommended to drop the system page cache before using this
see https://github.com/ggerganov/llama.cpp/issues/1437 | -| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM
(env: LLAMA_ARG_N_GPU_LAYERS) | -| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:
- none: use one GPU only
- layer (default): split layers and KV across GPUs
- row: split rows across GPUs | -| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1 | -| `-mg, --main-gpu INDEX` | the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0) | -| `--check-tensors` | check model tensor data for invalid values (default: false) | -| `--override-kv KEY=TYPE:VALUE` | advanced option to override model metadata by key. may be specified multiple times.
types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false | -| `--lora FNAME` | path to LoRA adapter (can be repeated to use multiple adapters) | -| `--lora-scaled FNAME SCALE` | path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters) | -| `--control-vector FNAME` | add a control vector
note: this argument can be repeated to add multiple control vectors | -| `--control-vector-scaled FNAME SCALE` | add a control vector with user defined scaling SCALE
note: this argument can be repeated to add multiple scaled control vectors | -| `--control-vector-layer-range START END` | layer range to apply the control vector(s) to, start and end inclusive | -| `-a, --alias STRING` | set alias for model name (to be used by REST API) | -| `-m, --model FNAME` | model path (default: `models/$filename` with filename from `--hf-file` or `--model-url` if set, otherwise models/7B/ggml-model-f16.gguf)
(env: LLAMA_ARG_MODEL) | -| `-mu, --model-url MODEL_URL` | model download url (default: unused)
(env: LLAMA_ARG_MODEL_URL) | -| `-hfr, --hf-repo REPO` | Hugging Face model repository (default: unused)
(env: LLAMA_ARG_HF_REPO) | -| `-hff, --hf-file FILE` | Hugging Face model file (default: unused)
(env: LLAMA_ARG_HF_FILE) | -| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)
(env: HF_TOKEN) | +| `-a, --alias STRING` | set alias for model name (to be used by REST API)
(env: LLAMA_ARG_ALIAS) | | `--host HOST` | ip address to listen (default: 127.0.0.1)
(env: LLAMA_ARG_HOST) | | `--port PORT` | port to listen (default: 8080)
(env: LLAMA_ARG_PORT) | -| `--path PATH` | path to serve static files from (default: ) | +| `--path PATH` | path to serve static files from (default: )
(env: LLAMA_ARG_STATIC_PATH) | | `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)
(env: LLAMA_ARG_EMBEDDINGS) | | `--api-key KEY` | API key to use for authentication (default: none)
(env: LLAMA_API_KEY) | | `--api-key-file FNAME` | path to file containing API keys (default: none) | -| `--ssl-key-file FNAME` | path to file a PEM-encoded SSL private key | -| `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate | -| `-to, --timeout N` | server read/write timeout in seconds (default: 600) | +| `--ssl-key-file FNAME` | path to file a PEM-encoded SSL private key
(env: LLAMA_ARG_SSL_KEY_FILE) | +| `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate
(env: LLAMA_ARG_SSL_CERT_FILE) | +| `-to, --timeout N` | server read/write timeout in seconds (default: 600)
(env: LLAMA_ARG_TIMEOUT) | | `--threads-http N` | number of threads used to process HTTP requests (default: -1)
(env: LLAMA_ARG_THREADS_HTTP) | | `-spf, --system-prompt-file FNAME` | set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications | | `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)
(env: LLAMA_ARG_ENDPOINT_METRICS) | @@ -128,14 +151,6 @@ The project is under active development, and we are [looking for feedback and co | `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)
if suffix/prefix are specified, template will be disabled
only commonly used templates are accepted:
https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
(env: LLAMA_ARG_CHAT_TEMPLATE) | | `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)
| | `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) | -| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) | -| `--log-disable` | Log disable | -| `--log-file FNAME` | Log to file | -| `--log-colors` | Enable colored logging
(env: LLAMA_LOG_COLORS) | -| `-v, --verbose, --log-verbose` | Set verbosity level to infinity (i.e. log all messages, useful for debugging) | -| `-lv, --verbosity, --log-verbosity N` | Set the verbosity threshold. Messages with a higher verbosity will be ignored.
(env: LLAMA_LOG_VERBOSITY) | -| `--log-prefix` | Enable prefx in log messages
(env: LLAMA_LOG_PREFIX) | -| `--log-timestamps` | Enable timestamps in log messages
(env: LLAMA_LOG_TIMESTAMPS) | Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var. diff --git a/examples/server/server.cpp b/examples/server/server.cpp index e5275a514..61ff09bb2 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -2356,6 +2356,10 @@ int main(int argc, char ** argv) { svr.reset(new httplib::Server()); } #else + if (params.ssl_file_key != "" && params.ssl_file_cert != "") { + LOG_ERR("Server is built without SSL support\n"); + return 1; + } svr.reset(new httplib::Server()); #endif From 1e436302188a704ac9ea044af03193648806f19c Mon Sep 17 00:00:00 2001 From: Charles Xu <63788048+chaxu01@users.noreply.github.com> Date: Wed, 25 Sep 2024 15:12:20 +0200 Subject: [PATCH 27/30] ggml : remove assert for AArch64 GEMV and GEMM Q4 kernels (#9217) * ggml : remove assert for AArch64 GEMV and GEMM Q4 kernels * added fallback mechanism when the offline re-quantized model is not optimized for the underlying target. * fix for build errors * remove prints from the low-level code * Rebase to the latest upstream --- ggml/src/ggml-aarch64.c | 3226 +++++++++++++++++++-------------------- 1 file changed, 1591 insertions(+), 1635 deletions(-) diff --git a/ggml/src/ggml-aarch64.c b/ggml/src/ggml-aarch64.c index 2b01b4f93..8912de63d 100644 --- a/ggml/src/ggml-aarch64.c +++ b/ggml/src/ggml-aarch64.c @@ -1,4 +1,7 @@ -// SPDX-FileCopyrightText: Copyright 2024 Arm Ltd. +// SPDX-FileCopyrightText: Copyright 2024 Arm Limited and/or its affiliates +// SPDX-License-Identifier: MIT +// + #define GGML_COMMON_IMPL_C #include "ggml-common.h" @@ -595,6 +598,15 @@ size_t quantize_q4_0_8x8(const float * restrict src, void * restrict dst, int64_ return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8); } +// Return the number of byte lanes in the SVE vector if SVE is supported; otherwise, returns 0 if SVE is not supported. +static int sve_lane_count(void) { +#if defined(__ARM_FEATURE_SVE) + return ggml_sve_cnt_b; +#else + return 0; +#endif +} + void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) { const int qk = QK8_0; const int nb = n / qk; @@ -614,73 +626,67 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) - if (ggml_sve_cnt_b == QK8_0) { - GGML_ASSERT(!(ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) && - "__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance"); - } -#endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) - GGML_ASSERT(!(ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) && - "__ARM_NEON and __ARM_FEATURE_MATMUL_INT8 defined, use the Q4_0_4_8 quantization format for optimal performance"); -#elif defined(__ARM_NEON) && defined(__aarch64__) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) - const void * b_ptr = vx; - const void * a_ptr = vy; - float * res_ptr = s; +#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) + if (ggml_cpu_has_neon()) { + const void * b_ptr = vx; + const void * a_ptr = vy; + float * res_ptr = s; - __asm__ __volatile__( - "movi v31.16b, #0x4\n" - "movi v30.16b, #0xf0\n" - "add %x[b_ptr], %x[b_ptr], #0x8\n" - "1:" // Column loop - "add x22, %x[a_ptr], #0x2\n" - "movi v29.16b, #0x0\n" - "mov x21, %x[nb]\n" - "2:" // Block loop - "ldr q28, [%x[b_ptr], #0x0]\n" - "ldr q27, [x22, #0x0]\n" - "movi v26.4s, #0x0\n" - "sub x20, x22, #0x2\n" - "ldr q25, [x22, #0x10]\n" - "ldr q24, [%x[b_ptr], #0x10]\n" - "sub x21, x21, #0x1\n" - "add x22, x22, #0x22\n" - "ldr q23, [%x[b_ptr], #0x20]\n" - "ldr q22, [%x[b_ptr], #0x30]\n" - "ld1r { v21.8h }, [x20]\n" - "ldr q20, [%x[b_ptr], #-0x8]\n" - "sshl v16.16b, v28.16b, v31.16b\n" - "and v28.16b, v28.16b, v30.16b\n" - "sshl v19.16b, v24.16b, v31.16b\n" - "and v24.16b, v24.16b, v30.16b\n" - "add %x[b_ptr], %x[b_ptr], #0x48\n" - "sshl v18.16b, v23.16b, v31.16b\n" - "and v23.16b, v23.16b, v30.16b\n" - ".inst 0x4f9be21a // sdot v26.4s, v16.16b, v27.4b[0]\n" - "sshl v17.16b, v22.16b, v31.16b\n" - "and v22.16b, v22.16b, v30.16b\n" - "fcvtl v21.4s, v21.4h\n" - "fcvtl v16.4s, v20.4h\n" - ".inst 0x4f99e39a // sdot v26.4s, v28.16b, v25.4b[0]\n" - "fmul v16.4s, v16.4s, v21.4s\n" - ".inst 0x4fbbe27a // sdot v26.4s, v19.16b, v27.4b[1]\n" - ".inst 0x4fb9e31a // sdot v26.4s, v24.16b, v25.4b[1]\n" - ".inst 0x4f9bea5a // sdot v26.4s, v18.16b, v27.4b[2]\n" - ".inst 0x4f99eafa // sdot v26.4s, v23.16b, v25.4b[2]\n" - ".inst 0x4fbbea3a // sdot v26.4s, v17.16b, v27.4b[3]\n" - ".inst 0x4fb9eada // sdot v26.4s, v22.16b, v25.4b[3]\n" - "scvtf v26.4s, v26.4s, #0x4\n" - "fmla v29.4s, v26.4s, v16.4s\n" - "cbnz x21, 2b\n" - "sub %x[nc], %x[nc], #0x4\n" - "str q29, [%x[res_ptr], #0x0]\n" - "add %x[res_ptr], %x[res_ptr], #0x10\n" - "cbnz %x[nc], 1b\n" - : [b_ptr] "+&r" (b_ptr), [res_ptr] "+&r" (res_ptr), [nc] "+&r" (nc) - : [a_ptr] "r" (a_ptr), [nb] "r" (nb) - : "memory", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x20", "x21", "x22" - ); -#else + __asm__ __volatile__( + "movi v31.16b, #0x4\n" + "movi v30.16b, #0xf0\n" + "add %x[b_ptr], %x[b_ptr], #0x8\n" + "1:" // Column loop + "add x22, %x[a_ptr], #0x2\n" + "movi v29.16b, #0x0\n" + "mov x21, %x[nb]\n" + "2:" // Block loop + "ldr q28, [%x[b_ptr], #0x0]\n" + "ldr q27, [x22, #0x0]\n" + "movi v26.4s, #0x0\n" + "sub x20, x22, #0x2\n" + "ldr q25, [x22, #0x10]\n" + "ldr q24, [%x[b_ptr], #0x10]\n" + "sub x21, x21, #0x1\n" + "add x22, x22, #0x22\n" + "ldr q23, [%x[b_ptr], #0x20]\n" + "ldr q22, [%x[b_ptr], #0x30]\n" + "ld1r { v21.8h }, [x20]\n" + "ldr q20, [%x[b_ptr], #-0x8]\n" + "sshl v16.16b, v28.16b, v31.16b\n" + "and v28.16b, v28.16b, v30.16b\n" + "sshl v19.16b, v24.16b, v31.16b\n" + "and v24.16b, v24.16b, v30.16b\n" + "add %x[b_ptr], %x[b_ptr], #0x48\n" + "sshl v18.16b, v23.16b, v31.16b\n" + "and v23.16b, v23.16b, v30.16b\n" + ".inst 0x4f9be21a // sdot v26.4s, v16.16b, v27.4b[0]\n" + "sshl v17.16b, v22.16b, v31.16b\n" + "and v22.16b, v22.16b, v30.16b\n" + "fcvtl v21.4s, v21.4h\n" + "fcvtl v16.4s, v20.4h\n" + ".inst 0x4f99e39a // sdot v26.4s, v28.16b, v25.4b[0]\n" + "fmul v16.4s, v16.4s, v21.4s\n" + ".inst 0x4fbbe27a // sdot v26.4s, v19.16b, v27.4b[1]\n" + ".inst 0x4fb9e31a // sdot v26.4s, v24.16b, v25.4b[1]\n" + ".inst 0x4f9bea5a // sdot v26.4s, v18.16b, v27.4b[2]\n" + ".inst 0x4f99eafa // sdot v26.4s, v23.16b, v25.4b[2]\n" + ".inst 0x4fbbea3a // sdot v26.4s, v17.16b, v27.4b[3]\n" + ".inst 0x4fb9eada // sdot v26.4s, v22.16b, v25.4b[3]\n" + "scvtf v26.4s, v26.4s, #0x4\n" + "fmla v29.4s, v26.4s, v16.4s\n" + "cbnz x21, 2b\n" + "sub %x[nc], %x[nc], #0x4\n" + "str q29, [%x[res_ptr], #0x0]\n" + "add %x[res_ptr], %x[res_ptr], #0x10\n" + "cbnz %x[nc], 1b\n" + : [b_ptr] "+&r" (b_ptr), [res_ptr] "+&r" (res_ptr), [nc] "+&r" (nc) + : [a_ptr] "r" (a_ptr), [nb] "r" (nb) + : "memory", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x20", "x21", "x22" + ); + return; + } +#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) float sumf[4]; int sumi; @@ -704,7 +710,6 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * } for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } -#endif } void ggml_gemv_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) { @@ -726,79 +731,72 @@ void ggml_gemv_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void * UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) - if (ggml_sve_cnt_b == QK8_0) { - GGML_ASSERT(!(ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) && - "__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance"); - } -#endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) - const void * b_ptr = vx; - const void * a_ptr = vy; - float * res_ptr = s; +#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) + if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) { + const void * b_ptr = vx; + const void * a_ptr = vy; + float * res_ptr = s; - __asm__ __volatile__( - "movi v2.16b, #0x4\n" - "movi v1.16b, #0xf0\n" - "add %x[b_ptr], %x[b_ptr], #0x8\n" - "1:" // Column loop - "add x23, %x[a_ptr], #0x2\n" - "movi v0.16b, #0x0\n" - "mov x22, %x[nb]\n" - "2:" // Block loop - "ldr q31, [%x[b_ptr], #0x0]\n" - "ldr q30, [%x[b_ptr], #0x10]\n" - "mov x21, x23\n" - "movi v29.4s, #0x0\n" - "ldr q28, [%x[b_ptr], #0x20]\n" - "ldr q27, [%x[b_ptr], #0x30]\n" - "movi v26.4s, #0x0\n" - "sub x20, x23, #0x2\n" - "ld1r { v25.8h }, [x20]\n" - "ldr q24, [%x[b_ptr], #-0x8]\n" - "sub x22, x22, #0x1\n" - "add x23, x23, #0x22\n" - "ld1r { v23.2d }, [x21], #0x8\n" - "sshl v22.16b, v31.16b, v2.16b\n" - "sshl v16.16b, v30.16b, v2.16b\n" - "add %x[b_ptr], %x[b_ptr], #0x48\n" - "ld1r { v21.2d }, [x21], #0x8\n" - "sshl v20.16b, v28.16b, v2.16b\n" - "sshl v19.16b, v27.16b, v2.16b\n" - "ld1r { v18.2d }, [x21], #0x8\n" - "ld1r { v17.2d }, [x21], #0x8\n" - "and v31.16b, v31.16b, v1.16b\n" - "and v30.16b, v30.16b, v1.16b\n" - ".inst 0x4e9796dd // sdot v29.4s, v22.16b, v23.16b\n" - ".inst 0x4e97961a // sdot v26.4s, v16.16b, v23.16b\n" - "and v28.16b, v28.16b, v1.16b\n" - "and v27.16b, v27.16b, v1.16b\n" - "fcvtl v25.4s, v25.4h\n" - "fcvtl v16.4s, v24.4h\n" - ".inst 0x4e95969d // sdot v29.4s, v20.16b, v21.16b\n" - ".inst 0x4e95967a // sdot v26.4s, v19.16b, v21.16b\n" - "fmul v16.4s, v16.4s, v25.4s\n" - ".inst 0x4e9297fd // sdot v29.4s, v31.16b, v18.16b\n" - ".inst 0x4e9297da // sdot v26.4s, v30.16b, v18.16b\n" - ".inst 0x4e91979d // sdot v29.4s, v28.16b, v17.16b\n" - ".inst 0x4e91977a // sdot v26.4s, v27.16b, v17.16b\n" - "addp v29.4s, v29.4s, v26.4s\n" - "scvtf v29.4s, v29.4s, #0x4\n" - "fmla v0.4s, v29.4s, v16.4s\n" - "cbnz x22, 2b\n" - "sub %x[nc], %x[nc], #0x4\n" - "str q0, [%x[res_ptr], #0x0]\n" - "add %x[res_ptr], %x[res_ptr], #0x10\n" - "cbnz %x[nc], 1b\n" - : [b_ptr] "+&r" (b_ptr), [res_ptr] "+&r" (res_ptr), [nc] "+&r" (nc) - : [a_ptr] "r" (a_ptr), [nb] "r" (nb) - : "memory", "v0", "v1", "v2", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x20", "x21", "x22", "x23" - ); -#elif defined(__ARM_NEON) && defined(__aarch64__) - GGML_ASSERT((ggml_cpu_has_sve() || ggml_cpu_has_matmul_int8()) && - "__ARM_FEATURE_SVE and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 quantization format for optimal " - "performance"); -#else + __asm__ __volatile__( + "movi v2.16b, #0x4\n" + "movi v1.16b, #0xf0\n" + "add %x[b_ptr], %x[b_ptr], #0x8\n" + "1:" // Column loop + "add x23, %x[a_ptr], #0x2\n" + "movi v0.16b, #0x0\n" + "mov x22, %x[nb]\n" + "2:" // Block loop + "ldr q31, [%x[b_ptr], #0x0]\n" + "ldr q30, [%x[b_ptr], #0x10]\n" + "mov x21, x23\n" + "movi v29.4s, #0x0\n" + "ldr q28, [%x[b_ptr], #0x20]\n" + "ldr q27, [%x[b_ptr], #0x30]\n" + "movi v26.4s, #0x0\n" + "sub x20, x23, #0x2\n" + "ld1r { v25.8h }, [x20]\n" + "ldr q24, [%x[b_ptr], #-0x8]\n" + "sub x22, x22, #0x1\n" + "add x23, x23, #0x22\n" + "ld1r { v23.2d }, [x21], #0x8\n" + "sshl v22.16b, v31.16b, v2.16b\n" + "sshl v16.16b, v30.16b, v2.16b\n" + "add %x[b_ptr], %x[b_ptr], #0x48\n" + "ld1r { v21.2d }, [x21], #0x8\n" + "sshl v20.16b, v28.16b, v2.16b\n" + "sshl v19.16b, v27.16b, v2.16b\n" + "ld1r { v18.2d }, [x21], #0x8\n" + "ld1r { v17.2d }, [x21], #0x8\n" + "and v31.16b, v31.16b, v1.16b\n" + "and v30.16b, v30.16b, v1.16b\n" + ".inst 0x4e9796dd // sdot v29.4s, v22.16b, v23.16b\n" + ".inst 0x4e97961a // sdot v26.4s, v16.16b, v23.16b\n" + "and v28.16b, v28.16b, v1.16b\n" + "and v27.16b, v27.16b, v1.16b\n" + "fcvtl v25.4s, v25.4h\n" + "fcvtl v16.4s, v24.4h\n" + ".inst 0x4e95969d // sdot v29.4s, v20.16b, v21.16b\n" + ".inst 0x4e95967a // sdot v26.4s, v19.16b, v21.16b\n" + "fmul v16.4s, v16.4s, v25.4s\n" + ".inst 0x4e9297fd // sdot v29.4s, v31.16b, v18.16b\n" + ".inst 0x4e9297da // sdot v26.4s, v30.16b, v18.16b\n" + ".inst 0x4e91979d // sdot v29.4s, v28.16b, v17.16b\n" + ".inst 0x4e91977a // sdot v26.4s, v27.16b, v17.16b\n" + "addp v29.4s, v29.4s, v26.4s\n" + "scvtf v29.4s, v29.4s, #0x4\n" + "fmla v0.4s, v29.4s, v16.4s\n" + "cbnz x22, 2b\n" + "sub %x[nc], %x[nc], #0x4\n" + "str q0, [%x[res_ptr], #0x0]\n" + "add %x[res_ptr], %x[res_ptr], #0x10\n" + "cbnz %x[nc], 1b\n" + : [b_ptr] "+&r" (b_ptr), [res_ptr] "+&r" (res_ptr), [nc] "+&r" (nc) + : [a_ptr] "r" (a_ptr), [nb] "r" (nb) + : "memory", "v0", "v1", "v2", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x20", "x21", "x22", "x23" + ); + return; + } +#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) float sumf[4]; int sumi; @@ -822,7 +820,6 @@ void ggml_gemv_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void * } for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } -#endif } void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) { @@ -844,8 +841,9 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) - if (ggml_sve_cnt_b == QK8_0) { +#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) +#if defined(__ARM_FEATURE_SVE) + if (ggml_cpu_has_sve() && sve_lane_count() == QK8_0) { const void * b_ptr = vx; const void * a_ptr = vy; float * res_ptr = s; @@ -910,24 +908,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * ); return; } - else if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) { - GGML_ASSERT((ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) && - "__ARM_FEATURE_SVE for vector size of 256-bits not defined, use the Q4_0_4_8 quantization format for optimal " - "performance"); - } - else if (ggml_cpu_has_neon()) { - GGML_ASSERT(((ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) || ggml_cpu_has_matmul_int8()) && - "__ARM_FEATURE_SVE for vector size of 256-bits and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 " - "quantization format for optimal performance"); - } -#endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) - GGML_ASSERT(ggml_cpu_has_sve() && - "__ARM_FEATURE_SVE not defined, use the Q4_0_4_8 quantization format for optimal performance"); -#elif defined(__ARM_NEON) && defined(__aarch64__) - GGML_ASSERT((ggml_cpu_has_sve() || ggml_cpu_has_matmul_int8()) && - "__ARM_FEATURE_SVE and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 quantization format for optimal " - "performance"); +#endif // #if defined(__ARM_FEATURE_SVE) #elif defined(__AVX2__) // Lookup table to convert signed nibbles to signed bytes __m256i signextendlut = _mm256_castsi128_si256(_mm_set_epi8(-1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0)); @@ -1018,31 +999,33 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * _mm256_storeu_ps(s + (y * nr + x * 8), acc_row); } } -#else - float sumf[8]; - int sumi; + return; +#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) + { + float sumf[8]; + int sumi; - const block_q8_0 * a_ptr = (const block_q8_0 *) vy; - for (int x = 0; x < nc / ncols_interleaved; x++) { - const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); + const block_q8_0 * a_ptr = (const block_q8_0 *) vy; + for (int x = 0; x < nc / ncols_interleaved; x++) { + const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); - for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; - for (int l = 0; l < nb; l++) { - for (int k = 0; k < (qk / (2 * blocklen)); k++) { - for (int j = 0; j < ncols_interleaved; j++) { - sumi = 0; - for (int i = 0; i < blocklen; ++i) { - const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); - const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); - sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; + for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; + for (int l = 0; l < nb; l++) { + for (int k = 0; k < (qk / (2 * blocklen)); k++) { + for (int j = 0; j < ncols_interleaved; j++) { + sumi = 0; + for (int i = 0; i < blocklen; ++i) { + const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); + const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); + sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; + } + sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d); } - sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d); } } + for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } - for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; } -#endif } void ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) { @@ -1065,505 +1048,500 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) - if (ggml_sve_cnt_b == QK8_0) { - GGML_ASSERT(!(ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) && - "__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance"); +#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) + if (ggml_cpu_has_neon()) { + const void * b_ptr = vx; + const void * a_ptr = vy; + float * res_ptr = s; + size_t res_stride = bs * sizeof(float); + + __asm__ __volatile__( + "mov x10, %x[nr]\n" + "mov x9, #0x88\n" + "cmp x10, #0x10\n" + "mul x9, %x[nb], x9\n" + "blt 4f\n" + "1:" // Row loop + "add x28, %x[b_ptr], #0x8\n" + "mov x27, %x[nc]\n" + "add x26, %x[res_ptr], %x[res_stride], LSL #4\n" + "2:" // Column loop + "add x25, %x[a_ptr], #0x8\n" + "movi v15.16b, #0x0\n" + "movi v19.16b, #0x0\n" + "mov x24, %x[nb]\n" + "add x23, x25, x9\n" + "movi v18.16b, #0x0\n" + "movi v14.16b, #0x0\n" + "add x22, x23, x9\n" + "movi v11.16b, #0x0\n" + "movi v13.16b, #0x0\n" + "add x21, x22, x9\n" + "movi v23.16b, #0x0\n" + "movi v16.16b, #0x0\n" + "movi v25.16b, #0x0\n" + "movi v7.16b, #0x0\n" + "movi v0.16b, #0x0\n" + "movi v4.16b, #0x0\n" + "movi v5.16b, #0x0\n" + "movi v21.16b, #0x0\n" + "movi v8.16b, #0x0\n" + "movi v1.16b, #0x0\n" + "3:" // Block loop + "ldr q3, [x28, #0x0]\n" + "ldr q31, [x25, #0x0]\n" + "movi v28.16b, #0x4\n" + "movi v10.4s, #0x0\n" + "ldr q22, [x28, #0x10]\n" + "ldr q6, [x25, #0x10]\n" + "movi v29.4s, #0x0\n" + "movi v9.4s, #0x0\n" + "ldr q27, [x28, #0x20]\n" + "ldr q30, [x28, #0x30]\n" + "movi v20.4s, #0x0\n" + "movi v24.16b, #0xf0\n" + "ldr d2, [x25, #-0x8]\n" + "ldr d26, [x23, #-0x8]\n" + "sshl v12.16b, v3.16b, v28.16b\n" + "sub x20, x28, #0x8\n" + "ldr d17, [x20, #0x0]\n" + "and v3.16b, v3.16b, v24.16b\n" + "subs x24, x24, #0x1\n" + "add x28, x28, #0x48\n" + ".inst 0x4f9fe18a // sdot v10.4s, v12.16b, v31.4b[0]\n" + ".inst 0x4fbfe19d // sdot v29.4s, v12.16b, v31.4b[1]\n" + ".inst 0x4f9fe989 // sdot v9.4s, v12.16b, v31.4b[2]\n" + ".inst 0x4fbfe994 // sdot v20.4s, v12.16b, v31.4b[3]\n" + "sshl v31.16b, v22.16b, v28.16b\n" + "and v22.16b, v22.16b, v24.16b\n" + "fcvtl v17.4s, v17.4h\n" + "fcvtl v2.4s, v2.4h\n" + "fcvtl v26.4s, v26.4h\n" + ".inst 0x4f86e3ea // sdot v10.4s, v31.16b, v6.4b[0]\n" + ".inst 0x4fa6e3fd // sdot v29.4s, v31.16b, v6.4b[1]\n" + ".inst 0x4f86ebe9 // sdot v9.4s, v31.16b, v6.4b[2]\n" + ".inst 0x4fa6ebf4 // sdot v20.4s, v31.16b, v6.4b[3]\n" + "sshl v6.16b, v27.16b, v28.16b\n" + "sshl v28.16b, v30.16b, v28.16b\n" + "and v27.16b, v27.16b, v24.16b\n" + "and v30.16b, v30.16b, v24.16b\n" + "ldr q24, [x25, #0x20]\n" + ".inst 0x4f98e0ca // sdot v10.4s, v6.16b, v24.4b[0]\n" + ".inst 0x4fb8e0dd // sdot v29.4s, v6.16b, v24.4b[1]\n" + ".inst 0x4f98e8c9 // sdot v9.4s, v6.16b, v24.4b[2]\n" + ".inst 0x4fb8e8d4 // sdot v20.4s, v6.16b, v24.4b[3]\n" + "ldr q24, [x25, #0x30]\n" + ".inst 0x4f98e38a // sdot v10.4s, v28.16b, v24.4b[0]\n" + ".inst 0x4fb8e39d // sdot v29.4s, v28.16b, v24.4b[1]\n" + ".inst 0x4f98eb89 // sdot v9.4s, v28.16b, v24.4b[2]\n" + ".inst 0x4fb8eb94 // sdot v20.4s, v28.16b, v24.4b[3]\n" + "ldr q24, [x25, #0x40]\n" + ".inst 0x4f98e06a // sdot v10.4s, v3.16b, v24.4b[0]\n" + ".inst 0x4fb8e07d // sdot v29.4s, v3.16b, v24.4b[1]\n" + ".inst 0x4f98e869 // sdot v9.4s, v3.16b, v24.4b[2]\n" + ".inst 0x4fb8e874 // sdot v20.4s, v3.16b, v24.4b[3]\n" + "ldr q24, [x25, #0x50]\n" + ".inst 0x4f98e2ca // sdot v10.4s, v22.16b, v24.4b[0]\n" + ".inst 0x4fb8e2dd // sdot v29.4s, v22.16b, v24.4b[1]\n" + ".inst 0x4f98eac9 // sdot v9.4s, v22.16b, v24.4b[2]\n" + ".inst 0x4fb8ead4 // sdot v20.4s, v22.16b, v24.4b[3]\n" + "ldr q24, [x25, #0x60]\n" + ".inst 0x4f98e36a // sdot v10.4s, v27.16b, v24.4b[0]\n" + ".inst 0x4fb8e37d // sdot v29.4s, v27.16b, v24.4b[1]\n" + ".inst 0x4f98eb69 // sdot v9.4s, v27.16b, v24.4b[2]\n" + ".inst 0x4fb8eb74 // sdot v20.4s, v27.16b, v24.4b[3]\n" + "ldr q24, [x25, #0x70]\n" + "add x25, x25, #0x88\n" + ".inst 0x4f98e3ca // sdot v10.4s, v30.16b, v24.4b[0]\n" + ".inst 0x4fb8e3dd // sdot v29.4s, v30.16b, v24.4b[1]\n" + ".inst 0x4f98ebc9 // sdot v9.4s, v30.16b, v24.4b[2]\n" + ".inst 0x4fb8ebd4 // sdot v20.4s, v30.16b, v24.4b[3]\n" + "fmul v24.4s, v17.4s, v2.s[0]\n" + "scvtf v10.4s, v10.4s, #0x4\n" + "scvtf v29.4s, v29.4s, #0x4\n" + "scvtf v9.4s, v9.4s, #0x4\n" + "scvtf v20.4s, v20.4s, #0x4\n" + "fmla v15.4s, v10.4s, v24.4s\n" + "ldr q24, [x23, #0x0]\n" + "fmul v10.4s, v17.4s, v2.s[1]\n" + "fmla v19.4s, v29.4s, v10.4s\n" + "ldr q10, [x23, #0x10]\n" + "fmul v29.4s, v17.4s, v2.s[2]\n" + "fmul v2.4s, v17.4s, v2.s[3]\n" + "fmla v18.4s, v9.4s, v29.4s\n" + "movi v9.4s, #0x0\n" + "movi v29.4s, #0x0\n" + ".inst 0x4f98e189 // sdot v9.4s, v12.16b, v24.4b[0]\n" + ".inst 0x4fb8e19d // sdot v29.4s, v12.16b, v24.4b[1]\n" + "fmla v14.4s, v20.4s, v2.4s\n" + "movi v20.4s, #0x0\n" + "movi v2.4s, #0x0\n" + ".inst 0x4f98e994 // sdot v20.4s, v12.16b, v24.4b[2]\n" + ".inst 0x4fb8e982 // sdot v2.4s, v12.16b, v24.4b[3]\n" + "ldr q24, [x23, #0x20]\n" + ".inst 0x4f8ae3e9 // sdot v9.4s, v31.16b, v10.4b[0]\n" + ".inst 0x4faae3fd // sdot v29.4s, v31.16b, v10.4b[1]\n" + ".inst 0x4f8aebf4 // sdot v20.4s, v31.16b, v10.4b[2]\n" + ".inst 0x4faaebe2 // sdot v2.4s, v31.16b, v10.4b[3]\n" + "ldr q10, [x23, #0x30]\n" + ".inst 0x4f98e0c9 // sdot v9.4s, v6.16b, v24.4b[0]\n" + ".inst 0x4fb8e0dd // sdot v29.4s, v6.16b, v24.4b[1]\n" + ".inst 0x4f98e8d4 // sdot v20.4s, v6.16b, v24.4b[2]\n" + ".inst 0x4fb8e8c2 // sdot v2.4s, v6.16b, v24.4b[3]\n" + "ldr q24, [x23, #0x40]\n" + ".inst 0x4f8ae389 // sdot v9.4s, v28.16b, v10.4b[0]\n" + ".inst 0x4faae39d // sdot v29.4s, v28.16b, v10.4b[1]\n" + ".inst 0x4f8aeb94 // sdot v20.4s, v28.16b, v10.4b[2]\n" + ".inst 0x4faaeb82 // sdot v2.4s, v28.16b, v10.4b[3]\n" + "ldr q10, [x23, #0x50]\n" + ".inst 0x4f98e069 // sdot v9.4s, v3.16b, v24.4b[0]\n" + ".inst 0x4fb8e07d // sdot v29.4s, v3.16b, v24.4b[1]\n" + ".inst 0x4f98e874 // sdot v20.4s, v3.16b, v24.4b[2]\n" + ".inst 0x4fb8e862 // sdot v2.4s, v3.16b, v24.4b[3]\n" + "ldr q24, [x23, #0x60]\n" + ".inst 0x4f8ae2c9 // sdot v9.4s, v22.16b, v10.4b[0]\n" + ".inst 0x4faae2dd // sdot v29.4s, v22.16b, v10.4b[1]\n" + ".inst 0x4f8aead4 // sdot v20.4s, v22.16b, v10.4b[2]\n" + ".inst 0x4faaeac2 // sdot v2.4s, v22.16b, v10.4b[3]\n" + "ldr q10, [x23, #0x70]\n" + "add x23, x23, #0x88\n" + ".inst 0x4f98e369 // sdot v9.4s, v27.16b, v24.4b[0]\n" + ".inst 0x4fb8e37d // sdot v29.4s, v27.16b, v24.4b[1]\n" + ".inst 0x4f98eb74 // sdot v20.4s, v27.16b, v24.4b[2]\n" + ".inst 0x4fb8eb62 // sdot v2.4s, v27.16b, v24.4b[3]\n" + "ldr q24, [x22, #0x0]\n" + ".inst 0x4f8ae3c9 // sdot v9.4s, v30.16b, v10.4b[0]\n" + ".inst 0x4faae3dd // sdot v29.4s, v30.16b, v10.4b[1]\n" + ".inst 0x4f8aebd4 // sdot v20.4s, v30.16b, v10.4b[2]\n" + ".inst 0x4faaebc2 // sdot v2.4s, v30.16b, v10.4b[3]\n" + "fmul v10.4s, v17.4s, v26.s[0]\n" + "scvtf v9.4s, v9.4s, #0x4\n" + "scvtf v29.4s, v29.4s, #0x4\n" + "scvtf v20.4s, v20.4s, #0x4\n" + "scvtf v2.4s, v2.4s, #0x4\n" + "fmla v11.4s, v9.4s, v10.4s\n" + "ldr q9, [x22, #0x10]\n" + "fmul v10.4s, v17.4s, v26.s[1]\n" + "fmla v13.4s, v29.4s, v10.4s\n" + "ldr d29, [x22, #-0x8]\n" + "fmul v10.4s, v17.4s, v26.s[2]\n" + "fmul v26.4s, v17.4s, v26.s[3]\n" + "fcvtl v29.4s, v29.4h\n" + "fmla v23.4s, v20.4s, v10.4s\n" + "movi v20.4s, #0x0\n" + "movi v10.4s, #0x0\n" + "fmla v16.4s, v2.4s, v26.4s\n" + "movi v26.4s, #0x0\n" + "movi v2.4s, #0x0\n" + ".inst 0x4f98e194 // sdot v20.4s, v12.16b, v24.4b[0]\n" + ".inst 0x4fb8e18a // sdot v10.4s, v12.16b, v24.4b[1]\n" + ".inst 0x4f98e99a // sdot v26.4s, v12.16b, v24.4b[2]\n" + ".inst 0x4fb8e982 // sdot v2.4s, v12.16b, v24.4b[3]\n" + "ldr q24, [x22, #0x20]\n" + ".inst 0x4f89e3f4 // sdot v20.4s, v31.16b, v9.4b[0]\n" + ".inst 0x4fa9e3ea // sdot v10.4s, v31.16b, v9.4b[1]\n" + ".inst 0x4f89ebfa // sdot v26.4s, v31.16b, v9.4b[2]\n" + ".inst 0x4fa9ebe2 // sdot v2.4s, v31.16b, v9.4b[3]\n" + "ldr q9, [x22, #0x30]\n" + ".inst 0x4f98e0d4 // sdot v20.4s, v6.16b, v24.4b[0]\n" + ".inst 0x4fb8e0ca // sdot v10.4s, v6.16b, v24.4b[1]\n" + ".inst 0x4f98e8da // sdot v26.4s, v6.16b, v24.4b[2]\n" + ".inst 0x4fb8e8c2 // sdot v2.4s, v6.16b, v24.4b[3]\n" + "ldr q24, [x22, #0x40]\n" + ".inst 0x4f89e394 // sdot v20.4s, v28.16b, v9.4b[0]\n" + ".inst 0x4fa9e38a // sdot v10.4s, v28.16b, v9.4b[1]\n" + ".inst 0x4f89eb9a // sdot v26.4s, v28.16b, v9.4b[2]\n" + ".inst 0x4fa9eb82 // sdot v2.4s, v28.16b, v9.4b[3]\n" + "ldr q9, [x22, #0x50]\n" + ".inst 0x4f98e074 // sdot v20.4s, v3.16b, v24.4b[0]\n" + ".inst 0x4fb8e06a // sdot v10.4s, v3.16b, v24.4b[1]\n" + ".inst 0x4f98e87a // sdot v26.4s, v3.16b, v24.4b[2]\n" + ".inst 0x4fb8e862 // sdot v2.4s, v3.16b, v24.4b[3]\n" + "ldr q24, [x22, #0x60]\n" + ".inst 0x4f89e2d4 // sdot v20.4s, v22.16b, v9.4b[0]\n" + ".inst 0x4fa9e2ca // sdot v10.4s, v22.16b, v9.4b[1]\n" + ".inst 0x4f89eada // sdot v26.4s, v22.16b, v9.4b[2]\n" + ".inst 0x4fa9eac2 // sdot v2.4s, v22.16b, v9.4b[3]\n" + "ldr q9, [x22, #0x70]\n" + "add x22, x22, #0x88\n" + ".inst 0x4f98e374 // sdot v20.4s, v27.16b, v24.4b[0]\n" + ".inst 0x4fb8e36a // sdot v10.4s, v27.16b, v24.4b[1]\n" + ".inst 0x4f98eb7a // sdot v26.4s, v27.16b, v24.4b[2]\n" + ".inst 0x4fb8eb62 // sdot v2.4s, v27.16b, v24.4b[3]\n" + "ldr q24, [x21, #0x0]\n" + ".inst 0x4f89e3d4 // sdot v20.4s, v30.16b, v9.4b[0]\n" + ".inst 0x4fa9e3ca // sdot v10.4s, v30.16b, v9.4b[1]\n" + ".inst 0x4f89ebda // sdot v26.4s, v30.16b, v9.4b[2]\n" + ".inst 0x4fa9ebc2 // sdot v2.4s, v30.16b, v9.4b[3]\n" + "fmul v9.4s, v17.4s, v29.s[0]\n" + "scvtf v20.4s, v20.4s, #0x4\n" + "scvtf v10.4s, v10.4s, #0x4\n" + "scvtf v26.4s, v26.4s, #0x4\n" + "scvtf v2.4s, v2.4s, #0x4\n" + "fmla v25.4s, v20.4s, v9.4s\n" + "ldr q9, [x21, #0x10]\n" + "fmul v20.4s, v17.4s, v29.s[1]\n" + "fmla v7.4s, v10.4s, v20.4s\n" + "ldr d20, [x21, #-0x8]\n" + "fmul v10.4s, v17.4s, v29.s[2]\n" + "fmul v29.4s, v17.4s, v29.s[3]\n" + "fcvtl v20.4s, v20.4h\n" + "fmla v0.4s, v26.4s, v10.4s\n" + "movi v26.4s, #0x0\n" + "movi v10.4s, #0x0\n" + "fmla v4.4s, v2.4s, v29.4s\n" + "movi v2.4s, #0x0\n" + "movi v29.4s, #0x0\n" + ".inst 0x4f98e19a // sdot v26.4s, v12.16b, v24.4b[0]\n" + ".inst 0x4fb8e18a // sdot v10.4s, v12.16b, v24.4b[1]\n" + ".inst 0x4f98e982 // sdot v2.4s, v12.16b, v24.4b[2]\n" + ".inst 0x4fb8e99d // sdot v29.4s, v12.16b, v24.4b[3]\n" + "ldr q12, [x21, #0x20]\n" + "fmul v24.4s, v17.4s, v20.s[0]\n" + ".inst 0x4f89e3fa // sdot v26.4s, v31.16b, v9.4b[0]\n" + ".inst 0x4fa9e3ea // sdot v10.4s, v31.16b, v9.4b[1]\n" + ".inst 0x4f89ebe2 // sdot v2.4s, v31.16b, v9.4b[2]\n" + ".inst 0x4fa9ebfd // sdot v29.4s, v31.16b, v9.4b[3]\n" + "ldr q9, [x21, #0x30]\n" + "fmul v31.4s, v17.4s, v20.s[1]\n" + ".inst 0x4f8ce0da // sdot v26.4s, v6.16b, v12.4b[0]\n" + ".inst 0x4face0ca // sdot v10.4s, v6.16b, v12.4b[1]\n" + ".inst 0x4f8ce8c2 // sdot v2.4s, v6.16b, v12.4b[2]\n" + ".inst 0x4face8dd // sdot v29.4s, v6.16b, v12.4b[3]\n" + "ldr q12, [x21, #0x40]\n" + "fmul v6.4s, v17.4s, v20.s[2]\n" + "fmul v20.4s, v17.4s, v20.s[3]\n" + ".inst 0x4f89e39a // sdot v26.4s, v28.16b, v9.4b[0]\n" + ".inst 0x4fa9e38a // sdot v10.4s, v28.16b, v9.4b[1]\n" + ".inst 0x4f89eb82 // sdot v2.4s, v28.16b, v9.4b[2]\n" + ".inst 0x4fa9eb9d // sdot v29.4s, v28.16b, v9.4b[3]\n" + "ldr q9, [x21, #0x50]\n" + ".inst 0x4f8ce07a // sdot v26.4s, v3.16b, v12.4b[0]\n" + ".inst 0x4face06a // sdot v10.4s, v3.16b, v12.4b[1]\n" + ".inst 0x4f8ce862 // sdot v2.4s, v3.16b, v12.4b[2]\n" + ".inst 0x4face87d // sdot v29.4s, v3.16b, v12.4b[3]\n" + "ldr q12, [x21, #0x60]\n" + ".inst 0x4f89e2da // sdot v26.4s, v22.16b, v9.4b[0]\n" + ".inst 0x4fa9e2ca // sdot v10.4s, v22.16b, v9.4b[1]\n" + ".inst 0x4f89eac2 // sdot v2.4s, v22.16b, v9.4b[2]\n" + ".inst 0x4fa9eadd // sdot v29.4s, v22.16b, v9.4b[3]\n" + "ldr q17, [x21, #0x70]\n" + "add x21, x21, #0x88\n" + ".inst 0x4f8ce37a // sdot v26.4s, v27.16b, v12.4b[0]\n" + ".inst 0x4face36a // sdot v10.4s, v27.16b, v12.4b[1]\n" + ".inst 0x4f8ceb62 // sdot v2.4s, v27.16b, v12.4b[2]\n" + ".inst 0x4faceb7d // sdot v29.4s, v27.16b, v12.4b[3]\n" + ".inst 0x4f91e3da // sdot v26.4s, v30.16b, v17.4b[0]\n" + ".inst 0x4fb1e3ca // sdot v10.4s, v30.16b, v17.4b[1]\n" + ".inst 0x4f91ebc2 // sdot v2.4s, v30.16b, v17.4b[2]\n" + ".inst 0x4fb1ebdd // sdot v29.4s, v30.16b, v17.4b[3]\n" + "scvtf v26.4s, v26.4s, #0x4\n" + "scvtf v10.4s, v10.4s, #0x4\n" + "fmla v5.4s, v26.4s, v24.4s\n" + "scvtf v2.4s, v2.4s, #0x4\n" + "scvtf v29.4s, v29.4s, #0x4\n" + "fmla v21.4s, v10.4s, v31.4s\n" + "fmla v8.4s, v2.4s, v6.4s\n" + "fmla v1.4s, v29.4s, v20.4s\n" + "bgt 3b\n" + "mov x20, %x[res_ptr]\n" + "subs x27, x27, #0x4\n" + "add %x[res_ptr], %x[res_ptr], #0x10\n" + "str q15, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q19, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q18, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q14, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q11, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q13, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q23, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q16, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q25, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q7, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q0, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q4, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q5, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q21, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q8, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q1, [x20, #0x0]\n" + "bne 2b\n" + "mov x20, #0x4\n" + "sub x10, x10, #0x10\n" + "cmp x10, #0x10\n" + "mov %x[res_ptr], x26\n" + "madd %x[a_ptr], x20, x9, %x[a_ptr]\n" + "bge 1b\n" + "4:" // Row loop skip + "cbz x10, 9f\n" + "5:" // Row tail: Row loop + "add x24, %x[b_ptr], #0x8\n" + "mov x23, %x[nc]\n" + "add x22, %x[res_ptr], %x[res_stride], LSL #2\n" + "6:" // Row tail: Column loop + "movi v15.16b, #0x0\n" + "movi v19.16b, #0x0\n" + "add x25, %x[a_ptr], #0x8\n" + "mov x21, %x[nb]\n" + "movi v18.16b, #0x0\n" + "movi v14.16b, #0x0\n" + "7:" // Row tail: Block loop + "ldr q7, [x24, #0x0]\n" + "ldr q5, [x25, #0x0]\n" + "movi v9.16b, #0x4\n" + "movi v4.4s, #0x0\n" + "ldr q3, [x24, #0x10]\n" + "ldr q2, [x25, #0x10]\n" + "movi v1.4s, #0x0\n" + "movi v0.4s, #0x0\n" + "ldr q13, [x24, #0x20]\n" + "ldr q31, [x25, #0x20]\n" + "movi v30.4s, #0x0\n" + "movi v29.16b, #0xf0\n" + "ldr q28, [x24, #0x30]\n" + "ldr q27, [x25, #0x30]\n" + "sshl v20.16b, v7.16b, v9.16b\n" + "sub x20, x24, #0x8\n" + "ldr q26, [x25, #0x40]\n" + "ldr q25, [x25, #0x50]\n" + "sshl v17.16b, v3.16b, v9.16b\n" + "and v7.16b, v7.16b, v29.16b\n" + "ldr q24, [x25, #0x60]\n" + "ldr q16, [x25, #0x70]\n" + "sshl v22.16b, v13.16b, v9.16b\n" + "and v3.16b, v3.16b, v29.16b\n" + "ldr d21, [x20, #0x0]\n" + "ldr d12, [x25, #-0x8]\n" + ".inst 0x4f85e284 // sdot v4.4s, v20.16b, v5.4b[0]\n" + ".inst 0x4fa5e281 // sdot v1.4s, v20.16b, v5.4b[1]\n" + ".inst 0x4f85ea80 // sdot v0.4s, v20.16b, v5.4b[2]\n" + ".inst 0x4fa5ea9e // sdot v30.4s, v20.16b, v5.4b[3]\n" + "sshl v9.16b, v28.16b, v9.16b\n" + "subs x21, x21, #0x1\n" + "and v13.16b, v13.16b, v29.16b\n" + "and v28.16b, v28.16b, v29.16b\n" + "add x25, x25, #0x88\n" + "add x24, x24, #0x48\n" + "fcvtl v21.4s, v21.4h\n" + "fcvtl v12.4s, v12.4h\n" + ".inst 0x4f82e224 // sdot v4.4s, v17.16b, v2.4b[0]\n" + ".inst 0x4fa2e221 // sdot v1.4s, v17.16b, v2.4b[1]\n" + ".inst 0x4f82ea20 // sdot v0.4s, v17.16b, v2.4b[2]\n" + ".inst 0x4fa2ea3e // sdot v30.4s, v17.16b, v2.4b[3]\n" + "fmul v11.4s, v21.4s, v12.s[0]\n" + "fmul v23.4s, v21.4s, v12.s[1]\n" + "fmul v17.4s, v21.4s, v12.s[2]\n" + ".inst 0x4f9fe2c4 // sdot v4.4s, v22.16b, v31.4b[0]\n" + "fmul v6.4s, v21.4s, v12.s[3]\n" + ".inst 0x4fbfe2c1 // sdot v1.4s, v22.16b, v31.4b[1]\n" + ".inst 0x4f9feac0 // sdot v0.4s, v22.16b, v31.4b[2]\n" + ".inst 0x4fbfeade // sdot v30.4s, v22.16b, v31.4b[3]\n" + ".inst 0x4f9be124 // sdot v4.4s, v9.16b, v27.4b[0]\n" + ".inst 0x4fbbe121 // sdot v1.4s, v9.16b, v27.4b[1]\n" + ".inst 0x4f9be920 // sdot v0.4s, v9.16b, v27.4b[2]\n" + ".inst 0x4fbbe93e // sdot v30.4s, v9.16b, v27.4b[3]\n" + ".inst 0x4f9ae0e4 // sdot v4.4s, v7.16b, v26.4b[0]\n" + ".inst 0x4fbae0e1 // sdot v1.4s, v7.16b, v26.4b[1]\n" + ".inst 0x4f9ae8e0 // sdot v0.4s, v7.16b, v26.4b[2]\n" + ".inst 0x4fbae8fe // sdot v30.4s, v7.16b, v26.4b[3]\n" + ".inst 0x4f99e064 // sdot v4.4s, v3.16b, v25.4b[0]\n" + ".inst 0x4fb9e061 // sdot v1.4s, v3.16b, v25.4b[1]\n" + ".inst 0x4f99e860 // sdot v0.4s, v3.16b, v25.4b[2]\n" + ".inst 0x4fb9e87e // sdot v30.4s, v3.16b, v25.4b[3]\n" + ".inst 0x4f98e1a4 // sdot v4.4s, v13.16b, v24.4b[0]\n" + ".inst 0x4fb8e1a1 // sdot v1.4s, v13.16b, v24.4b[1]\n" + ".inst 0x4f98e9a0 // sdot v0.4s, v13.16b, v24.4b[2]\n" + ".inst 0x4fb8e9be // sdot v30.4s, v13.16b, v24.4b[3]\n" + ".inst 0x4f90e384 // sdot v4.4s, v28.16b, v16.4b[0]\n" + ".inst 0x4fb0e381 // sdot v1.4s, v28.16b, v16.4b[1]\n" + ".inst 0x4f90eb80 // sdot v0.4s, v28.16b, v16.4b[2]\n" + ".inst 0x4fb0eb9e // sdot v30.4s, v28.16b, v16.4b[3]\n" + "scvtf v4.4s, v4.4s, #0x4\n" + "scvtf v1.4s, v1.4s, #0x4\n" + "scvtf v0.4s, v0.4s, #0x4\n" + "fmla v15.4s, v4.4s, v11.4s\n" + "scvtf v30.4s, v30.4s, #0x4\n" + "fmla v19.4s, v1.4s, v23.4s\n" + "fmla v18.4s, v0.4s, v17.4s\n" + "fmla v14.4s, v30.4s, v6.4s\n" + "bgt 7b\n" + "mov x20, %x[res_ptr]\n" + "cmp x10, #0x1\n" + "str q15, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "ble 8f\n" + "cmp x10, #0x2\n" + "str q19, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "ble 8f\n" + "cmp x10, #0x3\n" + "str q18, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "ble 8f\n" + "str q14, [x20, #0x0]\n" + "8:" // Row tail: Accumulator store skip + "subs x23, x23, #0x4\n" + "add %x[res_ptr], %x[res_ptr], #0x10\n" + "bne 6b\n" + "subs x10, x10, #0x4\n" + "add %x[a_ptr], %x[a_ptr], x9\n" + "mov %x[res_ptr], x22\n" + "bgt 5b\n" + "9:" // Row tail: Row loop skip + : [a_ptr] "+&r" (a_ptr), [res_ptr] "+&r" (res_ptr) + : [b_ptr] "r" (b_ptr), [nr] "r" (nr), [nb] "r" (nb), [res_stride] "r" (res_stride), [nc] "r" (nc) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x9", "x10", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28" + ); + return; } -#endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) - GGML_ASSERT(!(ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) && - "__ARM_NEON and __ARM_FEATURE_MATMUL_INT8 defined, use the Q4_0_4_8 quantization format for optimal performance"); -#elif defined(__ARM_NEON) && defined(__aarch64__) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) - const void * b_ptr = vx; - const void * a_ptr = vy; - float * res_ptr = s; - size_t res_stride = bs * sizeof(float); +#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) + { + float sumf[4][4]; + int sumi; - __asm__ __volatile__( - "mov x10, %x[nr]\n" - "mov x9, #0x88\n" - "cmp x10, #0x10\n" - "mul x9, %x[nb], x9\n" - "blt 4f\n" - "1:" // Row loop - "add x28, %x[b_ptr], #0x8\n" - "mov x27, %x[nc]\n" - "add x26, %x[res_ptr], %x[res_stride], LSL #4\n" - "2:" // Column loop - "add x25, %x[a_ptr], #0x8\n" - "movi v15.16b, #0x0\n" - "movi v19.16b, #0x0\n" - "mov x24, %x[nb]\n" - "add x23, x25, x9\n" - "movi v18.16b, #0x0\n" - "movi v14.16b, #0x0\n" - "add x22, x23, x9\n" - "movi v11.16b, #0x0\n" - "movi v13.16b, #0x0\n" - "add x21, x22, x9\n" - "movi v23.16b, #0x0\n" - "movi v16.16b, #0x0\n" - "movi v25.16b, #0x0\n" - "movi v7.16b, #0x0\n" - "movi v0.16b, #0x0\n" - "movi v4.16b, #0x0\n" - "movi v5.16b, #0x0\n" - "movi v21.16b, #0x0\n" - "movi v8.16b, #0x0\n" - "movi v1.16b, #0x0\n" - "3:" // Block loop - "ldr q3, [x28, #0x0]\n" - "ldr q31, [x25, #0x0]\n" - "movi v28.16b, #0x4\n" - "movi v10.4s, #0x0\n" - "ldr q22, [x28, #0x10]\n" - "ldr q6, [x25, #0x10]\n" - "movi v29.4s, #0x0\n" - "movi v9.4s, #0x0\n" - "ldr q27, [x28, #0x20]\n" - "ldr q30, [x28, #0x30]\n" - "movi v20.4s, #0x0\n" - "movi v24.16b, #0xf0\n" - "ldr d2, [x25, #-0x8]\n" - "ldr d26, [x23, #-0x8]\n" - "sshl v12.16b, v3.16b, v28.16b\n" - "sub x20, x28, #0x8\n" - "ldr d17, [x20, #0x0]\n" - "and v3.16b, v3.16b, v24.16b\n" - "subs x24, x24, #0x1\n" - "add x28, x28, #0x48\n" - ".inst 0x4f9fe18a // sdot v10.4s, v12.16b, v31.4b[0]\n" - ".inst 0x4fbfe19d // sdot v29.4s, v12.16b, v31.4b[1]\n" - ".inst 0x4f9fe989 // sdot v9.4s, v12.16b, v31.4b[2]\n" - ".inst 0x4fbfe994 // sdot v20.4s, v12.16b, v31.4b[3]\n" - "sshl v31.16b, v22.16b, v28.16b\n" - "and v22.16b, v22.16b, v24.16b\n" - "fcvtl v17.4s, v17.4h\n" - "fcvtl v2.4s, v2.4h\n" - "fcvtl v26.4s, v26.4h\n" - ".inst 0x4f86e3ea // sdot v10.4s, v31.16b, v6.4b[0]\n" - ".inst 0x4fa6e3fd // sdot v29.4s, v31.16b, v6.4b[1]\n" - ".inst 0x4f86ebe9 // sdot v9.4s, v31.16b, v6.4b[2]\n" - ".inst 0x4fa6ebf4 // sdot v20.4s, v31.16b, v6.4b[3]\n" - "sshl v6.16b, v27.16b, v28.16b\n" - "sshl v28.16b, v30.16b, v28.16b\n" - "and v27.16b, v27.16b, v24.16b\n" - "and v30.16b, v30.16b, v24.16b\n" - "ldr q24, [x25, #0x20]\n" - ".inst 0x4f98e0ca // sdot v10.4s, v6.16b, v24.4b[0]\n" - ".inst 0x4fb8e0dd // sdot v29.4s, v6.16b, v24.4b[1]\n" - ".inst 0x4f98e8c9 // sdot v9.4s, v6.16b, v24.4b[2]\n" - ".inst 0x4fb8e8d4 // sdot v20.4s, v6.16b, v24.4b[3]\n" - "ldr q24, [x25, #0x30]\n" - ".inst 0x4f98e38a // sdot v10.4s, v28.16b, v24.4b[0]\n" - ".inst 0x4fb8e39d // sdot v29.4s, v28.16b, v24.4b[1]\n" - ".inst 0x4f98eb89 // sdot v9.4s, v28.16b, v24.4b[2]\n" - ".inst 0x4fb8eb94 // sdot v20.4s, v28.16b, v24.4b[3]\n" - "ldr q24, [x25, #0x40]\n" - ".inst 0x4f98e06a // sdot v10.4s, v3.16b, v24.4b[0]\n" - ".inst 0x4fb8e07d // sdot v29.4s, v3.16b, v24.4b[1]\n" - ".inst 0x4f98e869 // sdot v9.4s, v3.16b, v24.4b[2]\n" - ".inst 0x4fb8e874 // sdot v20.4s, v3.16b, v24.4b[3]\n" - "ldr q24, [x25, #0x50]\n" - ".inst 0x4f98e2ca // sdot v10.4s, v22.16b, v24.4b[0]\n" - ".inst 0x4fb8e2dd // sdot v29.4s, v22.16b, v24.4b[1]\n" - ".inst 0x4f98eac9 // sdot v9.4s, v22.16b, v24.4b[2]\n" - ".inst 0x4fb8ead4 // sdot v20.4s, v22.16b, v24.4b[3]\n" - "ldr q24, [x25, #0x60]\n" - ".inst 0x4f98e36a // sdot v10.4s, v27.16b, v24.4b[0]\n" - ".inst 0x4fb8e37d // sdot v29.4s, v27.16b, v24.4b[1]\n" - ".inst 0x4f98eb69 // sdot v9.4s, v27.16b, v24.4b[2]\n" - ".inst 0x4fb8eb74 // sdot v20.4s, v27.16b, v24.4b[3]\n" - "ldr q24, [x25, #0x70]\n" - "add x25, x25, #0x88\n" - ".inst 0x4f98e3ca // sdot v10.4s, v30.16b, v24.4b[0]\n" - ".inst 0x4fb8e3dd // sdot v29.4s, v30.16b, v24.4b[1]\n" - ".inst 0x4f98ebc9 // sdot v9.4s, v30.16b, v24.4b[2]\n" - ".inst 0x4fb8ebd4 // sdot v20.4s, v30.16b, v24.4b[3]\n" - "fmul v24.4s, v17.4s, v2.s[0]\n" - "scvtf v10.4s, v10.4s, #0x4\n" - "scvtf v29.4s, v29.4s, #0x4\n" - "scvtf v9.4s, v9.4s, #0x4\n" - "scvtf v20.4s, v20.4s, #0x4\n" - "fmla v15.4s, v10.4s, v24.4s\n" - "ldr q24, [x23, #0x0]\n" - "fmul v10.4s, v17.4s, v2.s[1]\n" - "fmla v19.4s, v29.4s, v10.4s\n" - "ldr q10, [x23, #0x10]\n" - "fmul v29.4s, v17.4s, v2.s[2]\n" - "fmul v2.4s, v17.4s, v2.s[3]\n" - "fmla v18.4s, v9.4s, v29.4s\n" - "movi v9.4s, #0x0\n" - "movi v29.4s, #0x0\n" - ".inst 0x4f98e189 // sdot v9.4s, v12.16b, v24.4b[0]\n" - ".inst 0x4fb8e19d // sdot v29.4s, v12.16b, v24.4b[1]\n" - "fmla v14.4s, v20.4s, v2.4s\n" - "movi v20.4s, #0x0\n" - "movi v2.4s, #0x0\n" - ".inst 0x4f98e994 // sdot v20.4s, v12.16b, v24.4b[2]\n" - ".inst 0x4fb8e982 // sdot v2.4s, v12.16b, v24.4b[3]\n" - "ldr q24, [x23, #0x20]\n" - ".inst 0x4f8ae3e9 // sdot v9.4s, v31.16b, v10.4b[0]\n" - ".inst 0x4faae3fd // sdot v29.4s, v31.16b, v10.4b[1]\n" - ".inst 0x4f8aebf4 // sdot v20.4s, v31.16b, v10.4b[2]\n" - ".inst 0x4faaebe2 // sdot v2.4s, v31.16b, v10.4b[3]\n" - "ldr q10, [x23, #0x30]\n" - ".inst 0x4f98e0c9 // sdot v9.4s, v6.16b, v24.4b[0]\n" - ".inst 0x4fb8e0dd // sdot v29.4s, v6.16b, v24.4b[1]\n" - ".inst 0x4f98e8d4 // sdot v20.4s, v6.16b, v24.4b[2]\n" - ".inst 0x4fb8e8c2 // sdot v2.4s, v6.16b, v24.4b[3]\n" - "ldr q24, [x23, #0x40]\n" - ".inst 0x4f8ae389 // sdot v9.4s, v28.16b, v10.4b[0]\n" - ".inst 0x4faae39d // sdot v29.4s, v28.16b, v10.4b[1]\n" - ".inst 0x4f8aeb94 // sdot v20.4s, v28.16b, v10.4b[2]\n" - ".inst 0x4faaeb82 // sdot v2.4s, v28.16b, v10.4b[3]\n" - "ldr q10, [x23, #0x50]\n" - ".inst 0x4f98e069 // sdot v9.4s, v3.16b, v24.4b[0]\n" - ".inst 0x4fb8e07d // sdot v29.4s, v3.16b, v24.4b[1]\n" - ".inst 0x4f98e874 // sdot v20.4s, v3.16b, v24.4b[2]\n" - ".inst 0x4fb8e862 // sdot v2.4s, v3.16b, v24.4b[3]\n" - "ldr q24, [x23, #0x60]\n" - ".inst 0x4f8ae2c9 // sdot v9.4s, v22.16b, v10.4b[0]\n" - ".inst 0x4faae2dd // sdot v29.4s, v22.16b, v10.4b[1]\n" - ".inst 0x4f8aead4 // sdot v20.4s, v22.16b, v10.4b[2]\n" - ".inst 0x4faaeac2 // sdot v2.4s, v22.16b, v10.4b[3]\n" - "ldr q10, [x23, #0x70]\n" - "add x23, x23, #0x88\n" - ".inst 0x4f98e369 // sdot v9.4s, v27.16b, v24.4b[0]\n" - ".inst 0x4fb8e37d // sdot v29.4s, v27.16b, v24.4b[1]\n" - ".inst 0x4f98eb74 // sdot v20.4s, v27.16b, v24.4b[2]\n" - ".inst 0x4fb8eb62 // sdot v2.4s, v27.16b, v24.4b[3]\n" - "ldr q24, [x22, #0x0]\n" - ".inst 0x4f8ae3c9 // sdot v9.4s, v30.16b, v10.4b[0]\n" - ".inst 0x4faae3dd // sdot v29.4s, v30.16b, v10.4b[1]\n" - ".inst 0x4f8aebd4 // sdot v20.4s, v30.16b, v10.4b[2]\n" - ".inst 0x4faaebc2 // sdot v2.4s, v30.16b, v10.4b[3]\n" - "fmul v10.4s, v17.4s, v26.s[0]\n" - "scvtf v9.4s, v9.4s, #0x4\n" - "scvtf v29.4s, v29.4s, #0x4\n" - "scvtf v20.4s, v20.4s, #0x4\n" - "scvtf v2.4s, v2.4s, #0x4\n" - "fmla v11.4s, v9.4s, v10.4s\n" - "ldr q9, [x22, #0x10]\n" - "fmul v10.4s, v17.4s, v26.s[1]\n" - "fmla v13.4s, v29.4s, v10.4s\n" - "ldr d29, [x22, #-0x8]\n" - "fmul v10.4s, v17.4s, v26.s[2]\n" - "fmul v26.4s, v17.4s, v26.s[3]\n" - "fcvtl v29.4s, v29.4h\n" - "fmla v23.4s, v20.4s, v10.4s\n" - "movi v20.4s, #0x0\n" - "movi v10.4s, #0x0\n" - "fmla v16.4s, v2.4s, v26.4s\n" - "movi v26.4s, #0x0\n" - "movi v2.4s, #0x0\n" - ".inst 0x4f98e194 // sdot v20.4s, v12.16b, v24.4b[0]\n" - ".inst 0x4fb8e18a // sdot v10.4s, v12.16b, v24.4b[1]\n" - ".inst 0x4f98e99a // sdot v26.4s, v12.16b, v24.4b[2]\n" - ".inst 0x4fb8e982 // sdot v2.4s, v12.16b, v24.4b[3]\n" - "ldr q24, [x22, #0x20]\n" - ".inst 0x4f89e3f4 // sdot v20.4s, v31.16b, v9.4b[0]\n" - ".inst 0x4fa9e3ea // sdot v10.4s, v31.16b, v9.4b[1]\n" - ".inst 0x4f89ebfa // sdot v26.4s, v31.16b, v9.4b[2]\n" - ".inst 0x4fa9ebe2 // sdot v2.4s, v31.16b, v9.4b[3]\n" - "ldr q9, [x22, #0x30]\n" - ".inst 0x4f98e0d4 // sdot v20.4s, v6.16b, v24.4b[0]\n" - ".inst 0x4fb8e0ca // sdot v10.4s, v6.16b, v24.4b[1]\n" - ".inst 0x4f98e8da // sdot v26.4s, v6.16b, v24.4b[2]\n" - ".inst 0x4fb8e8c2 // sdot v2.4s, v6.16b, v24.4b[3]\n" - "ldr q24, [x22, #0x40]\n" - ".inst 0x4f89e394 // sdot v20.4s, v28.16b, v9.4b[0]\n" - ".inst 0x4fa9e38a // sdot v10.4s, v28.16b, v9.4b[1]\n" - ".inst 0x4f89eb9a // sdot v26.4s, v28.16b, v9.4b[2]\n" - ".inst 0x4fa9eb82 // sdot v2.4s, v28.16b, v9.4b[3]\n" - "ldr q9, [x22, #0x50]\n" - ".inst 0x4f98e074 // sdot v20.4s, v3.16b, v24.4b[0]\n" - ".inst 0x4fb8e06a // sdot v10.4s, v3.16b, v24.4b[1]\n" - ".inst 0x4f98e87a // sdot v26.4s, v3.16b, v24.4b[2]\n" - ".inst 0x4fb8e862 // sdot v2.4s, v3.16b, v24.4b[3]\n" - "ldr q24, [x22, #0x60]\n" - ".inst 0x4f89e2d4 // sdot v20.4s, v22.16b, v9.4b[0]\n" - ".inst 0x4fa9e2ca // sdot v10.4s, v22.16b, v9.4b[1]\n" - ".inst 0x4f89eada // sdot v26.4s, v22.16b, v9.4b[2]\n" - ".inst 0x4fa9eac2 // sdot v2.4s, v22.16b, v9.4b[3]\n" - "ldr q9, [x22, #0x70]\n" - "add x22, x22, #0x88\n" - ".inst 0x4f98e374 // sdot v20.4s, v27.16b, v24.4b[0]\n" - ".inst 0x4fb8e36a // sdot v10.4s, v27.16b, v24.4b[1]\n" - ".inst 0x4f98eb7a // sdot v26.4s, v27.16b, v24.4b[2]\n" - ".inst 0x4fb8eb62 // sdot v2.4s, v27.16b, v24.4b[3]\n" - "ldr q24, [x21, #0x0]\n" - ".inst 0x4f89e3d4 // sdot v20.4s, v30.16b, v9.4b[0]\n" - ".inst 0x4fa9e3ca // sdot v10.4s, v30.16b, v9.4b[1]\n" - ".inst 0x4f89ebda // sdot v26.4s, v30.16b, v9.4b[2]\n" - ".inst 0x4fa9ebc2 // sdot v2.4s, v30.16b, v9.4b[3]\n" - "fmul v9.4s, v17.4s, v29.s[0]\n" - "scvtf v20.4s, v20.4s, #0x4\n" - "scvtf v10.4s, v10.4s, #0x4\n" - "scvtf v26.4s, v26.4s, #0x4\n" - "scvtf v2.4s, v2.4s, #0x4\n" - "fmla v25.4s, v20.4s, v9.4s\n" - "ldr q9, [x21, #0x10]\n" - "fmul v20.4s, v17.4s, v29.s[1]\n" - "fmla v7.4s, v10.4s, v20.4s\n" - "ldr d20, [x21, #-0x8]\n" - "fmul v10.4s, v17.4s, v29.s[2]\n" - "fmul v29.4s, v17.4s, v29.s[3]\n" - "fcvtl v20.4s, v20.4h\n" - "fmla v0.4s, v26.4s, v10.4s\n" - "movi v26.4s, #0x0\n" - "movi v10.4s, #0x0\n" - "fmla v4.4s, v2.4s, v29.4s\n" - "movi v2.4s, #0x0\n" - "movi v29.4s, #0x0\n" - ".inst 0x4f98e19a // sdot v26.4s, v12.16b, v24.4b[0]\n" - ".inst 0x4fb8e18a // sdot v10.4s, v12.16b, v24.4b[1]\n" - ".inst 0x4f98e982 // sdot v2.4s, v12.16b, v24.4b[2]\n" - ".inst 0x4fb8e99d // sdot v29.4s, v12.16b, v24.4b[3]\n" - "ldr q12, [x21, #0x20]\n" - "fmul v24.4s, v17.4s, v20.s[0]\n" - ".inst 0x4f89e3fa // sdot v26.4s, v31.16b, v9.4b[0]\n" - ".inst 0x4fa9e3ea // sdot v10.4s, v31.16b, v9.4b[1]\n" - ".inst 0x4f89ebe2 // sdot v2.4s, v31.16b, v9.4b[2]\n" - ".inst 0x4fa9ebfd // sdot v29.4s, v31.16b, v9.4b[3]\n" - "ldr q9, [x21, #0x30]\n" - "fmul v31.4s, v17.4s, v20.s[1]\n" - ".inst 0x4f8ce0da // sdot v26.4s, v6.16b, v12.4b[0]\n" - ".inst 0x4face0ca // sdot v10.4s, v6.16b, v12.4b[1]\n" - ".inst 0x4f8ce8c2 // sdot v2.4s, v6.16b, v12.4b[2]\n" - ".inst 0x4face8dd // sdot v29.4s, v6.16b, v12.4b[3]\n" - "ldr q12, [x21, #0x40]\n" - "fmul v6.4s, v17.4s, v20.s[2]\n" - "fmul v20.4s, v17.4s, v20.s[3]\n" - ".inst 0x4f89e39a // sdot v26.4s, v28.16b, v9.4b[0]\n" - ".inst 0x4fa9e38a // sdot v10.4s, v28.16b, v9.4b[1]\n" - ".inst 0x4f89eb82 // sdot v2.4s, v28.16b, v9.4b[2]\n" - ".inst 0x4fa9eb9d // sdot v29.4s, v28.16b, v9.4b[3]\n" - "ldr q9, [x21, #0x50]\n" - ".inst 0x4f8ce07a // sdot v26.4s, v3.16b, v12.4b[0]\n" - ".inst 0x4face06a // sdot v10.4s, v3.16b, v12.4b[1]\n" - ".inst 0x4f8ce862 // sdot v2.4s, v3.16b, v12.4b[2]\n" - ".inst 0x4face87d // sdot v29.4s, v3.16b, v12.4b[3]\n" - "ldr q12, [x21, #0x60]\n" - ".inst 0x4f89e2da // sdot v26.4s, v22.16b, v9.4b[0]\n" - ".inst 0x4fa9e2ca // sdot v10.4s, v22.16b, v9.4b[1]\n" - ".inst 0x4f89eac2 // sdot v2.4s, v22.16b, v9.4b[2]\n" - ".inst 0x4fa9eadd // sdot v29.4s, v22.16b, v9.4b[3]\n" - "ldr q17, [x21, #0x70]\n" - "add x21, x21, #0x88\n" - ".inst 0x4f8ce37a // sdot v26.4s, v27.16b, v12.4b[0]\n" - ".inst 0x4face36a // sdot v10.4s, v27.16b, v12.4b[1]\n" - ".inst 0x4f8ceb62 // sdot v2.4s, v27.16b, v12.4b[2]\n" - ".inst 0x4faceb7d // sdot v29.4s, v27.16b, v12.4b[3]\n" - ".inst 0x4f91e3da // sdot v26.4s, v30.16b, v17.4b[0]\n" - ".inst 0x4fb1e3ca // sdot v10.4s, v30.16b, v17.4b[1]\n" - ".inst 0x4f91ebc2 // sdot v2.4s, v30.16b, v17.4b[2]\n" - ".inst 0x4fb1ebdd // sdot v29.4s, v30.16b, v17.4b[3]\n" - "scvtf v26.4s, v26.4s, #0x4\n" - "scvtf v10.4s, v10.4s, #0x4\n" - "fmla v5.4s, v26.4s, v24.4s\n" - "scvtf v2.4s, v2.4s, #0x4\n" - "scvtf v29.4s, v29.4s, #0x4\n" - "fmla v21.4s, v10.4s, v31.4s\n" - "fmla v8.4s, v2.4s, v6.4s\n" - "fmla v1.4s, v29.4s, v20.4s\n" - "bgt 3b\n" - "mov x20, %x[res_ptr]\n" - "subs x27, x27, #0x4\n" - "add %x[res_ptr], %x[res_ptr], #0x10\n" - "str q15, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q19, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q18, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q14, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q11, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q13, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q23, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q16, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q25, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q7, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q0, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q4, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q5, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q21, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q8, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q1, [x20, #0x0]\n" - "bne 2b\n" - "mov x20, #0x4\n" - "sub x10, x10, #0x10\n" - "cmp x10, #0x10\n" - "mov %x[res_ptr], x26\n" - "madd %x[a_ptr], x20, x9, %x[a_ptr]\n" - "bge 1b\n" - "4:" // Row loop skip - "cbz x10, 9f\n" - "5:" // Row tail: Row loop - "add x24, %x[b_ptr], #0x8\n" - "mov x23, %x[nc]\n" - "add x22, %x[res_ptr], %x[res_stride], LSL #2\n" - "6:" // Row tail: Column loop - "movi v15.16b, #0x0\n" - "movi v19.16b, #0x0\n" - "add x25, %x[a_ptr], #0x8\n" - "mov x21, %x[nb]\n" - "movi v18.16b, #0x0\n" - "movi v14.16b, #0x0\n" - "7:" // Row tail: Block loop - "ldr q7, [x24, #0x0]\n" - "ldr q5, [x25, #0x0]\n" - "movi v9.16b, #0x4\n" - "movi v4.4s, #0x0\n" - "ldr q3, [x24, #0x10]\n" - "ldr q2, [x25, #0x10]\n" - "movi v1.4s, #0x0\n" - "movi v0.4s, #0x0\n" - "ldr q13, [x24, #0x20]\n" - "ldr q31, [x25, #0x20]\n" - "movi v30.4s, #0x0\n" - "movi v29.16b, #0xf0\n" - "ldr q28, [x24, #0x30]\n" - "ldr q27, [x25, #0x30]\n" - "sshl v20.16b, v7.16b, v9.16b\n" - "sub x20, x24, #0x8\n" - "ldr q26, [x25, #0x40]\n" - "ldr q25, [x25, #0x50]\n" - "sshl v17.16b, v3.16b, v9.16b\n" - "and v7.16b, v7.16b, v29.16b\n" - "ldr q24, [x25, #0x60]\n" - "ldr q16, [x25, #0x70]\n" - "sshl v22.16b, v13.16b, v9.16b\n" - "and v3.16b, v3.16b, v29.16b\n" - "ldr d21, [x20, #0x0]\n" - "ldr d12, [x25, #-0x8]\n" - ".inst 0x4f85e284 // sdot v4.4s, v20.16b, v5.4b[0]\n" - ".inst 0x4fa5e281 // sdot v1.4s, v20.16b, v5.4b[1]\n" - ".inst 0x4f85ea80 // sdot v0.4s, v20.16b, v5.4b[2]\n" - ".inst 0x4fa5ea9e // sdot v30.4s, v20.16b, v5.4b[3]\n" - "sshl v9.16b, v28.16b, v9.16b\n" - "subs x21, x21, #0x1\n" - "and v13.16b, v13.16b, v29.16b\n" - "and v28.16b, v28.16b, v29.16b\n" - "add x25, x25, #0x88\n" - "add x24, x24, #0x48\n" - "fcvtl v21.4s, v21.4h\n" - "fcvtl v12.4s, v12.4h\n" - ".inst 0x4f82e224 // sdot v4.4s, v17.16b, v2.4b[0]\n" - ".inst 0x4fa2e221 // sdot v1.4s, v17.16b, v2.4b[1]\n" - ".inst 0x4f82ea20 // sdot v0.4s, v17.16b, v2.4b[2]\n" - ".inst 0x4fa2ea3e // sdot v30.4s, v17.16b, v2.4b[3]\n" - "fmul v11.4s, v21.4s, v12.s[0]\n" - "fmul v23.4s, v21.4s, v12.s[1]\n" - "fmul v17.4s, v21.4s, v12.s[2]\n" - ".inst 0x4f9fe2c4 // sdot v4.4s, v22.16b, v31.4b[0]\n" - "fmul v6.4s, v21.4s, v12.s[3]\n" - ".inst 0x4fbfe2c1 // sdot v1.4s, v22.16b, v31.4b[1]\n" - ".inst 0x4f9feac0 // sdot v0.4s, v22.16b, v31.4b[2]\n" - ".inst 0x4fbfeade // sdot v30.4s, v22.16b, v31.4b[3]\n" - ".inst 0x4f9be124 // sdot v4.4s, v9.16b, v27.4b[0]\n" - ".inst 0x4fbbe121 // sdot v1.4s, v9.16b, v27.4b[1]\n" - ".inst 0x4f9be920 // sdot v0.4s, v9.16b, v27.4b[2]\n" - ".inst 0x4fbbe93e // sdot v30.4s, v9.16b, v27.4b[3]\n" - ".inst 0x4f9ae0e4 // sdot v4.4s, v7.16b, v26.4b[0]\n" - ".inst 0x4fbae0e1 // sdot v1.4s, v7.16b, v26.4b[1]\n" - ".inst 0x4f9ae8e0 // sdot v0.4s, v7.16b, v26.4b[2]\n" - ".inst 0x4fbae8fe // sdot v30.4s, v7.16b, v26.4b[3]\n" - ".inst 0x4f99e064 // sdot v4.4s, v3.16b, v25.4b[0]\n" - ".inst 0x4fb9e061 // sdot v1.4s, v3.16b, v25.4b[1]\n" - ".inst 0x4f99e860 // sdot v0.4s, v3.16b, v25.4b[2]\n" - ".inst 0x4fb9e87e // sdot v30.4s, v3.16b, v25.4b[3]\n" - ".inst 0x4f98e1a4 // sdot v4.4s, v13.16b, v24.4b[0]\n" - ".inst 0x4fb8e1a1 // sdot v1.4s, v13.16b, v24.4b[1]\n" - ".inst 0x4f98e9a0 // sdot v0.4s, v13.16b, v24.4b[2]\n" - ".inst 0x4fb8e9be // sdot v30.4s, v13.16b, v24.4b[3]\n" - ".inst 0x4f90e384 // sdot v4.4s, v28.16b, v16.4b[0]\n" - ".inst 0x4fb0e381 // sdot v1.4s, v28.16b, v16.4b[1]\n" - ".inst 0x4f90eb80 // sdot v0.4s, v28.16b, v16.4b[2]\n" - ".inst 0x4fb0eb9e // sdot v30.4s, v28.16b, v16.4b[3]\n" - "scvtf v4.4s, v4.4s, #0x4\n" - "scvtf v1.4s, v1.4s, #0x4\n" - "scvtf v0.4s, v0.4s, #0x4\n" - "fmla v15.4s, v4.4s, v11.4s\n" - "scvtf v30.4s, v30.4s, #0x4\n" - "fmla v19.4s, v1.4s, v23.4s\n" - "fmla v18.4s, v0.4s, v17.4s\n" - "fmla v14.4s, v30.4s, v6.4s\n" - "bgt 7b\n" - "mov x20, %x[res_ptr]\n" - "cmp x10, #0x1\n" - "str q15, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "ble 8f\n" - "cmp x10, #0x2\n" - "str q19, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "ble 8f\n" - "cmp x10, #0x3\n" - "str q18, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "ble 8f\n" - "str q14, [x20, #0x0]\n" - "8:" // Row tail: Accumulator store skip - "subs x23, x23, #0x4\n" - "add %x[res_ptr], %x[res_ptr], #0x10\n" - "bne 6b\n" - "subs x10, x10, #0x4\n" - "add %x[a_ptr], %x[a_ptr], x9\n" - "mov %x[res_ptr], x22\n" - "bgt 5b\n" - "9:" // Row tail: Row loop skip - : [a_ptr] "+&r" (a_ptr), [res_ptr] "+&r" (res_ptr) - : [b_ptr] "r" (b_ptr), [nr] "r" (nr), [nb] "r" (nb), [res_stride] "r" (res_stride), [nc] "r" (nc) - : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x9", "x10", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28" - ); -#else - float sumf[4][4]; - int sumi; - - for (int y = 0; y < nr / 4; y++) { - const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); - for (int x = 0; x < nc / ncols_interleaved; x++) { - const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); - for (int m = 0; m < 4; m++) { - for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; - } - for (int l = 0; l < nb; l++) { - for (int k = 0; k < (qk / (2 * blocklen)); k++) { - for (int m = 0; m < 4; m++) { - for (int j = 0; j < ncols_interleaved; j++) { - sumi = 0; - for (int i = 0; i < blocklen; ++i) { - const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); - const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); - sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + - (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; + for (int y = 0; y < nr / 4; y++) { + const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); + for (int x = 0; x < nc / ncols_interleaved; x++) { + const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); + for (int m = 0; m < 4; m++) { + for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; + } + for (int l = 0; l < nb; l++) { + for (int k = 0; k < (qk / (2 * blocklen)); k++) { + for (int m = 0; m < 4; m++) { + for (int j = 0; j < ncols_interleaved; j++) { + sumi = 0; + for (int i = 0; i < blocklen; ++i) { + const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); + const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); + sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + + (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; + } + sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]); } - sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]); } } } - } - for (int m = 0; m < 4; m++) { - for (int j = 0; j < ncols_interleaved; j++) - s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; + for (int m = 0; m < 4; m++) { + for (int j = 0; j < ncols_interleaved; j++) + s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; + } } } } -#endif } void ggml_gemm_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) { @@ -1586,413 +1564,406 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void * UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) - if (ggml_sve_cnt_b == QK8_0) { - GGML_ASSERT(!(ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) && - "__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance"); - } -#endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) - const void * b_ptr = vx; - const void * a_ptr = vy; - float * res_ptr = s; - size_t res_stride = bs * sizeof(float); +#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) + if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) { + const void * b_ptr = vx; + const void * a_ptr = vy; + float * res_ptr = s; + size_t res_stride = bs * sizeof(float); - __asm__ __volatile__( - "mov x10, %x[nr]\n" - "mov x9, #0x88\n" - "cmp x10, #0x10\n" - "mul x9, %x[nb], x9\n" - "blt 4f\n" - "1:" // Row loop - "add x28, %x[b_ptr], #0x8\n" - "mov x27, %x[nc]\n" - "add x26, %x[res_ptr], %x[res_stride], LSL #4\n" - "2:" // Column loop - "add x25, %x[a_ptr], #0x8\n" - "movi v2.16b, #0x0\n" - "movi v10.16b, #0x0\n" - "mov x24, %x[nb]\n" - "add x23, x25, x9\n" - "movi v12.16b, #0x0\n" - "movi v28.16b, #0x0\n" - "add x22, x23, x9\n" - "movi v11.16b, #0x0\n" - "movi v13.16b, #0x0\n" - "add x21, x22, x9\n" - "movi v22.16b, #0x0\n" - "movi v23.16b, #0x0\n" - "movi v25.16b, #0x0\n" - "movi v5.16b, #0x0\n" - "movi v7.16b, #0x0\n" - "movi v4.16b, #0x0\n" - "movi v6.16b, #0x0\n" - "movi v30.16b, #0x0\n" - "movi v24.16b, #0x0\n" - "movi v14.16b, #0x0\n" - "3:" // Block loop - "ldr q21, [x28, #0x0]\n" - "ldr q16, [x28, #0x10]\n" - "movi v1.16b, #0x4\n" - "movi v19.4s, #0x0\n" - "ldr q27, [x25, #0x0]\n" - "ldr q15, [x25, #0x10]\n" - "movi v26.4s, #0x0\n" - "movi v18.4s, #0x0\n" - "ldr q29, [x28, #0x20]\n" - "ldr q3, [x28, #0x30]\n" - "movi v17.4s, #0x0\n" - "movi v0.16b, #0xf0\n" - "ldr d20, [x25, #-0x8]\n" - "ldr d9, [x23, #-0x8]\n" - "sshl v8.16b, v21.16b, v1.16b\n" - "sshl v31.16b, v16.16b, v1.16b\n" - "and v21.16b, v21.16b, v0.16b\n" - "and v16.16b, v16.16b, v0.16b\n" - "sub x20, x28, #0x8\n" - "subs x24, x24, #0x1\n" - "add x28, x28, #0x48\n" - ".inst 0x4e88a773 // smmla v19.4s, v27.16b, v8.16b\n" - ".inst 0x4e9fa77a // smmla v26.4s, v27.16b, v31.16b\n" - "ldr q27, [x25, #0x20]\n" - ".inst 0x4e88a5f2 // smmla v18.4s, v15.16b, v8.16b\n" - ".inst 0x4e9fa5f1 // smmla v17.4s, v15.16b, v31.16b\n" - "sshl v15.16b, v29.16b, v1.16b\n" - "sshl v1.16b, v3.16b, v1.16b\n" - "and v29.16b, v29.16b, v0.16b\n" - "and v3.16b, v3.16b, v0.16b\n" - "ldr q0, [x25, #0x30]\n" - "fcvtl v20.4s, v20.4h\n" - ".inst 0x4e8fa773 // smmla v19.4s, v27.16b, v15.16b\n" - "fcvtl v9.4s, v9.4h\n" - ".inst 0x4e81a77a // smmla v26.4s, v27.16b, v1.16b\n" - "ldr q27, [x25, #0x40]\n" - ".inst 0x4e8fa412 // smmla v18.4s, v0.16b, v15.16b\n" - ".inst 0x4e81a411 // smmla v17.4s, v0.16b, v1.16b\n" - "ldr q0, [x25, #0x50]\n" - ".inst 0x4e95a773 // smmla v19.4s, v27.16b, v21.16b\n" - ".inst 0x4e90a77a // smmla v26.4s, v27.16b, v16.16b\n" - "ldr q27, [x25, #0x60]\n" - ".inst 0x4e95a412 // smmla v18.4s, v0.16b, v21.16b\n" - ".inst 0x4e90a411 // smmla v17.4s, v0.16b, v16.16b\n" - "ldr q0, [x25, #0x70]\n" - "add x25, x25, #0x88\n" - ".inst 0x4e9da773 // smmla v19.4s, v27.16b, v29.16b\n" - ".inst 0x4e83a77a // smmla v26.4s, v27.16b, v3.16b\n" - "ldr d27, [x20, #0x0]\n" - ".inst 0x4e9da412 // smmla v18.4s, v0.16b, v29.16b\n" - ".inst 0x4e83a411 // smmla v17.4s, v0.16b, v3.16b\n" - "fcvtl v27.4s, v27.4h\n" - "uzp1 v0.2d, v19.2d, v26.2d\n" - "uzp2 v26.2d, v19.2d, v26.2d\n" - "fmul v19.4s, v27.4s, v20.s[0]\n" - "scvtf v0.4s, v0.4s, #0x4\n" - "scvtf v26.4s, v26.4s, #0x4\n" - "fmla v2.4s, v0.4s, v19.4s\n" - "ldr q19, [x23, #0x0]\n" - "uzp1 v0.2d, v18.2d, v17.2d\n" - "uzp2 v18.2d, v18.2d, v17.2d\n" - "fmul v17.4s, v27.4s, v20.s[1]\n" - "scvtf v0.4s, v0.4s, #0x4\n" - "scvtf v18.4s, v18.4s, #0x4\n" - "fmla v10.4s, v26.4s, v17.4s\n" - "ldr q17, [x23, #0x10]\n" - "fmul v26.4s, v27.4s, v20.s[2]\n" - "fmul v20.4s, v27.4s, v20.s[3]\n" - "fmla v12.4s, v0.4s, v26.4s\n" - "ldr d0, [x22, #-0x8]\n" - "ldr d26, [x21, #-0x8]\n" - "fcvtl v0.4s, v0.4h\n" - "fmla v28.4s, v18.4s, v20.4s\n" - "movi v20.4s, #0x0\n" - "movi v18.4s, #0x0\n" - ".inst 0x4e88a674 // smmla v20.4s, v19.16b, v8.16b\n" - ".inst 0x4e9fa672 // smmla v18.4s, v19.16b, v31.16b\n" - "ldr q19, [x23, #0x20]\n" - "fcvtl v26.4s, v26.4h\n" - ".inst 0x4e8fa674 // smmla v20.4s, v19.16b, v15.16b\n" - ".inst 0x4e81a672 // smmla v18.4s, v19.16b, v1.16b\n" - "ldr q19, [x23, #0x40]\n" - ".inst 0x4e95a674 // smmla v20.4s, v19.16b, v21.16b\n" - ".inst 0x4e90a672 // smmla v18.4s, v19.16b, v16.16b\n" - "ldr q19, [x23, #0x60]\n" - ".inst 0x4e9da674 // smmla v20.4s, v19.16b, v29.16b\n" - ".inst 0x4e83a672 // smmla v18.4s, v19.16b, v3.16b\n" - "uzp1 v19.2d, v20.2d, v18.2d\n" - "scvtf v19.4s, v19.4s, #0x4\n" - "uzp2 v20.2d, v20.2d, v18.2d\n" - "fmul v18.4s, v27.4s, v9.s[0]\n" - "scvtf v20.4s, v20.4s, #0x4\n" - "fmla v11.4s, v19.4s, v18.4s\n" - "ldr q18, [x22, #0x0]\n" - "fmul v19.4s, v27.4s, v9.s[1]\n" - "fmla v13.4s, v20.4s, v19.4s\n" - "movi v19.4s, #0x0\n" - "movi v20.4s, #0x0\n" - ".inst 0x4e88a633 // smmla v19.4s, v17.16b, v8.16b\n" - ".inst 0x4e9fa634 // smmla v20.4s, v17.16b, v31.16b\n" - "ldr q17, [x23, #0x30]\n" - ".inst 0x4e8fa633 // smmla v19.4s, v17.16b, v15.16b\n" - ".inst 0x4e81a634 // smmla v20.4s, v17.16b, v1.16b\n" - "ldr q17, [x23, #0x50]\n" - ".inst 0x4e95a633 // smmla v19.4s, v17.16b, v21.16b\n" - ".inst 0x4e90a634 // smmla v20.4s, v17.16b, v16.16b\n" - "ldr q17, [x23, #0x70]\n" - "add x23, x23, #0x88\n" - ".inst 0x4e9da633 // smmla v19.4s, v17.16b, v29.16b\n" - ".inst 0x4e83a634 // smmla v20.4s, v17.16b, v3.16b\n" - "uzp1 v17.2d, v19.2d, v20.2d\n" - "scvtf v17.4s, v17.4s, #0x4\n" - "uzp2 v20.2d, v19.2d, v20.2d\n" - "fmul v19.4s, v27.4s, v9.s[2]\n" - "fmul v9.4s, v27.4s, v9.s[3]\n" - "scvtf v20.4s, v20.4s, #0x4\n" - "fmla v22.4s, v17.4s, v19.4s\n" - "ldr q17, [x22, #0x10]\n" - "movi v19.4s, #0x0\n" - ".inst 0x4e88a653 // smmla v19.4s, v18.16b, v8.16b\n" - "fmla v23.4s, v20.4s, v9.4s\n" - "movi v20.4s, #0x0\n" - "movi v9.4s, #0x0\n" - ".inst 0x4e9fa654 // smmla v20.4s, v18.16b, v31.16b\n" - "ldr q18, [x22, #0x20]\n" - ".inst 0x4e88a629 // smmla v9.4s, v17.16b, v8.16b\n" - ".inst 0x4e8fa653 // smmla v19.4s, v18.16b, v15.16b\n" - ".inst 0x4e81a654 // smmla v20.4s, v18.16b, v1.16b\n" - "ldr q18, [x22, #0x40]\n" - ".inst 0x4e95a653 // smmla v19.4s, v18.16b, v21.16b\n" - ".inst 0x4e90a654 // smmla v20.4s, v18.16b, v16.16b\n" - "ldr q18, [x22, #0x60]\n" - ".inst 0x4e9da653 // smmla v19.4s, v18.16b, v29.16b\n" - ".inst 0x4e83a654 // smmla v20.4s, v18.16b, v3.16b\n" - "movi v18.4s, #0x0\n" - ".inst 0x4e9fa632 // smmla v18.4s, v17.16b, v31.16b\n" - "ldr q17, [x22, #0x30]\n" - ".inst 0x4e8fa629 // smmla v9.4s, v17.16b, v15.16b\n" - ".inst 0x4e81a632 // smmla v18.4s, v17.16b, v1.16b\n" - "ldr q17, [x22, #0x50]\n" - ".inst 0x4e95a629 // smmla v9.4s, v17.16b, v21.16b\n" - ".inst 0x4e90a632 // smmla v18.4s, v17.16b, v16.16b\n" - "ldr q17, [x22, #0x70]\n" - "add x22, x22, #0x88\n" - ".inst 0x4e9da629 // smmla v9.4s, v17.16b, v29.16b\n" - ".inst 0x4e83a632 // smmla v18.4s, v17.16b, v3.16b\n" - "uzp1 v17.2d, v19.2d, v20.2d\n" - "uzp2 v20.2d, v19.2d, v20.2d\n" - "fmul v19.4s, v27.4s, v0.s[0]\n" - "scvtf v17.4s, v17.4s, #0x4\n" - "scvtf v20.4s, v20.4s, #0x4\n" - "fmla v25.4s, v17.4s, v19.4s\n" - "ldr q19, [x21, #0x0]\n" - "fmul v17.4s, v27.4s, v0.s[1]\n" - "fmla v5.4s, v20.4s, v17.4s\n" - "ldr q17, [x21, #0x10]\n" - "uzp1 v20.2d, v9.2d, v18.2d\n" - "uzp2 v9.2d, v9.2d, v18.2d\n" - "fmul v18.4s, v27.4s, v0.s[2]\n" - "fmul v0.4s, v27.4s, v0.s[3]\n" - "scvtf v20.4s, v20.4s, #0x4\n" - "scvtf v9.4s, v9.4s, #0x4\n" - "fmla v7.4s, v20.4s, v18.4s\n" - "movi v20.4s, #0x0\n" - "movi v18.4s, #0x0\n" - ".inst 0x4e88a674 // smmla v20.4s, v19.16b, v8.16b\n" - ".inst 0x4e9fa672 // smmla v18.4s, v19.16b, v31.16b\n" - "ldr q19, [x21, #0x20]\n" - "fmla v4.4s, v9.4s, v0.4s\n" - "movi v9.4s, #0x0\n" - "movi v0.4s, #0x0\n" - ".inst 0x4e88a629 // smmla v9.4s, v17.16b, v8.16b\n" - "fmul v8.4s, v27.4s, v26.s[0]\n" - ".inst 0x4e9fa620 // smmla v0.4s, v17.16b, v31.16b\n" - "ldr q17, [x21, #0x30]\n" - ".inst 0x4e8fa674 // smmla v20.4s, v19.16b, v15.16b\n" - "fmul v31.4s, v27.4s, v26.s[1]\n" - ".inst 0x4e81a672 // smmla v18.4s, v19.16b, v1.16b\n" - "ldr q19, [x21, #0x40]\n" - ".inst 0x4e8fa629 // smmla v9.4s, v17.16b, v15.16b\n" - "fmul v15.4s, v27.4s, v26.s[2]\n" - "fmul v27.4s, v27.4s, v26.s[3]\n" - ".inst 0x4e81a620 // smmla v0.4s, v17.16b, v1.16b\n" - "ldr q1, [x21, #0x50]\n" - ".inst 0x4e95a674 // smmla v20.4s, v19.16b, v21.16b\n" - ".inst 0x4e90a672 // smmla v18.4s, v19.16b, v16.16b\n" - "ldr q26, [x21, #0x60]\n" - ".inst 0x4e95a429 // smmla v9.4s, v1.16b, v21.16b\n" - ".inst 0x4e90a420 // smmla v0.4s, v1.16b, v16.16b\n" - "ldr q21, [x21, #0x70]\n" - "add x21, x21, #0x88\n" - ".inst 0x4e9da754 // smmla v20.4s, v26.16b, v29.16b\n" - ".inst 0x4e83a752 // smmla v18.4s, v26.16b, v3.16b\n" - ".inst 0x4e9da6a9 // smmla v9.4s, v21.16b, v29.16b\n" - ".inst 0x4e83a6a0 // smmla v0.4s, v21.16b, v3.16b\n" - "uzp1 v29.2d, v20.2d, v18.2d\n" - "uzp2 v21.2d, v20.2d, v18.2d\n" - "scvtf v29.4s, v29.4s, #0x4\n" - "uzp1 v18.2d, v9.2d, v0.2d\n" - "uzp2 v16.2d, v9.2d, v0.2d\n" - "scvtf v21.4s, v21.4s, #0x4\n" - "fmla v6.4s, v29.4s, v8.4s\n" - "scvtf v18.4s, v18.4s, #0x4\n" - "scvtf v16.4s, v16.4s, #0x4\n" - "fmla v30.4s, v21.4s, v31.4s\n" - "fmla v24.4s, v18.4s, v15.4s\n" - "fmla v14.4s, v16.4s, v27.4s\n" - "bgt 3b\n" - "mov x20, %x[res_ptr]\n" - "subs x27, x27, #0x4\n" - "add %x[res_ptr], %x[res_ptr], #0x10\n" - "str q2, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q10, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q12, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q28, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q11, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q13, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q22, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q23, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q25, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q5, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q7, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q4, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q6, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q30, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q24, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "str q14, [x20, #0x0]\n" - "bne 2b\n" - "mov x20, #0x4\n" - "sub x10, x10, #0x10\n" - "cmp x10, #0x10\n" - "mov %x[res_ptr], x26\n" - "madd %x[a_ptr], x20, x9, %x[a_ptr]\n" - "bge 1b\n" - "4:" // Row loop skip - "cbz x10, 9f\n" - "5:" // Row tail: Row loop - "add x24, %x[b_ptr], #0x8\n" - "mov x23, %x[nc]\n" - "add x22, %x[res_ptr], %x[res_stride], LSL #2\n" - "6:" // Row tail: Column loop - "movi v2.16b, #0x0\n" - "movi v10.16b, #0x0\n" - "add x25, %x[a_ptr], #0x8\n" - "mov x21, %x[nb]\n" - "movi v12.16b, #0x0\n" - "movi v28.16b, #0x0\n" - "7:" // Row tail: Block loop - "ldr q6, [x24, #0x0]\n" - "ldr q5, [x24, #0x10]\n" - "movi v17.16b, #0x4\n" - "movi v8.4s, #0x0\n" - "ldr q4, [x25, #0x0]\n" - "ldr q13, [x25, #0x10]\n" - "movi v27.4s, #0x0\n" - "movi v0.4s, #0x0\n" - "ldr q31, [x24, #0x20]\n" - "ldr q14, [x24, #0x30]\n" - "movi v29.4s, #0x0\n" - "movi v22.16b, #0xf0\n" - "ldr q11, [x25, #0x20]\n" - "ldr q23, [x25, #0x30]\n" - "sshl v21.16b, v6.16b, v17.16b\n" - "sshl v16.16b, v5.16b, v17.16b\n" - "ldr q20, [x25, #0x40]\n" - "ldr q26, [x25, #0x50]\n" - "and v6.16b, v6.16b, v22.16b\n" - "and v5.16b, v5.16b, v22.16b\n" - "ldr q25, [x25, #0x60]\n" - "ldr q3, [x25, #0x70]\n" - "sshl v19.16b, v31.16b, v17.16b\n" - "sshl v18.16b, v14.16b, v17.16b\n" - "ldr d17, [x25, #-0x8]\n" - ".inst 0x4e95a488 // smmla v8.4s, v4.16b, v21.16b\n" - ".inst 0x4e90a49b // smmla v27.4s, v4.16b, v16.16b\n" - "and v31.16b, v31.16b, v22.16b\n" - ".inst 0x4e95a5a0 // smmla v0.4s, v13.16b, v21.16b\n" - ".inst 0x4e90a5bd // smmla v29.4s, v13.16b, v16.16b\n" - "and v14.16b, v14.16b, v22.16b\n" - "sub x20, x24, #0x8\n" - "ldr d16, [x20, #0x0]\n" - "subs x21, x21, #0x1\n" - "add x25, x25, #0x88\n" - "fcvtl v17.4s, v17.4h\n" - "add x24, x24, #0x48\n" - ".inst 0x4e93a568 // smmla v8.4s, v11.16b, v19.16b\n" - ".inst 0x4e92a57b // smmla v27.4s, v11.16b, v18.16b\n" - ".inst 0x4e93a6e0 // smmla v0.4s, v23.16b, v19.16b\n" - ".inst 0x4e92a6fd // smmla v29.4s, v23.16b, v18.16b\n" - "fcvtl v16.4s, v16.4h\n" - ".inst 0x4e86a688 // smmla v8.4s, v20.16b, v6.16b\n" - ".inst 0x4e85a69b // smmla v27.4s, v20.16b, v5.16b\n" - "fmul v23.4s, v16.4s, v17.s[0]\n" - "fmul v21.4s, v16.4s, v17.s[1]\n" - "fmul v1.4s, v16.4s, v17.s[2]\n" - "fmul v20.4s, v16.4s, v17.s[3]\n" - ".inst 0x4e86a740 // smmla v0.4s, v26.16b, v6.16b\n" - ".inst 0x4e85a75d // smmla v29.4s, v26.16b, v5.16b\n" - ".inst 0x4e9fa728 // smmla v8.4s, v25.16b, v31.16b\n" - ".inst 0x4e8ea73b // smmla v27.4s, v25.16b, v14.16b\n" - ".inst 0x4e9fa460 // smmla v0.4s, v3.16b, v31.16b\n" - ".inst 0x4e8ea47d // smmla v29.4s, v3.16b, v14.16b\n" - "uzp1 v19.2d, v8.2d, v27.2d\n" - "uzp2 v18.2d, v8.2d, v27.2d\n" - "scvtf v19.4s, v19.4s, #0x4\n" - "uzp1 v17.2d, v0.2d, v29.2d\n" - "uzp2 v16.2d, v0.2d, v29.2d\n" - "scvtf v18.4s, v18.4s, #0x4\n" - "fmla v2.4s, v19.4s, v23.4s\n" - "scvtf v17.4s, v17.4s, #0x4\n" - "scvtf v16.4s, v16.4s, #0x4\n" - "fmla v10.4s, v18.4s, v21.4s\n" - "fmla v12.4s, v17.4s, v1.4s\n" - "fmla v28.4s, v16.4s, v20.4s\n" - "bgt 7b\n" - "mov x20, %x[res_ptr]\n" - "cmp x10, #0x1\n" - "str q2, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "ble 8f\n" - "cmp x10, #0x2\n" - "str q10, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "ble 8f\n" - "cmp x10, #0x3\n" - "str q12, [x20, #0x0]\n" - "add x20, x20, %x[res_stride]\n" - "ble 8f\n" - "str q28, [x20, #0x0]\n" - "8:" // Row tail: Accumulator store skip - "subs x23, x23, #0x4\n" - "add %x[res_ptr], %x[res_ptr], #0x10\n" - "bne 6b\n" - "subs x10, x10, #0x4\n" - "add %x[a_ptr], %x[a_ptr], x9\n" - "mov %x[res_ptr], x22\n" - "bgt 5b\n" - "9:" // Row tail: Row loop skip - : [a_ptr] "+&r" (a_ptr), [res_ptr] "+&r" (res_ptr) - : [b_ptr] "r" (b_ptr), [nr] "r" (nr), [nb] "r" (nb), [res_stride] "r" (res_stride), [nc] "r" (nc) - : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x9", "x10", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28" - ); -#elif defined(__ARM_NEON) && defined(__aarch64__) - GGML_ASSERT((ggml_cpu_has_sve() || ggml_cpu_has_matmul_int8()) && - "__ARM_FEATURE_SVE and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 quantization format for optimal " - "performance"); -#else + __asm__ __volatile__( + "mov x10, %x[nr]\n" + "mov x9, #0x88\n" + "cmp x10, #0x10\n" + "mul x9, %x[nb], x9\n" + "blt 4f\n" + "1:" // Row loop + "add x28, %x[b_ptr], #0x8\n" + "mov x27, %x[nc]\n" + "add x26, %x[res_ptr], %x[res_stride], LSL #4\n" + "2:" // Column loop + "add x25, %x[a_ptr], #0x8\n" + "movi v2.16b, #0x0\n" + "movi v10.16b, #0x0\n" + "mov x24, %x[nb]\n" + "add x23, x25, x9\n" + "movi v12.16b, #0x0\n" + "movi v28.16b, #0x0\n" + "add x22, x23, x9\n" + "movi v11.16b, #0x0\n" + "movi v13.16b, #0x0\n" + "add x21, x22, x9\n" + "movi v22.16b, #0x0\n" + "movi v23.16b, #0x0\n" + "movi v25.16b, #0x0\n" + "movi v5.16b, #0x0\n" + "movi v7.16b, #0x0\n" + "movi v4.16b, #0x0\n" + "movi v6.16b, #0x0\n" + "movi v30.16b, #0x0\n" + "movi v24.16b, #0x0\n" + "movi v14.16b, #0x0\n" + "3:" // Block loop + "ldr q21, [x28, #0x0]\n" + "ldr q16, [x28, #0x10]\n" + "movi v1.16b, #0x4\n" + "movi v19.4s, #0x0\n" + "ldr q27, [x25, #0x0]\n" + "ldr q15, [x25, #0x10]\n" + "movi v26.4s, #0x0\n" + "movi v18.4s, #0x0\n" + "ldr q29, [x28, #0x20]\n" + "ldr q3, [x28, #0x30]\n" + "movi v17.4s, #0x0\n" + "movi v0.16b, #0xf0\n" + "ldr d20, [x25, #-0x8]\n" + "ldr d9, [x23, #-0x8]\n" + "sshl v8.16b, v21.16b, v1.16b\n" + "sshl v31.16b, v16.16b, v1.16b\n" + "and v21.16b, v21.16b, v0.16b\n" + "and v16.16b, v16.16b, v0.16b\n" + "sub x20, x28, #0x8\n" + "subs x24, x24, #0x1\n" + "add x28, x28, #0x48\n" + ".inst 0x4e88a773 // smmla v19.4s, v27.16b, v8.16b\n" + ".inst 0x4e9fa77a // smmla v26.4s, v27.16b, v31.16b\n" + "ldr q27, [x25, #0x20]\n" + ".inst 0x4e88a5f2 // smmla v18.4s, v15.16b, v8.16b\n" + ".inst 0x4e9fa5f1 // smmla v17.4s, v15.16b, v31.16b\n" + "sshl v15.16b, v29.16b, v1.16b\n" + "sshl v1.16b, v3.16b, v1.16b\n" + "and v29.16b, v29.16b, v0.16b\n" + "and v3.16b, v3.16b, v0.16b\n" + "ldr q0, [x25, #0x30]\n" + "fcvtl v20.4s, v20.4h\n" + ".inst 0x4e8fa773 // smmla v19.4s, v27.16b, v15.16b\n" + "fcvtl v9.4s, v9.4h\n" + ".inst 0x4e81a77a // smmla v26.4s, v27.16b, v1.16b\n" + "ldr q27, [x25, #0x40]\n" + ".inst 0x4e8fa412 // smmla v18.4s, v0.16b, v15.16b\n" + ".inst 0x4e81a411 // smmla v17.4s, v0.16b, v1.16b\n" + "ldr q0, [x25, #0x50]\n" + ".inst 0x4e95a773 // smmla v19.4s, v27.16b, v21.16b\n" + ".inst 0x4e90a77a // smmla v26.4s, v27.16b, v16.16b\n" + "ldr q27, [x25, #0x60]\n" + ".inst 0x4e95a412 // smmla v18.4s, v0.16b, v21.16b\n" + ".inst 0x4e90a411 // smmla v17.4s, v0.16b, v16.16b\n" + "ldr q0, [x25, #0x70]\n" + "add x25, x25, #0x88\n" + ".inst 0x4e9da773 // smmla v19.4s, v27.16b, v29.16b\n" + ".inst 0x4e83a77a // smmla v26.4s, v27.16b, v3.16b\n" + "ldr d27, [x20, #0x0]\n" + ".inst 0x4e9da412 // smmla v18.4s, v0.16b, v29.16b\n" + ".inst 0x4e83a411 // smmla v17.4s, v0.16b, v3.16b\n" + "fcvtl v27.4s, v27.4h\n" + "uzp1 v0.2d, v19.2d, v26.2d\n" + "uzp2 v26.2d, v19.2d, v26.2d\n" + "fmul v19.4s, v27.4s, v20.s[0]\n" + "scvtf v0.4s, v0.4s, #0x4\n" + "scvtf v26.4s, v26.4s, #0x4\n" + "fmla v2.4s, v0.4s, v19.4s\n" + "ldr q19, [x23, #0x0]\n" + "uzp1 v0.2d, v18.2d, v17.2d\n" + "uzp2 v18.2d, v18.2d, v17.2d\n" + "fmul v17.4s, v27.4s, v20.s[1]\n" + "scvtf v0.4s, v0.4s, #0x4\n" + "scvtf v18.4s, v18.4s, #0x4\n" + "fmla v10.4s, v26.4s, v17.4s\n" + "ldr q17, [x23, #0x10]\n" + "fmul v26.4s, v27.4s, v20.s[2]\n" + "fmul v20.4s, v27.4s, v20.s[3]\n" + "fmla v12.4s, v0.4s, v26.4s\n" + "ldr d0, [x22, #-0x8]\n" + "ldr d26, [x21, #-0x8]\n" + "fcvtl v0.4s, v0.4h\n" + "fmla v28.4s, v18.4s, v20.4s\n" + "movi v20.4s, #0x0\n" + "movi v18.4s, #0x0\n" + ".inst 0x4e88a674 // smmla v20.4s, v19.16b, v8.16b\n" + ".inst 0x4e9fa672 // smmla v18.4s, v19.16b, v31.16b\n" + "ldr q19, [x23, #0x20]\n" + "fcvtl v26.4s, v26.4h\n" + ".inst 0x4e8fa674 // smmla v20.4s, v19.16b, v15.16b\n" + ".inst 0x4e81a672 // smmla v18.4s, v19.16b, v1.16b\n" + "ldr q19, [x23, #0x40]\n" + ".inst 0x4e95a674 // smmla v20.4s, v19.16b, v21.16b\n" + ".inst 0x4e90a672 // smmla v18.4s, v19.16b, v16.16b\n" + "ldr q19, [x23, #0x60]\n" + ".inst 0x4e9da674 // smmla v20.4s, v19.16b, v29.16b\n" + ".inst 0x4e83a672 // smmla v18.4s, v19.16b, v3.16b\n" + "uzp1 v19.2d, v20.2d, v18.2d\n" + "scvtf v19.4s, v19.4s, #0x4\n" + "uzp2 v20.2d, v20.2d, v18.2d\n" + "fmul v18.4s, v27.4s, v9.s[0]\n" + "scvtf v20.4s, v20.4s, #0x4\n" + "fmla v11.4s, v19.4s, v18.4s\n" + "ldr q18, [x22, #0x0]\n" + "fmul v19.4s, v27.4s, v9.s[1]\n" + "fmla v13.4s, v20.4s, v19.4s\n" + "movi v19.4s, #0x0\n" + "movi v20.4s, #0x0\n" + ".inst 0x4e88a633 // smmla v19.4s, v17.16b, v8.16b\n" + ".inst 0x4e9fa634 // smmla v20.4s, v17.16b, v31.16b\n" + "ldr q17, [x23, #0x30]\n" + ".inst 0x4e8fa633 // smmla v19.4s, v17.16b, v15.16b\n" + ".inst 0x4e81a634 // smmla v20.4s, v17.16b, v1.16b\n" + "ldr q17, [x23, #0x50]\n" + ".inst 0x4e95a633 // smmla v19.4s, v17.16b, v21.16b\n" + ".inst 0x4e90a634 // smmla v20.4s, v17.16b, v16.16b\n" + "ldr q17, [x23, #0x70]\n" + "add x23, x23, #0x88\n" + ".inst 0x4e9da633 // smmla v19.4s, v17.16b, v29.16b\n" + ".inst 0x4e83a634 // smmla v20.4s, v17.16b, v3.16b\n" + "uzp1 v17.2d, v19.2d, v20.2d\n" + "scvtf v17.4s, v17.4s, #0x4\n" + "uzp2 v20.2d, v19.2d, v20.2d\n" + "fmul v19.4s, v27.4s, v9.s[2]\n" + "fmul v9.4s, v27.4s, v9.s[3]\n" + "scvtf v20.4s, v20.4s, #0x4\n" + "fmla v22.4s, v17.4s, v19.4s\n" + "ldr q17, [x22, #0x10]\n" + "movi v19.4s, #0x0\n" + ".inst 0x4e88a653 // smmla v19.4s, v18.16b, v8.16b\n" + "fmla v23.4s, v20.4s, v9.4s\n" + "movi v20.4s, #0x0\n" + "movi v9.4s, #0x0\n" + ".inst 0x4e9fa654 // smmla v20.4s, v18.16b, v31.16b\n" + "ldr q18, [x22, #0x20]\n" + ".inst 0x4e88a629 // smmla v9.4s, v17.16b, v8.16b\n" + ".inst 0x4e8fa653 // smmla v19.4s, v18.16b, v15.16b\n" + ".inst 0x4e81a654 // smmla v20.4s, v18.16b, v1.16b\n" + "ldr q18, [x22, #0x40]\n" + ".inst 0x4e95a653 // smmla v19.4s, v18.16b, v21.16b\n" + ".inst 0x4e90a654 // smmla v20.4s, v18.16b, v16.16b\n" + "ldr q18, [x22, #0x60]\n" + ".inst 0x4e9da653 // smmla v19.4s, v18.16b, v29.16b\n" + ".inst 0x4e83a654 // smmla v20.4s, v18.16b, v3.16b\n" + "movi v18.4s, #0x0\n" + ".inst 0x4e9fa632 // smmla v18.4s, v17.16b, v31.16b\n" + "ldr q17, [x22, #0x30]\n" + ".inst 0x4e8fa629 // smmla v9.4s, v17.16b, v15.16b\n" + ".inst 0x4e81a632 // smmla v18.4s, v17.16b, v1.16b\n" + "ldr q17, [x22, #0x50]\n" + ".inst 0x4e95a629 // smmla v9.4s, v17.16b, v21.16b\n" + ".inst 0x4e90a632 // smmla v18.4s, v17.16b, v16.16b\n" + "ldr q17, [x22, #0x70]\n" + "add x22, x22, #0x88\n" + ".inst 0x4e9da629 // smmla v9.4s, v17.16b, v29.16b\n" + ".inst 0x4e83a632 // smmla v18.4s, v17.16b, v3.16b\n" + "uzp1 v17.2d, v19.2d, v20.2d\n" + "uzp2 v20.2d, v19.2d, v20.2d\n" + "fmul v19.4s, v27.4s, v0.s[0]\n" + "scvtf v17.4s, v17.4s, #0x4\n" + "scvtf v20.4s, v20.4s, #0x4\n" + "fmla v25.4s, v17.4s, v19.4s\n" + "ldr q19, [x21, #0x0]\n" + "fmul v17.4s, v27.4s, v0.s[1]\n" + "fmla v5.4s, v20.4s, v17.4s\n" + "ldr q17, [x21, #0x10]\n" + "uzp1 v20.2d, v9.2d, v18.2d\n" + "uzp2 v9.2d, v9.2d, v18.2d\n" + "fmul v18.4s, v27.4s, v0.s[2]\n" + "fmul v0.4s, v27.4s, v0.s[3]\n" + "scvtf v20.4s, v20.4s, #0x4\n" + "scvtf v9.4s, v9.4s, #0x4\n" + "fmla v7.4s, v20.4s, v18.4s\n" + "movi v20.4s, #0x0\n" + "movi v18.4s, #0x0\n" + ".inst 0x4e88a674 // smmla v20.4s, v19.16b, v8.16b\n" + ".inst 0x4e9fa672 // smmla v18.4s, v19.16b, v31.16b\n" + "ldr q19, [x21, #0x20]\n" + "fmla v4.4s, v9.4s, v0.4s\n" + "movi v9.4s, #0x0\n" + "movi v0.4s, #0x0\n" + ".inst 0x4e88a629 // smmla v9.4s, v17.16b, v8.16b\n" + "fmul v8.4s, v27.4s, v26.s[0]\n" + ".inst 0x4e9fa620 // smmla v0.4s, v17.16b, v31.16b\n" + "ldr q17, [x21, #0x30]\n" + ".inst 0x4e8fa674 // smmla v20.4s, v19.16b, v15.16b\n" + "fmul v31.4s, v27.4s, v26.s[1]\n" + ".inst 0x4e81a672 // smmla v18.4s, v19.16b, v1.16b\n" + "ldr q19, [x21, #0x40]\n" + ".inst 0x4e8fa629 // smmla v9.4s, v17.16b, v15.16b\n" + "fmul v15.4s, v27.4s, v26.s[2]\n" + "fmul v27.4s, v27.4s, v26.s[3]\n" + ".inst 0x4e81a620 // smmla v0.4s, v17.16b, v1.16b\n" + "ldr q1, [x21, #0x50]\n" + ".inst 0x4e95a674 // smmla v20.4s, v19.16b, v21.16b\n" + ".inst 0x4e90a672 // smmla v18.4s, v19.16b, v16.16b\n" + "ldr q26, [x21, #0x60]\n" + ".inst 0x4e95a429 // smmla v9.4s, v1.16b, v21.16b\n" + ".inst 0x4e90a420 // smmla v0.4s, v1.16b, v16.16b\n" + "ldr q21, [x21, #0x70]\n" + "add x21, x21, #0x88\n" + ".inst 0x4e9da754 // smmla v20.4s, v26.16b, v29.16b\n" + ".inst 0x4e83a752 // smmla v18.4s, v26.16b, v3.16b\n" + ".inst 0x4e9da6a9 // smmla v9.4s, v21.16b, v29.16b\n" + ".inst 0x4e83a6a0 // smmla v0.4s, v21.16b, v3.16b\n" + "uzp1 v29.2d, v20.2d, v18.2d\n" + "uzp2 v21.2d, v20.2d, v18.2d\n" + "scvtf v29.4s, v29.4s, #0x4\n" + "uzp1 v18.2d, v9.2d, v0.2d\n" + "uzp2 v16.2d, v9.2d, v0.2d\n" + "scvtf v21.4s, v21.4s, #0x4\n" + "fmla v6.4s, v29.4s, v8.4s\n" + "scvtf v18.4s, v18.4s, #0x4\n" + "scvtf v16.4s, v16.4s, #0x4\n" + "fmla v30.4s, v21.4s, v31.4s\n" + "fmla v24.4s, v18.4s, v15.4s\n" + "fmla v14.4s, v16.4s, v27.4s\n" + "bgt 3b\n" + "mov x20, %x[res_ptr]\n" + "subs x27, x27, #0x4\n" + "add %x[res_ptr], %x[res_ptr], #0x10\n" + "str q2, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q10, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q12, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q28, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q11, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q13, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q22, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q23, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q25, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q5, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q7, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q4, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q6, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q30, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q24, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "str q14, [x20, #0x0]\n" + "bne 2b\n" + "mov x20, #0x4\n" + "sub x10, x10, #0x10\n" + "cmp x10, #0x10\n" + "mov %x[res_ptr], x26\n" + "madd %x[a_ptr], x20, x9, %x[a_ptr]\n" + "bge 1b\n" + "4:" // Row loop skip + "cbz x10, 9f\n" + "5:" // Row tail: Row loop + "add x24, %x[b_ptr], #0x8\n" + "mov x23, %x[nc]\n" + "add x22, %x[res_ptr], %x[res_stride], LSL #2\n" + "6:" // Row tail: Column loop + "movi v2.16b, #0x0\n" + "movi v10.16b, #0x0\n" + "add x25, %x[a_ptr], #0x8\n" + "mov x21, %x[nb]\n" + "movi v12.16b, #0x0\n" + "movi v28.16b, #0x0\n" + "7:" // Row tail: Block loop + "ldr q6, [x24, #0x0]\n" + "ldr q5, [x24, #0x10]\n" + "movi v17.16b, #0x4\n" + "movi v8.4s, #0x0\n" + "ldr q4, [x25, #0x0]\n" + "ldr q13, [x25, #0x10]\n" + "movi v27.4s, #0x0\n" + "movi v0.4s, #0x0\n" + "ldr q31, [x24, #0x20]\n" + "ldr q14, [x24, #0x30]\n" + "movi v29.4s, #0x0\n" + "movi v22.16b, #0xf0\n" + "ldr q11, [x25, #0x20]\n" + "ldr q23, [x25, #0x30]\n" + "sshl v21.16b, v6.16b, v17.16b\n" + "sshl v16.16b, v5.16b, v17.16b\n" + "ldr q20, [x25, #0x40]\n" + "ldr q26, [x25, #0x50]\n" + "and v6.16b, v6.16b, v22.16b\n" + "and v5.16b, v5.16b, v22.16b\n" + "ldr q25, [x25, #0x60]\n" + "ldr q3, [x25, #0x70]\n" + "sshl v19.16b, v31.16b, v17.16b\n" + "sshl v18.16b, v14.16b, v17.16b\n" + "ldr d17, [x25, #-0x8]\n" + ".inst 0x4e95a488 // smmla v8.4s, v4.16b, v21.16b\n" + ".inst 0x4e90a49b // smmla v27.4s, v4.16b, v16.16b\n" + "and v31.16b, v31.16b, v22.16b\n" + ".inst 0x4e95a5a0 // smmla v0.4s, v13.16b, v21.16b\n" + ".inst 0x4e90a5bd // smmla v29.4s, v13.16b, v16.16b\n" + "and v14.16b, v14.16b, v22.16b\n" + "sub x20, x24, #0x8\n" + "ldr d16, [x20, #0x0]\n" + "subs x21, x21, #0x1\n" + "add x25, x25, #0x88\n" + "fcvtl v17.4s, v17.4h\n" + "add x24, x24, #0x48\n" + ".inst 0x4e93a568 // smmla v8.4s, v11.16b, v19.16b\n" + ".inst 0x4e92a57b // smmla v27.4s, v11.16b, v18.16b\n" + ".inst 0x4e93a6e0 // smmla v0.4s, v23.16b, v19.16b\n" + ".inst 0x4e92a6fd // smmla v29.4s, v23.16b, v18.16b\n" + "fcvtl v16.4s, v16.4h\n" + ".inst 0x4e86a688 // smmla v8.4s, v20.16b, v6.16b\n" + ".inst 0x4e85a69b // smmla v27.4s, v20.16b, v5.16b\n" + "fmul v23.4s, v16.4s, v17.s[0]\n" + "fmul v21.4s, v16.4s, v17.s[1]\n" + "fmul v1.4s, v16.4s, v17.s[2]\n" + "fmul v20.4s, v16.4s, v17.s[3]\n" + ".inst 0x4e86a740 // smmla v0.4s, v26.16b, v6.16b\n" + ".inst 0x4e85a75d // smmla v29.4s, v26.16b, v5.16b\n" + ".inst 0x4e9fa728 // smmla v8.4s, v25.16b, v31.16b\n" + ".inst 0x4e8ea73b // smmla v27.4s, v25.16b, v14.16b\n" + ".inst 0x4e9fa460 // smmla v0.4s, v3.16b, v31.16b\n" + ".inst 0x4e8ea47d // smmla v29.4s, v3.16b, v14.16b\n" + "uzp1 v19.2d, v8.2d, v27.2d\n" + "uzp2 v18.2d, v8.2d, v27.2d\n" + "scvtf v19.4s, v19.4s, #0x4\n" + "uzp1 v17.2d, v0.2d, v29.2d\n" + "uzp2 v16.2d, v0.2d, v29.2d\n" + "scvtf v18.4s, v18.4s, #0x4\n" + "fmla v2.4s, v19.4s, v23.4s\n" + "scvtf v17.4s, v17.4s, #0x4\n" + "scvtf v16.4s, v16.4s, #0x4\n" + "fmla v10.4s, v18.4s, v21.4s\n" + "fmla v12.4s, v17.4s, v1.4s\n" + "fmla v28.4s, v16.4s, v20.4s\n" + "bgt 7b\n" + "mov x20, %x[res_ptr]\n" + "cmp x10, #0x1\n" + "str q2, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "ble 8f\n" + "cmp x10, #0x2\n" + "str q10, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "ble 8f\n" + "cmp x10, #0x3\n" + "str q12, [x20, #0x0]\n" + "add x20, x20, %x[res_stride]\n" + "ble 8f\n" + "str q28, [x20, #0x0]\n" + "8:" // Row tail: Accumulator store skip + "subs x23, x23, #0x4\n" + "add %x[res_ptr], %x[res_ptr], #0x10\n" + "bne 6b\n" + "subs x10, x10, #0x4\n" + "add %x[a_ptr], %x[a_ptr], x9\n" + "mov %x[res_ptr], x22\n" + "bgt 5b\n" + "9:" // Row tail: Row loop skip + : [a_ptr] "+&r" (a_ptr), [res_ptr] "+&r" (res_ptr) + : [b_ptr] "r" (b_ptr), [nr] "r" (nr), [nb] "r" (nb), [res_stride] "r" (res_stride), [nc] "r" (nc) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x9", "x10", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28" + ); + return; + } +#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) float sumf[4][4]; int sumi; @@ -2012,7 +1983,7 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void * const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + - (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; + (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; } sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]); } @@ -2025,7 +1996,6 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void * } } } -#endif } void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) { @@ -2048,8 +2018,9 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) - if (ggml_sve_cnt_b == QK8_0) { +#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) +#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) + if (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && sve_lane_count() == QK8_0) { const void * b_ptr = vx; const void * a_ptr = vy; float * res_ptr = s; @@ -2459,154 +2430,329 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * ); return; } - else if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) { - GGML_ASSERT((ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) && - "__ARM_FEATURE_SVE for vector size of 256-bits not defined, use the Q4_0_4_8 quantization format for optimal " - "performance"); - } - else if (ggml_cpu_has_neon()) { - GGML_ASSERT(((ggml_cpu_has_sve() && (ggml_sve_cnt_b == QK8_0)) || ggml_cpu_has_matmul_int8()) && - "__ARM_FEATURE_SVE for vector size of 256-bits and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 " - "quantization format for optimal performance"); - } -#endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) - GGML_ASSERT(ggml_cpu_has_sve() && - "__ARM_FEATURE_SVE not defined, use the Q4_0_4_8 quantization format for optimal performance"); -#elif defined(__ARM_NEON) && defined(__aarch64__) - GGML_ASSERT((ggml_cpu_has_sve() || ggml_cpu_has_matmul_int8()) && - "__ARM_FEATURE_SVE and __ARM_FEATURE_MATMUL_INT8 not defined, use the Q4_0_4_4 quantization format for optimal " - "performance"); +#endif // #if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) #elif defined(__AVX2__) || defined(__AVX512F__) - const block_q4_0x8 * b_ptr_start = (const block_q4_0x8 *)vx; - const block_q8_0x4 * a_ptr_start = (const block_q8_0x4 *)vy; - int64_t b_nb = n / QK4_0; - int64_t y = 0; - // Mask to mask out nibbles from packed bytes - const __m256i m4b = _mm256_set1_epi8(0x0F); - const __m128i loadMask = _mm_blend_epi32(_mm_setzero_si128(), _mm_set1_epi32(0xFFFFFFFF), 3); - // Lookup table to convert signed nibbles to signed bytes - __m256i signextendlut = _mm256_castsi128_si256(_mm_set_epi8(-1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0)); - signextendlut = _mm256_permute2f128_si256(signextendlut, signextendlut, 0); - // Permute mask used for easier vector processing at later stages - __m256i requiredOrder = _mm256_set_epi32(3, 2, 1, 0, 7, 6, 5, 4); - int64_t xstart = 0; - int anr = nr - nr%16; // Used to align nr with boundary of 16 -#ifdef __AVX512F__ - int anc = nc - nc%16; // Used to align nc with boundary of 16 - // Mask to mask out nibbles from packed bytes expanded to 512 bit length - const __m512i m4bexpanded = _mm512_set1_epi8(0x0F); - // Lookup table to convert signed nibbles to signed bytes expanded to 512 bit length - __m512i signextendlutexpanded = _mm512_inserti32x8(_mm512_castsi256_si512(signextendlut), signextendlut, 1); + { + const block_q4_0x8 * b_ptr_start = (const block_q4_0x8 *)vx; + const block_q8_0x4 * a_ptr_start = (const block_q8_0x4 *)vy; + int64_t b_nb = n / QK4_0; + int64_t y = 0; + // Mask to mask out nibbles from packed bytes + const __m256i m4b = _mm256_set1_epi8(0x0F); + const __m128i loadMask = _mm_blend_epi32(_mm_setzero_si128(), _mm_set1_epi32(0xFFFFFFFF), 3); + // Lookup table to convert signed nibbles to signed bytes + __m256i signextendlut = _mm256_castsi128_si256(_mm_set_epi8(-1, -2, -3, -4, -5, -6, -7, -8, 7, 6, 5, 4, 3, 2, 1, 0)); + signextendlut = _mm256_permute2f128_si256(signextendlut, signextendlut, 0); + // Permute mask used for easier vector processing at later stages + __m256i requiredOrder = _mm256_set_epi32(3, 2, 1, 0, 7, 6, 5, 4); + int64_t xstart = 0; + int anr = nr - nr%16; // Used to align nr with boundary of 16 + #ifdef __AVX512F__ + int anc = nc - nc%16; // Used to align nc with boundary of 16 + // Mask to mask out nibbles from packed bytes expanded to 512 bit length + const __m512i m4bexpanded = _mm512_set1_epi8(0x0F); + // Lookup table to convert signed nibbles to signed bytes expanded to 512 bit length + __m512i signextendlutexpanded = _mm512_inserti32x8(_mm512_castsi256_si512(signextendlut), signextendlut, 1); - // Take group of four block_q8_0x4 structures at each pass of the loop and perform dot product operation - for (; y < anr / 4; y += 4) { + // Take group of four block_q8_0x4 structures at each pass of the loop and perform dot product operation + for (; y < anr / 4; y += 4) { - const block_q8_0x4 * a_ptrs[4]; + const block_q8_0x4 * a_ptrs[4]; - a_ptrs[0] = a_ptr_start + (y * nb); - for (int i = 0; i < 3; ++i) { - a_ptrs[i + 1] = a_ptrs[i] + nb; - } - - // Take group of two block_q4_0x8 structures at each pass of the loop and perform dot product operation - for (int64_t x = 0; x < anc / 8; x += 2) { - - const block_q4_0x8 * b_ptr_0 = b_ptr_start + ((x) * b_nb); - const block_q4_0x8 * b_ptr_1 = b_ptr_start + ((x + 1) * b_nb); - - // Master FP accumulators - __m512 acc_rows[16]; - for (int i = 0; i < 16; i++) { - acc_rows[i] = _mm512_setzero_ps(); + a_ptrs[0] = a_ptr_start + (y * nb); + for (int i = 0; i < 3; ++i) { + a_ptrs[i + 1] = a_ptrs[i] + nb; } - for (int64_t b = 0; b < nb; b++) { - // Load the sixteen block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....BE,BF - const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs)); - const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 32)); - const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 64)); - const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 96)); + // Take group of two block_q4_0x8 structures at each pass of the loop and perform dot product operation + for (int64_t x = 0; x < anc / 8; x += 2) { - const __m256i rhs_raw_mat_89AB_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs)); - const __m256i rhs_raw_mat_CDEF_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 32)); - const __m256i rhs_raw_mat_89AB_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 64)); - const __m256i rhs_raw_mat_CDEF_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 96)); + const block_q4_0x8 * b_ptr_0 = b_ptr_start + ((x) * b_nb); + const block_q4_0x8 * b_ptr_1 = b_ptr_start + ((x + 1) * b_nb); - // Save the values in the following vectors in the formats B0B1B4B5B8B9BCBD, B2B3B6B7BABBBEBF for further processing and storing of values - const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); - const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); + // Master FP accumulators + __m512 acc_rows[16]; + for (int i = 0; i < 16; i++) { + acc_rows[i] = _mm512_setzero_ps(); + } - const __m256i rhs_raw_mat_89CD_0 = _mm256_blend_epi32(rhs_raw_mat_89AB_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_0, requiredOrder), 240); - const __m256i rhs_raw_mat_ABEF_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_0, requiredOrder), rhs_raw_mat_CDEF_0, 240); - const __m256i rhs_raw_mat_89CD_1 = _mm256_blend_epi32(rhs_raw_mat_89AB_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_1, requiredOrder), 240); - const __m256i rhs_raw_mat_ABEF_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_1, requiredOrder), rhs_raw_mat_CDEF_1, 240); + for (int64_t b = 0; b < nb; b++) { + // Load the sixteen block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....BE,BF + const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs)); + const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 32)); + const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 64)); + const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 96)); - const __m512i rhs_raw_mat_014589CD_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_0), rhs_raw_mat_89CD_0, 1); - const __m512i rhs_raw_mat_2367ABEF_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_0), rhs_raw_mat_ABEF_0, 1); - const __m512i rhs_raw_mat_014589CD_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_1), rhs_raw_mat_89CD_1, 1); - const __m512i rhs_raw_mat_2367ABEF_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_1), rhs_raw_mat_ABEF_1, 1); + const __m256i rhs_raw_mat_89AB_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs)); + const __m256i rhs_raw_mat_CDEF_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 32)); + const __m256i rhs_raw_mat_89AB_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 64)); + const __m256i rhs_raw_mat_CDEF_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 96)); - // 4-bit -> 8-bit - Sign is maintained - const __m512i rhs_mat_014589CD_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_0, m4bexpanded)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) B8(0-7) B9(0-7) BC(0-7) BD(0-7) - const __m512i rhs_mat_2367ABEF_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_0, m4bexpanded)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) BA(0-7) BB(0-7) BE(0-7) BF(0-7) + // Save the values in the following vectors in the formats B0B1B4B5B8B9BCBD, B2B3B6B7BABBBEBF for further processing and storing of values + const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); + const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); - const __m512i rhs_mat_014589CD_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_1, m4bexpanded)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) B8(8-15) B9(8-15) BC(8-15) BD(8-15) - const __m512i rhs_mat_2367ABEF_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_1, m4bexpanded)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) BA(8-15) BB(8-15) BE(8-15) BF(8-15) + const __m256i rhs_raw_mat_89CD_0 = _mm256_blend_epi32(rhs_raw_mat_89AB_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_0, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_0, requiredOrder), rhs_raw_mat_CDEF_0, 240); + const __m256i rhs_raw_mat_89CD_1 = _mm256_blend_epi32(rhs_raw_mat_89AB_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_1, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_1, requiredOrder), rhs_raw_mat_CDEF_1, 240); - const __m512i rhs_mat_014589CD_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_0, 4), m4bexpanded)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) B8(16-23) B9(16-23) BC(16-23) BD(16-23) - const __m512i rhs_mat_2367ABEF_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_0, 4), m4bexpanded)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) BA(16-23) BB(16-23) BE(16-23) BF(16-23) + const __m512i rhs_raw_mat_014589CD_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_0), rhs_raw_mat_89CD_0, 1); + const __m512i rhs_raw_mat_2367ABEF_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_0), rhs_raw_mat_ABEF_0, 1); + const __m512i rhs_raw_mat_014589CD_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_1), rhs_raw_mat_89CD_1, 1); + const __m512i rhs_raw_mat_2367ABEF_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_1), rhs_raw_mat_ABEF_1, 1); - const __m512i rhs_mat_014589CD_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_1, 4), m4bexpanded)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) B8(24-31) B9(24-31) BC(24-31) BD(24-31) - const __m512i rhs_mat_2367ABEF_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_1, 4), m4bexpanded)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) BA(24-31) BB(24-31) BE(24-31) BF(24-31) + // 4-bit -> 8-bit - Sign is maintained + const __m512i rhs_mat_014589CD_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_0, m4bexpanded)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) B8(0-7) B9(0-7) BC(0-7) BD(0-7) + const __m512i rhs_mat_2367ABEF_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_0, m4bexpanded)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) BA(0-7) BB(0-7) BE(0-7) BF(0-7) - // Shuffle pattern one - right side input - const __m512i rhs_mat_014589CD_0_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) B8(0-3) B9(0-3) B8(0-3) B9(0-3) BC(0-3) BD(0-3) BC(0-3) BD(0-3) - const __m512i rhs_mat_2367ABEF_0_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) BA(0-3) BB(0-3) BA(0-3) BB(0-3) BE(0-3) BF(0-3) BE(0-3) BF(0-3) + const __m512i rhs_mat_014589CD_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_1, m4bexpanded)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) B8(8-15) B9(8-15) BC(8-15) BD(8-15) + const __m512i rhs_mat_2367ABEF_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_1, m4bexpanded)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) BA(8-15) BB(8-15) BE(8-15) BF(8-15) - const __m512i rhs_mat_014589CD_1_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) B8(8-11) B9(8-11) B8(8-11) B9(8-11) BC(8-11) BD(8-11) BC(8-11) BD(8-11) - const __m512i rhs_mat_2367ABEF_1_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) BA(8-11) BB(8-11) BA(8-11) BB(8-11) BE(8-11) BF(8-11) BE(8-11) BF(8-11) + const __m512i rhs_mat_014589CD_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_0, 4), m4bexpanded)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) B8(16-23) B9(16-23) BC(16-23) BD(16-23) + const __m512i rhs_mat_2367ABEF_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_0, 4), m4bexpanded)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) BA(16-23) BB(16-23) BE(16-23) BF(16-23) - const __m512i rhs_mat_014589CD_2_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) B8(16-19) B9(16-19) B8(16-19) B9(16-19) BC(16-19) BD(16-19) BC(16-19) BD(16-19) - const __m512i rhs_mat_2367ABEF_2_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) BA(16-19) BB(16-19) BA(16-19) BB(16-19) BE(16-19) BF(16-19) BE(16-19) BF(16-19) + const __m512i rhs_mat_014589CD_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_1, 4), m4bexpanded)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) B8(24-31) B9(24-31) BC(24-31) BD(24-31) + const __m512i rhs_mat_2367ABEF_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_1, 4), m4bexpanded)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) BA(24-31) BB(24-31) BE(24-31) BF(24-31) - const __m512i rhs_mat_014589CD_3_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) B8(24-27) B9(24-27) B8(24-27) B9(24-27) BC(24-27) BD(24-27) BC(24-27) BD(24-27) - const __m512i rhs_mat_2367ABEF_3_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) BA(24-27) BB(24-27) BA(24-27) BB(24-27) BE(24-27) BF(24-27) BE(24-27) BF(24-27) + // Shuffle pattern one - right side input + const __m512i rhs_mat_014589CD_0_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) B8(0-3) B9(0-3) B8(0-3) B9(0-3) BC(0-3) BD(0-3) BC(0-3) BD(0-3) + const __m512i rhs_mat_2367ABEF_0_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) BA(0-3) BB(0-3) BA(0-3) BB(0-3) BE(0-3) BF(0-3) BE(0-3) BF(0-3) - // Shuffle pattern two - right side input + const __m512i rhs_mat_014589CD_1_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) B8(8-11) B9(8-11) B8(8-11) B9(8-11) BC(8-11) BD(8-11) BC(8-11) BD(8-11) + const __m512i rhs_mat_2367ABEF_1_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) BA(8-11) BB(8-11) BA(8-11) BB(8-11) BE(8-11) BF(8-11) BE(8-11) BF(8-11) - const __m512i rhs_mat_014589CD_0_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) B8(4-7) B9(4-7) B8(4-7) B9(4-7) BC(4-7) BD(4-7) BC(4-7) BD(4-7) - const __m512i rhs_mat_2367ABEF_0_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) BA(4-7) BB(4-7) BA(4-7) BB(4-7) BE(4-7) BF(4-7) BE(4-7) BF(4-7) + const __m512i rhs_mat_014589CD_2_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) B8(16-19) B9(16-19) B8(16-19) B9(16-19) BC(16-19) BD(16-19) BC(16-19) BD(16-19) + const __m512i rhs_mat_2367ABEF_2_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) BA(16-19) BB(16-19) BA(16-19) BB(16-19) BE(16-19) BF(16-19) BE(16-19) BF(16-19) - const __m512i rhs_mat_014589CD_1_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) B8(12-15) B9(12-15) B8(12-15) B9(12-15) BC(12-15) BD(12-15) BC(12-15) BD(12-15) - const __m512i rhs_mat_2367ABEF_1_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) BA(12-15) BB(12-15) BA(12-15) BB(12-15) BE(12-15) BF(12-15) BE(12-15) BF(12-15) + const __m512i rhs_mat_014589CD_3_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) B8(24-27) B9(24-27) B8(24-27) B9(24-27) BC(24-27) BD(24-27) BC(24-27) BD(24-27) + const __m512i rhs_mat_2367ABEF_3_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) BA(24-27) BB(24-27) BA(24-27) BB(24-27) BE(24-27) BF(24-27) BE(24-27) BF(24-27) - const __m512i rhs_mat_014589CD_2_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) B8(20-23) B9(20-23) B8(20-23) B9(20-23) BC(20-23) BD(20-23) BC(20-23) BD(20-23) - const __m512i rhs_mat_2367ABEF_2_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) BA(20-23) BB(20-23) BA(20-23) BB(20-23) BE(20-23) BF(20-23) BE(20-23) BF(20-23) + // Shuffle pattern two - right side input - const __m512i rhs_mat_014589CD_3_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) B8(28-31) B9(28-31) B8(28-31) B9(28-31) BC(28-31) BD(28-31) BC(28-31) BD(28-31) - const __m512i rhs_mat_2367ABEF_3_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) BA(28-31) BB(28-31) BA(28-31) BB(28-31) BE(28-31) BF(28-31) BE(28-31) BF(28-31) + const __m512i rhs_mat_014589CD_0_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) B8(4-7) B9(4-7) B8(4-7) B9(4-7) BC(4-7) BD(4-7) BC(4-7) BD(4-7) + const __m512i rhs_mat_2367ABEF_0_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) BA(4-7) BB(4-7) BA(4-7) BB(4-7) BE(4-7) BF(4-7) BE(4-7) BF(4-7) - // Scale values - Load the weight scale values of two block_q4_0x8 - const __m512 col_scale_f32 = GGML_F32Cx8x2_LOAD(b_ptr_0[b].d, b_ptr_1[b].d); + const __m512i rhs_mat_014589CD_1_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) B8(12-15) B9(12-15) B8(12-15) B9(12-15) BC(12-15) BD(12-15) BC(12-15) BD(12-15) + const __m512i rhs_mat_2367ABEF_1_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) BA(12-15) BB(12-15) BA(12-15) BB(12-15) BE(12-15) BF(12-15) BE(12-15) BF(12-15) - // Process LHS in pairs of rows - for (int rp = 0; rp < 4; rp++) { + const __m512i rhs_mat_014589CD_2_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) B8(20-23) B9(20-23) B8(20-23) B9(20-23) BC(20-23) BD(20-23) BC(20-23) BD(20-23) + const __m512i rhs_mat_2367ABEF_2_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) BA(20-23) BB(20-23) BA(20-23) BB(20-23) BE(20-23) BF(20-23) BE(20-23) BF(20-23) + + const __m512i rhs_mat_014589CD_3_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) B8(28-31) B9(28-31) B8(28-31) B9(28-31) BC(28-31) BD(28-31) BC(28-31) BD(28-31) + const __m512i rhs_mat_2367ABEF_3_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) BA(28-31) BB(28-31) BA(28-31) BB(28-31) BE(28-31) BF(28-31) BE(28-31) BF(28-31) + + // Scale values - Load the weight scale values of two block_q4_0x8 + const __m512 col_scale_f32 = GGML_F32Cx8x2_LOAD(b_ptr_0[b].d, b_ptr_1[b].d); + + // Process LHS in pairs of rows + for (int rp = 0; rp < 4; rp++) { + + // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 + // Loaded as set of 128 bit vectors and repeated and stored into a 256 bit vector before again repeating into 512 bit vector + __m256i lhs_mat_ymm_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs))); + __m256i lhs_mat_ymm_01_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 0); + __m256i lhs_mat_ymm_23_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 17); + __m256i lhs_mat_ymm_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 32))); + __m256i lhs_mat_ymm_01_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 0); + __m256i lhs_mat_ymm_23_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 17); + __m256i lhs_mat_ymm_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 64))); + __m256i lhs_mat_ymm_01_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 0); + __m256i lhs_mat_ymm_23_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 17); + __m256i lhs_mat_ymm_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 96))); + __m256i lhs_mat_ymm_01_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 0); + __m256i lhs_mat_ymm_23_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 17); + + __m512i lhs_mat_01_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_0), lhs_mat_ymm_01_0, 1); + __m512i lhs_mat_23_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_0), lhs_mat_ymm_23_0, 1); + __m512i lhs_mat_01_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_1), lhs_mat_ymm_01_1, 1); + __m512i lhs_mat_23_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_1), lhs_mat_ymm_23_1, 1); + __m512i lhs_mat_01_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_2), lhs_mat_ymm_01_2, 1); + __m512i lhs_mat_23_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_2), lhs_mat_ymm_23_2, 1); + __m512i lhs_mat_01_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_3), lhs_mat_ymm_01_3, 1); + __m512i lhs_mat_23_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_3), lhs_mat_ymm_23_3, 1); + + // Shuffle pattern one - left side input + + const __m512i lhs_mat_01_0_sp1 = _mm512_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) + const __m512i lhs_mat_23_0_sp1 = _mm512_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) + + const __m512i lhs_mat_01_1_sp1 = _mm512_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) + const __m512i lhs_mat_23_1_sp1 = _mm512_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) + + const __m512i lhs_mat_01_2_sp1 = _mm512_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) + const __m512i lhs_mat_23_2_sp1 = _mm512_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) + + const __m512i lhs_mat_01_3_sp1 = _mm512_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) + const __m512i lhs_mat_23_3_sp1 = _mm512_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) + + // Shuffle pattern two - left side input + + const __m512i lhs_mat_01_0_sp2 = _mm512_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) + const __m512i lhs_mat_23_0_sp2 = _mm512_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) + + const __m512i lhs_mat_01_1_sp2 = _mm512_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) + const __m512i lhs_mat_23_1_sp2 = _mm512_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) + + const __m512i lhs_mat_01_2_sp2 = _mm512_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) + const __m512i lhs_mat_23_2_sp2 = _mm512_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) + + const __m512i lhs_mat_01_3_sp2 = _mm512_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) + const __m512i lhs_mat_23_3_sp2 = _mm512_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) + + // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane + // Resembles MMLAs into 2x2 matrices in ARM Version + __m512i iacc_mat_00_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_014589CD_0_sp1)); + __m512i iacc_mat_01_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_2367ABEF_0_sp1)); + __m512i iacc_mat_10_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_014589CD_0_sp1)); + __m512i iacc_mat_11_sp1 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_2367ABEF_0_sp1)); + __m512i iacc_mat_00_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_014589CD_0_sp2)); + __m512i iacc_mat_01_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_2367ABEF_0_sp2)); + __m512i iacc_mat_10_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_014589CD_0_sp2)); + __m512i iacc_mat_11_sp2 = + _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_2367ABEF_0_sp2)); + + // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block + __m512i iacc_mat_00 = _mm512_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); + __m512i iacc_mat_01 = _mm512_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2); + __m512i iacc_mat_10 = _mm512_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2); + __m512i iacc_mat_11 = _mm512_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2); + + + // Straighten out to make 4 row vectors + __m512i iacc_row_0 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_00, _mm512_shuffle_epi32(iacc_mat_01, 78)); + __m512i iacc_row_1 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01); + __m512i iacc_row_2 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_10, _mm512_shuffle_epi32(iacc_mat_11, 78)); + __m512i iacc_row_3 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11); + + // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes + const __m128i row_scale_f16 = _mm_shuffle_epi32(_mm_maskload_epi32((int const*)(a_ptrs[rp][b].d), loadMask), 68); + const __m512 row_scale_f32 = GGML_F32Cx16_REPEAT_LOAD(row_scale_f16); + + // Multiply with appropiate scales and accumulate + acc_rows[rp * 4] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_0), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[rp * 4]); + acc_rows[rp * 4 + 1] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_1), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[rp * 4 + 1]); + acc_rows[rp * 4 + 2] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_2), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[rp * 4 + 2]); + acc_rows[rp * 4 + 3] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_3), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[rp * 4 + 3]); + } + } + + // Store the accumulated values + for (int i = 0; i < 16; i++) { + _mm512_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); + } + } + } + // Take a block_q8_0x4 structures at each pass of the loop and perform dot product operation + for (; y < nr / 4; y ++) { + + const block_q8_0x4 * a_ptr = a_ptr_start + (y * nb); + + // Take group of two block_q4_0x8 structures at each pass of the loop and perform dot product operation + for (int64_t x = 0; x < anc / 8; x += 2) { + + const block_q4_0x8 * b_ptr_0 = b_ptr_start + ((x) * b_nb); + const block_q4_0x8 * b_ptr_1 = b_ptr_start + ((x + 1) * b_nb); + + // Master FP accumulators + __m512 acc_rows[4]; + for (int i = 0; i < 4; i++) { + acc_rows[i] = _mm512_setzero_ps(); + } + + for (int64_t b = 0; b < nb; b++) { + // Load the sixteen block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....BE,BF + const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs)); + const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 32)); + const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 64)); + const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 96)); + + const __m256i rhs_raw_mat_89AB_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs)); + const __m256i rhs_raw_mat_CDEF_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 32)); + const __m256i rhs_raw_mat_89AB_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 64)); + const __m256i rhs_raw_mat_CDEF_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 96)); + + // Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess + const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); + const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); + + const __m256i rhs_raw_mat_89CD_0 = _mm256_blend_epi32(rhs_raw_mat_89AB_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_0, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_0, requiredOrder), rhs_raw_mat_CDEF_0, 240); + const __m256i rhs_raw_mat_89CD_1 = _mm256_blend_epi32(rhs_raw_mat_89AB_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_1, requiredOrder), 240); + const __m256i rhs_raw_mat_ABEF_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_1, requiredOrder), rhs_raw_mat_CDEF_1, 240); + + const __m512i rhs_raw_mat_014589CD_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_0), rhs_raw_mat_89CD_0, 1); + const __m512i rhs_raw_mat_2367ABEF_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_0), rhs_raw_mat_ABEF_0, 1); + const __m512i rhs_raw_mat_014589CD_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_1), rhs_raw_mat_89CD_1, 1); + const __m512i rhs_raw_mat_2367ABEF_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_1), rhs_raw_mat_ABEF_1, 1); + + // 4-bit -> 8-bit - Sign is maintained + const __m512i rhs_mat_014589CD_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_0, m4bexpanded)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) B8(0-7) B9(0-7) BC(0-7) BD(0-7) + const __m512i rhs_mat_2367ABEF_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_0, m4bexpanded)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) BA(0-7) BB(0-7) BE(0-7) BF(0-7) + + const __m512i rhs_mat_014589CD_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_1, m4bexpanded)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) B8(8-15) B9(8-15) BC(8-15) BD(8-15) + const __m512i rhs_mat_2367ABEF_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_1, m4bexpanded)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) BA(8-15) BB(8-15) BE(8-15) BF(8-15) + + const __m512i rhs_mat_014589CD_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_0, 4), m4bexpanded)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) B8(16-23) B9(16-23) BC(16-23) BD(16-23) + const __m512i rhs_mat_2367ABEF_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_0, 4), m4bexpanded)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) BA(16-23) BB(16-23) BE(16-23) BF(16-23) + + const __m512i rhs_mat_014589CD_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_1, 4), m4bexpanded)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) B8(24-31) B9(24-31) BC(24-31) BD(24-31) + const __m512i rhs_mat_2367ABEF_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_1, 4), m4bexpanded)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) BA(24-31) BB(24-31) BE(24-31) BF(24-31) + + // Shuffle pattern one - right side input + const __m512i rhs_mat_014589CD_0_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) B8(0-3) B9(0-3) B8(0-3) B9(0-3) BC(0-3) BD(0-3) BC(0-3) BD(0-3) + const __m512i rhs_mat_2367ABEF_0_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) BA(0-3) BB(0-3) BA(0-3) BB(0-3) BE(0-3) BF(0-3) BE(0-3) BF(0-3) + + const __m512i rhs_mat_014589CD_1_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) B8(8-11) B9(8-11) B8(8-11) B9(8-11) BC(8-11) BD(8-11) BC(8-11) BD(8-11) + const __m512i rhs_mat_2367ABEF_1_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) BA(8-11) BB(8-11) BA(8-11) BB(8-11) BE(8-11) BF(8-11) BE(8-11) BF(8-11) + + const __m512i rhs_mat_014589CD_2_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) B8(16-19) B9(16-19) B8(16-19) B9(16-19) BC(16-19) BD(16-19) BC(16-19) BD(16-19) + const __m512i rhs_mat_2367ABEF_2_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) BA(16-19) BB(16-19) BA(16-19) BB(16-19) BE(16-19) BF(16-19) BE(16-19) BF(16-19) + + const __m512i rhs_mat_014589CD_3_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) B8(24-27) B9(24-27) B8(24-27) B9(24-27) BC(24-27) BD(24-27) BC(24-27) BD(24-27) + const __m512i rhs_mat_2367ABEF_3_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) BA(24-27) BB(24-27) BA(24-27) BB(24-27) BE(24-27) BF(24-27) BE(24-27) BF(24-27) + + // Shuffle pattern two - right side input + + const __m512i rhs_mat_014589CD_0_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) B8(4-7) B9(4-7) B8(4-7) B9(4-7) BC(4-7) BD(4-7) BC(4-7) BD(4-7) + const __m512i rhs_mat_2367ABEF_0_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) BA(4-7) BB(4-7) BA(4-7) BB(4-7) BE(4-7) BF(4-7) BE(4-7) BF(4-7) + + const __m512i rhs_mat_014589CD_1_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) B8(12-15) B9(12-15) B8(12-15) B9(12-15) BC(12-15) BD(12-15) BC(12-15) BD(12-15) + const __m512i rhs_mat_2367ABEF_1_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) BA(12-15) BB(12-15) BA(12-15) BB(12-15) BE(12-15) BF(12-15) BE(12-15) BF(12-15) + + const __m512i rhs_mat_014589CD_2_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) B8(20-23) B9(20-23) B8(20-23) B9(20-23) BC(20-23) BD(20-23) BC(20-23) BD(20-23) + const __m512i rhs_mat_2367ABEF_2_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) BA(20-23) BB(20-23) BA(20-23) BB(20-23) BE(20-23) BF(20-23) BE(20-23) BF(20-23) + + const __m512i rhs_mat_014589CD_3_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) B8(28-31) B9(28-31) B8(28-31) B9(28-31) BC(28-31) BD(28-31) BC(28-31) BD(28-31) + const __m512i rhs_mat_2367ABEF_3_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) BA(28-31) BB(28-31) BA(28-31) BB(28-31) BE(28-31) BF(28-31) BE(28-31) BF(28-31) + + + // Scale values - Load the weight scale values of two block_q4_0x8 + const __m512 col_scale_f32 = GGML_F32Cx8x2_LOAD(b_ptr_0[b].d, b_ptr_1[b].d); // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 // Loaded as set of 128 bit vectors and repeated and stored into a 256 bit vector before again repeating into 512 bit vector - __m256i lhs_mat_ymm_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs))); + __m256i lhs_mat_ymm_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs))); __m256i lhs_mat_ymm_01_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 0); __m256i lhs_mat_ymm_23_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 17); - __m256i lhs_mat_ymm_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 32))); + __m256i lhs_mat_ymm_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 32))); __m256i lhs_mat_ymm_01_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 0); __m256i lhs_mat_ymm_23_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 17); - __m256i lhs_mat_ymm_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 64))); + __m256i lhs_mat_ymm_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 64))); __m256i lhs_mat_ymm_01_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 0); __m256i lhs_mat_ymm_23_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 17); - __m256i lhs_mat_ymm_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 96))); + __m256i lhs_mat_ymm_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 96))); __m256i lhs_mat_ymm_01_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 0); __m256i lhs_mat_ymm_23_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 17); @@ -2680,314 +2826,286 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * __m512i iacc_row_3 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11); // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes - const __m128i row_scale_f16 = _mm_shuffle_epi32(_mm_maskload_epi32((int const*)(a_ptrs[rp][b].d), loadMask), 68); + const __m128i row_scale_f16 = _mm_shuffle_epi32(_mm_maskload_epi32((int const*)(a_ptr[b].d), loadMask), 68); const __m512 row_scale_f32 = GGML_F32Cx16_REPEAT_LOAD(row_scale_f16); // Multiply with appropiate scales and accumulate - acc_rows[rp * 4] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_0), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[rp * 4]); - acc_rows[rp * 4 + 1] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_1), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[rp * 4 + 1]); - acc_rows[rp * 4 + 2] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_2), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[rp * 4 + 2]); - acc_rows[rp * 4 + 3] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_3), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[rp * 4 + 3]); + acc_rows[0] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_0), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[0]); + acc_rows[1] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_1), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[1]); + acc_rows[2] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_2), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[2]); + acc_rows[3] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_3), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[3]); + } + + // Store the accumulated values + for (int i = 0; i < 4; i++) { + _mm512_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); } } + } + if (anc != nc) { + xstart = anc/8; + y = 0; + } + #endif // __AVX512F__ - // Store the accumulated values - for (int i = 0; i < 16; i++) { - _mm512_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); + // Take group of four block_q8_0x4 structures at each pass of the loop and perform dot product operation + + for (; y < anr / 4; y += 4) { + const block_q8_0x4 * a_ptrs[4]; + + a_ptrs[0] = a_ptr_start + (y * nb); + for (int i = 0; i < 3; ++i) { + a_ptrs[i + 1] = a_ptrs[i] + nb; + } + + // Take group of eight block_q4_0x8 structures at each pass of the loop and perform dot product operation + for (int64_t x = xstart; x < nc / 8; x++) { + + const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb); + + // Master FP accumulators + __m256 acc_rows[16]; + for (int i = 0; i < 16; i++) { + acc_rows[i] = _mm256_setzero_ps(); + } + + for (int64_t b = 0; b < nb; b++) { + // Load the eight block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7 + const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs)); + const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 32)); + const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 64)); + const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 96)); + + // Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of values + const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); + const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); + + // 4-bit -> 8-bit - Sign is maintained + const __m256i rhs_mat_0145_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_0, m4b)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) + const __m256i rhs_mat_2367_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_0, m4b)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) + + const __m256i rhs_mat_0145_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_1, m4b)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) + const __m256i rhs_mat_2367_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_1, m4b)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) + + const __m256i rhs_mat_0145_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_0, 4), m4b)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) + const __m256i rhs_mat_2367_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_0, 4), m4b)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) + + const __m256i rhs_mat_0145_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_1, 4), m4b)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) + const __m256i rhs_mat_2367_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_1, 4), m4b)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) + + // Shuffle pattern one - right side input + const __m256i rhs_mat_0145_0_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) + const __m256i rhs_mat_2367_0_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) + + const __m256i rhs_mat_0145_1_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) + const __m256i rhs_mat_2367_1_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) + + const __m256i rhs_mat_0145_2_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) + const __m256i rhs_mat_2367_2_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) + + const __m256i rhs_mat_0145_3_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) + const __m256i rhs_mat_2367_3_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) + + // Shuffle pattern two - right side input + + const __m256i rhs_mat_0145_0_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) + const __m256i rhs_mat_2367_0_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) + + const __m256i rhs_mat_0145_1_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) + const __m256i rhs_mat_2367_1_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) + + const __m256i rhs_mat_0145_2_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) + const __m256i rhs_mat_2367_2_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) + + const __m256i rhs_mat_0145_3_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) + const __m256i rhs_mat_2367_3_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) + + // Scale values - Load the wight scale values of block_q4_0x8 + const __m256 col_scale_f32 = GGML_F32Cx8_LOAD(b_ptr[b].d); + + // Process LHS in groups of four + for (int rp = 0; rp < 4; rp++) { + // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 + // Loaded as set of 128 bit vectors and repeated into a 256 bit vector + __m256i lhs_mat_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs))); + __m256i lhs_mat_01_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 0); + __m256i lhs_mat_23_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 17); + __m256i lhs_mat_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 32))); + __m256i lhs_mat_01_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 0); + __m256i lhs_mat_23_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 17); + __m256i lhs_mat_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 64))); + __m256i lhs_mat_01_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 0); + __m256i lhs_mat_23_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 17); + __m256i lhs_mat_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 96))); + __m256i lhs_mat_01_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 0); + __m256i lhs_mat_23_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 17); + + // Shuffle pattern one - left side input + const __m256i lhs_mat_01_0_sp1 = _mm256_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) + const __m256i lhs_mat_23_0_sp1 = _mm256_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) + + const __m256i lhs_mat_01_1_sp1 = _mm256_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) + const __m256i lhs_mat_23_1_sp1 = _mm256_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) + + const __m256i lhs_mat_01_2_sp1 = _mm256_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) + const __m256i lhs_mat_23_2_sp1 = _mm256_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) + + const __m256i lhs_mat_01_3_sp1 = _mm256_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) + const __m256i lhs_mat_23_3_sp1 = _mm256_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) + + // Shuffle pattern two - left side input + const __m256i lhs_mat_01_0_sp2 = _mm256_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) + const __m256i lhs_mat_23_0_sp2 = _mm256_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) + + const __m256i lhs_mat_01_1_sp2 = _mm256_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) + const __m256i lhs_mat_23_1_sp2 = _mm256_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) + + const __m256i lhs_mat_01_2_sp2 = _mm256_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) + const __m256i lhs_mat_23_2_sp2 = _mm256_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) + + const __m256i lhs_mat_01_3_sp2 = _mm256_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) + const __m256i lhs_mat_23_3_sp2 = _mm256_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) + + // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane + // Resembles MMLAs into 2x2 matrices in ARM Version + __m256i iacc_mat_00_sp1 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1)); + __m256i iacc_mat_01_sp1 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1)); + __m256i iacc_mat_10_sp1 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1)); + __m256i iacc_mat_11_sp1 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1)); + __m256i iacc_mat_00_sp2 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2)); + __m256i iacc_mat_01_sp2 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2)); + __m256i iacc_mat_10_sp2 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2)); + __m256i iacc_mat_11_sp2 = + _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2)); + + // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block + __m256i iacc_mat_00 = _mm256_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); + __m256i iacc_mat_01 = _mm256_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2); + __m256i iacc_mat_10 = _mm256_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2); + __m256i iacc_mat_11 = _mm256_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2); + + // Straighten out to make 4 row vectors + __m256i iacc_row_0 = _mm256_blend_epi32(iacc_mat_00, _mm256_shuffle_epi32(iacc_mat_01, 78), 204); + __m256i iacc_row_1 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01, 204); + __m256i iacc_row_2 = _mm256_blend_epi32(iacc_mat_10, _mm256_shuffle_epi32(iacc_mat_11, 78), 204); + __m256i iacc_row_3 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11, 204); + + // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes + const __m256 row_scale_f32 = GGML_F32Cx8_REPEAT_LOAD(a_ptrs[rp][b].d, loadMask); + + // Multiply with appropiate scales and accumulate + acc_rows[rp * 4] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_0), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[rp * 4]); + acc_rows[rp * 4 + 1] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_1), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[rp * 4 + 1]); + acc_rows[rp * 4 + 2] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_2), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[rp * 4 + 2]); + acc_rows[rp * 4 + 3] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_3), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[rp * 4 + 3]); + } + } + + // Store the accumulated values + for (int i = 0; i < 16; i++) { + _mm256_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); + } } } - } - // Take a block_q8_0x4 structures at each pass of the loop and perform dot product operation - for (; y < nr / 4; y ++) { - const block_q8_0x4 * a_ptr = a_ptr_start + (y * nb); + // Take a block_q8_0x4 structures at each pass of the loop and perform dot product operation + for (; y < nr / 4; y ++) { - // Take group of two block_q4_0x8 structures at each pass of the loop and perform dot product operation - for (int64_t x = 0; x < anc / 8; x += 2) { + const block_q8_0x4 * a_ptr = a_ptr_start + (y * nb); - const block_q4_0x8 * b_ptr_0 = b_ptr_start + ((x) * b_nb); - const block_q4_0x8 * b_ptr_1 = b_ptr_start + ((x + 1) * b_nb); + // Load the eight block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7 + for (int64_t x = xstart; x < nc / 8; x++) { - // Master FP accumulators - __m512 acc_rows[4]; - for (int i = 0; i < 4; i++) { - acc_rows[i] = _mm512_setzero_ps(); - } + const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb); - for (int64_t b = 0; b < nb; b++) { - // Load the sixteen block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....BE,BF - const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs)); - const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 32)); - const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 64)); - const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_0[b].qs + 96)); + // Master FP accumulators + __m256 acc_rows[4]; + for (int i = 0; i < 4; i++) { + acc_rows[i] = _mm256_setzero_ps(); + } - const __m256i rhs_raw_mat_89AB_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs)); - const __m256i rhs_raw_mat_CDEF_0 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 32)); - const __m256i rhs_raw_mat_89AB_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 64)); - const __m256i rhs_raw_mat_CDEF_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 96)); + for (int64_t b = 0; b < nb; b++) { + // Load the eight block_q8_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7 + const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs)); + const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 32)); + const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 64)); + const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 96)); - // Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess - const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); - const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); + // Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess + const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); + const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); + const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); - const __m256i rhs_raw_mat_89CD_0 = _mm256_blend_epi32(rhs_raw_mat_89AB_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_0, requiredOrder), 240); - const __m256i rhs_raw_mat_ABEF_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_0, requiredOrder), rhs_raw_mat_CDEF_0, 240); - const __m256i rhs_raw_mat_89CD_1 = _mm256_blend_epi32(rhs_raw_mat_89AB_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_CDEF_1, requiredOrder), 240); - const __m256i rhs_raw_mat_ABEF_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_89AB_1, requiredOrder), rhs_raw_mat_CDEF_1, 240); + // 4-bit -> 8-bit - Sign is maintained + const __m256i rhs_mat_0145_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_0, m4b)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) + const __m256i rhs_mat_2367_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_0, m4b)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) - const __m512i rhs_raw_mat_014589CD_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_0), rhs_raw_mat_89CD_0, 1); - const __m512i rhs_raw_mat_2367ABEF_0 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_0), rhs_raw_mat_ABEF_0, 1); - const __m512i rhs_raw_mat_014589CD_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_0145_1), rhs_raw_mat_89CD_1, 1); - const __m512i rhs_raw_mat_2367ABEF_1 = _mm512_inserti32x8(_mm512_castsi256_si512(rhs_raw_mat_2367_1), rhs_raw_mat_ABEF_1, 1); + const __m256i rhs_mat_0145_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_1, m4b)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) + const __m256i rhs_mat_2367_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_1, m4b)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) - // 4-bit -> 8-bit - Sign is maintained - const __m512i rhs_mat_014589CD_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_0, m4bexpanded)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) B8(0-7) B9(0-7) BC(0-7) BD(0-7) - const __m512i rhs_mat_2367ABEF_0 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_0, m4bexpanded)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) BA(0-7) BB(0-7) BE(0-7) BF(0-7) + const __m256i rhs_mat_0145_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_0, 4), m4b)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) + const __m256i rhs_mat_2367_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_0, 4), m4b)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) - const __m512i rhs_mat_014589CD_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_014589CD_1, m4bexpanded)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) B8(8-15) B9(8-15) BC(8-15) BD(8-15) - const __m512i rhs_mat_2367ABEF_1 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(rhs_raw_mat_2367ABEF_1, m4bexpanded)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) BA(8-15) BB(8-15) BE(8-15) BF(8-15) + const __m256i rhs_mat_0145_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_1, 4), m4b)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) + const __m256i rhs_mat_2367_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_1, 4), m4b)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) - const __m512i rhs_mat_014589CD_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_0, 4), m4bexpanded)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) B8(16-23) B9(16-23) BC(16-23) BD(16-23) - const __m512i rhs_mat_2367ABEF_2 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_0, 4), m4bexpanded)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) BA(16-23) BB(16-23) BE(16-23) BF(16-23) + // Shuffle pattern one - right side input + const __m256i rhs_mat_0145_0_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) + const __m256i rhs_mat_2367_0_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) - const __m512i rhs_mat_014589CD_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_014589CD_1, 4), m4bexpanded)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) B8(24-31) B9(24-31) BC(24-31) BD(24-31) - const __m512i rhs_mat_2367ABEF_3 = _mm512_shuffle_epi8(signextendlutexpanded, _mm512_and_si512(_mm512_srli_epi16(rhs_raw_mat_2367ABEF_1, 4), m4bexpanded)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) BA(24-31) BB(24-31) BE(24-31) BF(24-31) + const __m256i rhs_mat_0145_1_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) + const __m256i rhs_mat_2367_1_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) - // Shuffle pattern one - right side input - const __m512i rhs_mat_014589CD_0_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) B8(0-3) B9(0-3) B8(0-3) B9(0-3) BC(0-3) BD(0-3) BC(0-3) BD(0-3) - const __m512i rhs_mat_2367ABEF_0_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) BA(0-3) BB(0-3) BA(0-3) BB(0-3) BE(0-3) BF(0-3) BE(0-3) BF(0-3) + const __m256i rhs_mat_0145_2_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) + const __m256i rhs_mat_2367_2_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) - const __m512i rhs_mat_014589CD_1_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) B8(8-11) B9(8-11) B8(8-11) B9(8-11) BC(8-11) BD(8-11) BC(8-11) BD(8-11) - const __m512i rhs_mat_2367ABEF_1_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) BA(8-11) BB(8-11) BA(8-11) BB(8-11) BE(8-11) BF(8-11) BE(8-11) BF(8-11) + const __m256i rhs_mat_0145_3_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) + const __m256i rhs_mat_2367_3_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) - const __m512i rhs_mat_014589CD_2_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) B8(16-19) B9(16-19) B8(16-19) B9(16-19) BC(16-19) BD(16-19) BC(16-19) BD(16-19) - const __m512i rhs_mat_2367ABEF_2_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) BA(16-19) BB(16-19) BA(16-19) BB(16-19) BE(16-19) BF(16-19) BE(16-19) BF(16-19) + // Shuffle pattern two - right side input - const __m512i rhs_mat_014589CD_3_sp1 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) B8(24-27) B9(24-27) B8(24-27) B9(24-27) BC(24-27) BD(24-27) BC(24-27) BD(24-27) - const __m512i rhs_mat_2367ABEF_3_sp1 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) BA(24-27) BB(24-27) BA(24-27) BB(24-27) BE(24-27) BF(24-27) BE(24-27) BF(24-27) + const __m256i rhs_mat_0145_0_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) + const __m256i rhs_mat_2367_0_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) - // Shuffle pattern two - right side input + const __m256i rhs_mat_0145_1_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) + const __m256i rhs_mat_2367_1_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) - const __m512i rhs_mat_014589CD_0_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) B8(4-7) B9(4-7) B8(4-7) B9(4-7) BC(4-7) BD(4-7) BC(4-7) BD(4-7) - const __m512i rhs_mat_2367ABEF_0_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) BA(4-7) BB(4-7) BA(4-7) BB(4-7) BE(4-7) BF(4-7) BE(4-7) BF(4-7) + const __m256i rhs_mat_0145_2_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) + const __m256i rhs_mat_2367_2_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) - const __m512i rhs_mat_014589CD_1_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) B8(12-15) B9(12-15) B8(12-15) B9(12-15) BC(12-15) BD(12-15) BC(12-15) BD(12-15) - const __m512i rhs_mat_2367ABEF_1_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) BA(12-15) BB(12-15) BA(12-15) BB(12-15) BE(12-15) BF(12-15) BE(12-15) BF(12-15) + const __m256i rhs_mat_0145_3_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) + const __m256i rhs_mat_2367_3_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) - const __m512i rhs_mat_014589CD_2_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) B8(20-23) B9(20-23) B8(20-23) B9(20-23) BC(20-23) BD(20-23) BC(20-23) BD(20-23) - const __m512i rhs_mat_2367ABEF_2_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) BA(20-23) BB(20-23) BA(20-23) BB(20-23) BE(20-23) BF(20-23) BE(20-23) BF(20-23) + // Scale values - Load the wight scale values of block_q4_0x8 + const __m256 col_scale_f32 = GGML_F32Cx8_LOAD(b_ptr[b].d); - const __m512i rhs_mat_014589CD_3_sp2 = _mm512_shuffle_epi32(rhs_mat_014589CD_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) B8(28-31) B9(28-31) B8(28-31) B9(28-31) BC(28-31) BD(28-31) BC(28-31) BD(28-31) - const __m512i rhs_mat_2367ABEF_3_sp2 = _mm512_shuffle_epi32(rhs_mat_2367ABEF_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) BA(28-31) BB(28-31) BA(28-31) BB(28-31) BE(28-31) BF(28-31) BE(28-31) BF(28-31) - - - // Scale values - Load the weight scale values of two block_q4_0x8 - const __m512 col_scale_f32 = GGML_F32Cx8x2_LOAD(b_ptr_0[b].d, b_ptr_1[b].d); - - // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 - // Loaded as set of 128 bit vectors and repeated and stored into a 256 bit vector before again repeating into 512 bit vector - __m256i lhs_mat_ymm_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs))); - __m256i lhs_mat_ymm_01_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 0); - __m256i lhs_mat_ymm_23_0 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_0, lhs_mat_ymm_0123_0, 17); - __m256i lhs_mat_ymm_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 32))); - __m256i lhs_mat_ymm_01_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 0); - __m256i lhs_mat_ymm_23_1 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_1, lhs_mat_ymm_0123_1, 17); - __m256i lhs_mat_ymm_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 64))); - __m256i lhs_mat_ymm_01_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 0); - __m256i lhs_mat_ymm_23_2 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_2, lhs_mat_ymm_0123_2, 17); - __m256i lhs_mat_ymm_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 96))); - __m256i lhs_mat_ymm_01_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 0); - __m256i lhs_mat_ymm_23_3 = _mm256_permute2f128_si256(lhs_mat_ymm_0123_3, lhs_mat_ymm_0123_3, 17); - - __m512i lhs_mat_01_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_0), lhs_mat_ymm_01_0, 1); - __m512i lhs_mat_23_0 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_0), lhs_mat_ymm_23_0, 1); - __m512i lhs_mat_01_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_1), lhs_mat_ymm_01_1, 1); - __m512i lhs_mat_23_1 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_1), lhs_mat_ymm_23_1, 1); - __m512i lhs_mat_01_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_2), lhs_mat_ymm_01_2, 1); - __m512i lhs_mat_23_2 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_2), lhs_mat_ymm_23_2, 1); - __m512i lhs_mat_01_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_01_3), lhs_mat_ymm_01_3, 1); - __m512i lhs_mat_23_3 = _mm512_inserti32x8(_mm512_castsi256_si512(lhs_mat_ymm_23_3), lhs_mat_ymm_23_3, 1); - - // Shuffle pattern one - left side input - - const __m512i lhs_mat_01_0_sp1 = _mm512_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) - const __m512i lhs_mat_23_0_sp1 = _mm512_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) - - const __m512i lhs_mat_01_1_sp1 = _mm512_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) - const __m512i lhs_mat_23_1_sp1 = _mm512_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) - - const __m512i lhs_mat_01_2_sp1 = _mm512_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) - const __m512i lhs_mat_23_2_sp1 = _mm512_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) - - const __m512i lhs_mat_01_3_sp1 = _mm512_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) - const __m512i lhs_mat_23_3_sp1 = _mm512_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) - - // Shuffle pattern two - left side input - - const __m512i lhs_mat_01_0_sp2 = _mm512_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) - const __m512i lhs_mat_23_0_sp2 = _mm512_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) - - const __m512i lhs_mat_01_1_sp2 = _mm512_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) - const __m512i lhs_mat_23_1_sp2 = _mm512_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) - - const __m512i lhs_mat_01_2_sp2 = _mm512_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) - const __m512i lhs_mat_23_2_sp2 = _mm512_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) - - const __m512i lhs_mat_01_3_sp2 = _mm512_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) - const __m512i lhs_mat_23_3_sp2 = _mm512_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) - - // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane - // Resembles MMLAs into 2x2 matrices in ARM Version - __m512i iacc_mat_00_sp1 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_014589CD_0_sp1)); - __m512i iacc_mat_01_sp1 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp1, rhs_mat_2367ABEF_0_sp1)); - __m512i iacc_mat_10_sp1 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_014589CD_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_014589CD_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_014589CD_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_014589CD_0_sp1)); - __m512i iacc_mat_11_sp1 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp1, rhs_mat_2367ABEF_3_sp1), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp1, rhs_mat_2367ABEF_2_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp1, rhs_mat_2367ABEF_1_sp1)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp1, rhs_mat_2367ABEF_0_sp1)); - __m512i iacc_mat_00_sp2 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_014589CD_0_sp2)); - __m512i iacc_mat_01_sp2 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_01_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_01_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_01_0_sp2, rhs_mat_2367ABEF_0_sp2)); - __m512i iacc_mat_10_sp2 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_014589CD_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_014589CD_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_014589CD_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_014589CD_0_sp2)); - __m512i iacc_mat_11_sp2 = - _mm512_add_epi32(_mm512_add_epi32(_mm512_add_epi32(mul_sum_i8_pairs_int32x16(lhs_mat_23_3_sp2, rhs_mat_2367ABEF_3_sp2), mul_sum_i8_pairs_int32x16(lhs_mat_23_2_sp2, rhs_mat_2367ABEF_2_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_1_sp2, rhs_mat_2367ABEF_1_sp2)), mul_sum_i8_pairs_int32x16(lhs_mat_23_0_sp2, rhs_mat_2367ABEF_0_sp2)); - - // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block - __m512i iacc_mat_00 = _mm512_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); - __m512i iacc_mat_01 = _mm512_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2); - __m512i iacc_mat_10 = _mm512_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2); - __m512i iacc_mat_11 = _mm512_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2); - - - // Straighten out to make 4 row vectors - __m512i iacc_row_0 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_00, _mm512_shuffle_epi32(iacc_mat_01, 78)); - __m512i iacc_row_1 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01); - __m512i iacc_row_2 = _mm512_mask_blend_epi32(0xCCCC, iacc_mat_10, _mm512_shuffle_epi32(iacc_mat_11, 78)); - __m512i iacc_row_3 = _mm512_mask_blend_epi32(0xCCCC, _mm512_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11); - - // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes - const __m128i row_scale_f16 = _mm_shuffle_epi32(_mm_maskload_epi32((int const*)(a_ptr[b].d), loadMask), 68); - const __m512 row_scale_f32 = GGML_F32Cx16_REPEAT_LOAD(row_scale_f16); - - // Multiply with appropiate scales and accumulate - acc_rows[0] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_0), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[0]); - acc_rows[1] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_1), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[1]); - acc_rows[2] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_2), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[2]); - acc_rows[3] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(iacc_row_3), _mm512_mul_ps(col_scale_f32, _mm512_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[3]); - } - - // Store the accumulated values - for (int i = 0; i < 4; i++) { - _mm512_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); - } - } - } - if (anc != nc) { - xstart = anc/8; - y = 0; - } -#endif // __AVX512F__ - - // Take group of four block_q8_0x4 structures at each pass of the loop and perform dot product operation - - for (; y < anr / 4; y += 4) { - const block_q8_0x4 * a_ptrs[4]; - - a_ptrs[0] = a_ptr_start + (y * nb); - for (int i = 0; i < 3; ++i) { - a_ptrs[i + 1] = a_ptrs[i] + nb; - } - - // Take group of eight block_q4_0x8 structures at each pass of the loop and perform dot product operation - for (int64_t x = xstart; x < nc / 8; x++) { - - const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb); - - // Master FP accumulators - __m256 acc_rows[16]; - for (int i = 0; i < 16; i++) { - acc_rows[i] = _mm256_setzero_ps(); - } - - for (int64_t b = 0; b < nb; b++) { - // Load the eight block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7 - const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs)); - const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 32)); - const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 64)); - const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 96)); - - // Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of values - const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); - const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); - - // 4-bit -> 8-bit - Sign is maintained - const __m256i rhs_mat_0145_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_0, m4b)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) - const __m256i rhs_mat_2367_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_0, m4b)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) - - const __m256i rhs_mat_0145_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_1, m4b)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) - const __m256i rhs_mat_2367_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_1, m4b)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) - - const __m256i rhs_mat_0145_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_0, 4), m4b)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) - const __m256i rhs_mat_2367_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_0, 4), m4b)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) - - const __m256i rhs_mat_0145_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_1, 4), m4b)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) - const __m256i rhs_mat_2367_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_1, 4), m4b)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) - - // Shuffle pattern one - right side input - const __m256i rhs_mat_0145_0_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) - const __m256i rhs_mat_2367_0_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) - - const __m256i rhs_mat_0145_1_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) - const __m256i rhs_mat_2367_1_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) - - const __m256i rhs_mat_0145_2_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) - const __m256i rhs_mat_2367_2_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) - - const __m256i rhs_mat_0145_3_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) - const __m256i rhs_mat_2367_3_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) - - // Shuffle pattern two - right side input - - const __m256i rhs_mat_0145_0_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) - const __m256i rhs_mat_2367_0_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) - - const __m256i rhs_mat_0145_1_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) - const __m256i rhs_mat_2367_1_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) - - const __m256i rhs_mat_0145_2_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) - const __m256i rhs_mat_2367_2_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) - - const __m256i rhs_mat_0145_3_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) - const __m256i rhs_mat_2367_3_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) - - // Scale values - Load the wight scale values of block_q4_0x8 - const __m256 col_scale_f32 = GGML_F32Cx8_LOAD(b_ptr[b].d); - - // Process LHS in groups of four - for (int rp = 0; rp < 4; rp++) { // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 // Loaded as set of 128 bit vectors and repeated into a 256 bit vector - __m256i lhs_mat_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs))); + __m256i lhs_mat_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs))); __m256i lhs_mat_01_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 0); __m256i lhs_mat_23_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 17); - __m256i lhs_mat_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 32))); + __m256i lhs_mat_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 32))); __m256i lhs_mat_01_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 0); __m256i lhs_mat_23_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 17); - __m256i lhs_mat_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 64))); + __m256i lhs_mat_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 64))); __m256i lhs_mat_01_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 0); __m256i lhs_mat_23_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 17); - __m256i lhs_mat_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptrs[rp][b].qs + 96))); + __m256i lhs_mat_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 96))); __m256i lhs_mat_01_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 0); __m256i lhs_mat_23_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 17); // Shuffle pattern one - left side input + const __m256i lhs_mat_01_0_sp1 = _mm256_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) const __m256i lhs_mat_23_0_sp1 = _mm256_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) @@ -3001,6 +3119,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * const __m256i lhs_mat_23_3_sp1 = _mm256_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) // Shuffle pattern two - left side input + const __m256i lhs_mat_01_0_sp2 = _mm256_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) const __m256i lhs_mat_23_0_sp2 = _mm256_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) @@ -3038,6 +3157,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * __m256i iacc_mat_10 = _mm256_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2); __m256i iacc_mat_11 = _mm256_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2); + // Straighten out to make 4 row vectors __m256i iacc_row_0 = _mm256_blend_epi32(iacc_mat_00, _mm256_shuffle_epi32(iacc_mat_01, 78), 204); __m256i iacc_row_1 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01, 204); @@ -3045,187 +3165,24 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * __m256i iacc_row_3 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11, 204); // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes - const __m256 row_scale_f32 = GGML_F32Cx8_REPEAT_LOAD(a_ptrs[rp][b].d, loadMask); + const __m256 row_scale_f32 = GGML_F32Cx8_REPEAT_LOAD(a_ptr[b].d, loadMask); // Multiply with appropiate scales and accumulate - acc_rows[rp * 4] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_0), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[rp * 4]); - acc_rows[rp * 4 + 1] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_1), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[rp * 4 + 1]); - acc_rows[rp * 4 + 2] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_2), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[rp * 4 + 2]); - acc_rows[rp * 4 + 3] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_3), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[rp * 4 + 3]); + acc_rows[0] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_0), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[0]); + acc_rows[1] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_1), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[1]); + acc_rows[2] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_2), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[2]); + acc_rows[3] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_3), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[3]); + } + + // Store the accumulated values + for (int i = 0; i < 4; i++) { + _mm256_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); } } - - // Store the accumulated values - for (int i = 0; i < 16; i++) { - _mm256_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); - } } + return; } - - // Take a block_q8_0x4 structures at each pass of the loop and perform dot product operation - for (; y < nr / 4; y ++) { - - const block_q8_0x4 * a_ptr = a_ptr_start + (y * nb); - - // Load the eight block_q4_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7 - for (int64_t x = xstart; x < nc / 8; x++) { - - const block_q4_0x8 * b_ptr = b_ptr_start + (x * b_nb); - - // Master FP accumulators - __m256 acc_rows[4]; - for (int i = 0; i < 4; i++) { - acc_rows[i] = _mm256_setzero_ps(); - } - - for (int64_t b = 0; b < nb; b++) { - // Load the eight block_q8_0 quantized values interleaved with each other in chunks of eight - B0,B1 ....B6,B7 - const __m256i rhs_raw_mat_0123_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs)); - const __m256i rhs_raw_mat_4567_0 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 32)); - const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 64)); - const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 96)); - - // Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess - const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240); - const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240); - const __m256i rhs_raw_mat_2367_1 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_1, requiredOrder), rhs_raw_mat_4567_1, 240); - - // 4-bit -> 8-bit - Sign is maintained - const __m256i rhs_mat_0145_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_0, m4b)); //B0(0-7) B1(0-7) B4(0-7) B5(0-7) - const __m256i rhs_mat_2367_0 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_0, m4b)); //B2(0-7) B3(0-7) B6(0-7) B7(0-7) - - const __m256i rhs_mat_0145_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_0145_1, m4b)); //B0(8-15) B1(8-15) B4(8-15) B5(8-15) - const __m256i rhs_mat_2367_1 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(rhs_raw_mat_2367_1, m4b)); //B2(8-15) B3(8-15) B6(8-15) B7(8-15) - - const __m256i rhs_mat_0145_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_0, 4), m4b)); //B0(16-23) B1(16-23) B4(16-23) B5(16-23) - const __m256i rhs_mat_2367_2 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_0, 4), m4b)); //B2(16-23) B3(16-23) B6(16-23) B7(16-23) - - const __m256i rhs_mat_0145_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_0145_1, 4), m4b)); //B0(24-31) B1(24-31) B4(24-31) B5(24-31) - const __m256i rhs_mat_2367_3 = _mm256_shuffle_epi8(signextendlut, _mm256_and_si256(_mm256_srli_epi16(rhs_raw_mat_2367_1, 4), m4b)); //B2(24-31) B3(24-31) B6(24-31) B7(24-31) - - // Shuffle pattern one - right side input - const __m256i rhs_mat_0145_0_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_0, 136); //B0(0-3) B1(0-3) B0(0-3) B1(0-3) B4(0-3) B5(0-3) B4(0-3) B5(0-3) - const __m256i rhs_mat_2367_0_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_0, 136); //B2(0-3) B3(0-3) B2(0-3) B3(0-3) B6(0-3) B7(0-3) B6(0-3) B7(0-3) - - const __m256i rhs_mat_0145_1_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_1, 136); //B0(8-11) B1(8-11) B0(8-11) B1(8-11) B4(8-11) B5(8-11) B4(8-11) B5(8-11) - const __m256i rhs_mat_2367_1_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_1, 136); //B2(8-11) B3(8-11) B2(8-11) B3(8-11) B6(8-11) B7(8-11) B6(8-11) B7(8-11) - - const __m256i rhs_mat_0145_2_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_2, 136); //B0(16-19) B1(16-19) B0(16-19) B1(16-19) B4(16-19) B5(16-19) B4(16-19) B5(16-19) - const __m256i rhs_mat_2367_2_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_2, 136); //B2(16-19) B3(16-19) B2(16-19) B3(16-19) B6(16-19) B7(16-19) B6(16-19) B7(16-19) - - const __m256i rhs_mat_0145_3_sp1 = _mm256_shuffle_epi32(rhs_mat_0145_3, 136); //B0(24-27) B1(24-27) B0(24-27) B1(24-27) B4(24-27) B5(24-27) B4(24-27) B5(24-27) - const __m256i rhs_mat_2367_3_sp1 = _mm256_shuffle_epi32(rhs_mat_2367_3, 136); //B2(24-27) B3(24-27) B2(24-27) B3(24-27) B6(24-27) B7(24-27) B6(24-27) B7(24-27) - - // Shuffle pattern two - right side input - - const __m256i rhs_mat_0145_0_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_0, 221); //B0(4-7) B1(4-7) B0(4-7) B1(4-7) B4(4-7) B5(4-7) B4(4-7) B5(4-7) - const __m256i rhs_mat_2367_0_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_0, 221); //B2(4-7) B3(4-7) B2(4-7) B3(4-7) B6(4-7) B7(4-7) B6(4-7) B7(4-7) - - const __m256i rhs_mat_0145_1_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_1, 221); //B0(12-15) B1(12-15) B0(12-15) B1(12-15) B4(12-15) B5(12-15) B4(12-15) B5(12-15) - const __m256i rhs_mat_2367_1_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_1, 221); //B2(12-15) B3(12-15) B2(12-15) B3(12-15) B6(12-15) B7(12-15) B6(12-15) B7(12-15) - - const __m256i rhs_mat_0145_2_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_2, 221); //B0(20-23) B1(20-23) B0(20-23) B1(20-23) B4(20-23) B5(20-23) B4(20-23) B5(20-23) - const __m256i rhs_mat_2367_2_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_2, 221); //B2(20-23) B3(20-23) B2(20-23) B3(20-23) B6(20-23) B7(20-23) B6(20-23) B7(20-23) - - const __m256i rhs_mat_0145_3_sp2 = _mm256_shuffle_epi32(rhs_mat_0145_3, 221); //B0(28-31) B1(28-31) B0(28-31) B1(28-31) B4(28-31) B5(28-31) B4(28-31) B5(28-31) - const __m256i rhs_mat_2367_3_sp2 = _mm256_shuffle_epi32(rhs_mat_2367_3, 221); //B2(28-31) B3(28-31) B2(28-31) B3(28-31) B6(28-31) B7(28-31) B6(28-31) B7(28-31) - - // Scale values - Load the wight scale values of block_q4_0x8 - const __m256 col_scale_f32 = GGML_F32Cx8_LOAD(b_ptr[b].d); - - // Load the four block_q4_0 quantized values interleaved with each other in chunks of eight - A0,A1,A2,A3 - // Loaded as set of 128 bit vectors and repeated into a 256 bit vector - __m256i lhs_mat_0123_0 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs))); - __m256i lhs_mat_01_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 0); - __m256i lhs_mat_23_0 = _mm256_permute2f128_si256(lhs_mat_0123_0, lhs_mat_0123_0, 17); - __m256i lhs_mat_0123_1 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 32))); - __m256i lhs_mat_01_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 0); - __m256i lhs_mat_23_1 = _mm256_permute2f128_si256(lhs_mat_0123_1, lhs_mat_0123_1, 17); - __m256i lhs_mat_0123_2 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 64))); - __m256i lhs_mat_01_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 0); - __m256i lhs_mat_23_2 = _mm256_permute2f128_si256(lhs_mat_0123_2, lhs_mat_0123_2, 17); - __m256i lhs_mat_0123_3 = _mm256_loadu_si256((const __m256i *)((a_ptr[b].qs + 96))); - __m256i lhs_mat_01_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 0); - __m256i lhs_mat_23_3 = _mm256_permute2f128_si256(lhs_mat_0123_3, lhs_mat_0123_3, 17); - - // Shuffle pattern one - left side input - - const __m256i lhs_mat_01_0_sp1 = _mm256_shuffle_epi32(lhs_mat_01_0, 160); //A0(0-3) A0(0-3) A1(0-3) A1(0-3) A0(0-3) A0(0-3) A1(0-3) A1(0-3) - const __m256i lhs_mat_23_0_sp1 = _mm256_shuffle_epi32(lhs_mat_23_0, 160); //A2(0-3) A2(0-3) A3(0-3) A3(0-3) A2(0-3) A2(0-3) A3(0-3) A3(0-3) - - const __m256i lhs_mat_01_1_sp1 = _mm256_shuffle_epi32(lhs_mat_01_1, 160); //A0(8-11) A0(8-11) A1(8-11) A1(8-11) A0(8-11) A0(8-11) A1(8-11) A1(8-11) - const __m256i lhs_mat_23_1_sp1 = _mm256_shuffle_epi32(lhs_mat_23_1, 160); //A2(8-11) A2(8-11) A3(8-11) A3(8-11) A2(8-11) A2(8-11) A3(8-11) A3(8-11) - - const __m256i lhs_mat_01_2_sp1 = _mm256_shuffle_epi32(lhs_mat_01_2, 160); //A0(16-19) A0(16-19) A1(16-19) A1(16-19) A0(16-19) A0(16-19) A1(16-19) A1(16-19) - const __m256i lhs_mat_23_2_sp1 = _mm256_shuffle_epi32(lhs_mat_23_2, 160); //A2(16-19) A2(16-19) A3(16-19) A3(16-19) A2(16-19) A2(16-19) A3(16-19) A3(16-19) - - const __m256i lhs_mat_01_3_sp1 = _mm256_shuffle_epi32(lhs_mat_01_3, 160); //A0(24-27) A0(24-27) A1(24-27) A1(24-27) A0(24-27) A0(24-27) A1(24-27) A1(24-27) - const __m256i lhs_mat_23_3_sp1 = _mm256_shuffle_epi32(lhs_mat_23_3, 160); //A2(24-27) A2(24-27) A3(24-27) A3(24-27) A2(24-27) A2(24-27) A3(24-27) A3(24-27) - - // Shuffle pattern two - left side input - - const __m256i lhs_mat_01_0_sp2 = _mm256_shuffle_epi32(lhs_mat_01_0, 245); //A0(4-7) A0(4-7) A1(4-7) A1(4-7) A0(4-7) A0(4-7) A1(4-7) A1(4-7) - const __m256i lhs_mat_23_0_sp2 = _mm256_shuffle_epi32(lhs_mat_23_0, 245); //A2(4-7) A2(4-7) A3(4-7) A3(4-7) A2(4-7) A2(4-7) A3(4-7) A3(4-7) - - const __m256i lhs_mat_01_1_sp2 = _mm256_shuffle_epi32(lhs_mat_01_1, 245); //A0(12-15) A0(12-15) A1(12-15) A1(12-15) A0(12-15) A0(12-15) A1(12-15) A1(12-15) - const __m256i lhs_mat_23_1_sp2 = _mm256_shuffle_epi32(lhs_mat_23_1, 245); //A2(12-15) A2(12-15) A3(12-15) A3(12-15) A2(12-15) A2(12-15) A3(12-15) A3(12-15) - - const __m256i lhs_mat_01_2_sp2 = _mm256_shuffle_epi32(lhs_mat_01_2, 245); //A0(20-23) A0(20-23) A1(20-23) A1(20-23) A0(20-23) A0(20-23) A1(20-23) A1(20-23) - const __m256i lhs_mat_23_2_sp2 = _mm256_shuffle_epi32(lhs_mat_23_2, 245); //A2(20-23) A2(20-23) A3(20-23) A3(20-23) A2(20-23) A2(20-23) A3(20-23) A3(20-23) - - const __m256i lhs_mat_01_3_sp2 = _mm256_shuffle_epi32(lhs_mat_01_3, 245); //A0(28-31) A0(28-31) A1(28-31) A1(28-31) A0(28-31) A0(28-31) A1(28-31) A1(28-31) - const __m256i lhs_mat_23_3_sp2 = _mm256_shuffle_epi32(lhs_mat_23_3, 245); //A2(28-31) A2(28-31) A3(28-31) A3(28-31) A2(28-31) A2(28-31) A3(28-31) A3(28-31) - - // The values arranged in shuffle patterns are operated with dot product operation within 32 bit lane i.e corresponding bytes and multiplied and added into 32 bit integers within 32 bit lane - // Resembles MMLAs into 2x2 matrices in ARM Version - __m256i iacc_mat_00_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_0145_0_sp1)); - __m256i iacc_mat_01_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp1, rhs_mat_2367_0_sp1)); - __m256i iacc_mat_10_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_0145_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_0145_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_0145_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_0145_0_sp1)); - __m256i iacc_mat_11_sp1 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp1, rhs_mat_2367_3_sp1), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp1, rhs_mat_2367_2_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp1, rhs_mat_2367_1_sp1)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp1, rhs_mat_2367_0_sp1)); - __m256i iacc_mat_00_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_0145_0_sp2)); - __m256i iacc_mat_01_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_01_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_01_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_01_0_sp2, rhs_mat_2367_0_sp2)); - __m256i iacc_mat_10_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_0145_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_0145_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_0145_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_0145_0_sp2)); - __m256i iacc_mat_11_sp2 = - _mm256_add_epi32(_mm256_add_epi32(_mm256_add_epi32(mul_sum_i8_pairs_int32x8(lhs_mat_23_3_sp2, rhs_mat_2367_3_sp2), mul_sum_i8_pairs_int32x8(lhs_mat_23_2_sp2, rhs_mat_2367_2_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_1_sp2, rhs_mat_2367_1_sp2)), mul_sum_i8_pairs_int32x8(lhs_mat_23_0_sp2, rhs_mat_2367_0_sp2)); - - // Output of both shuffle patterns are added in order to sum dot product outputs of all 32 values in block - __m256i iacc_mat_00 = _mm256_add_epi32(iacc_mat_00_sp1, iacc_mat_00_sp2); - __m256i iacc_mat_01 = _mm256_add_epi32(iacc_mat_01_sp1, iacc_mat_01_sp2); - __m256i iacc_mat_10 = _mm256_add_epi32(iacc_mat_10_sp1, iacc_mat_10_sp2); - __m256i iacc_mat_11 = _mm256_add_epi32(iacc_mat_11_sp1, iacc_mat_11_sp2); - - - // Straighten out to make 4 row vectors - __m256i iacc_row_0 = _mm256_blend_epi32(iacc_mat_00, _mm256_shuffle_epi32(iacc_mat_01, 78), 204); - __m256i iacc_row_1 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_00, 78), iacc_mat_01, 204); - __m256i iacc_row_2 = _mm256_blend_epi32(iacc_mat_10, _mm256_shuffle_epi32(iacc_mat_11, 78), 204); - __m256i iacc_row_3 = _mm256_blend_epi32(_mm256_shuffle_epi32(iacc_mat_10, 78), iacc_mat_11, 204); - - // Load the scale(d) values for all the 4 Q8_0 blocks and repeat it across lanes - const __m256 row_scale_f32 = GGML_F32Cx8_REPEAT_LOAD(a_ptr[b].d, loadMask); - - // Multiply with appropiate scales and accumulate - acc_rows[0] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_0), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 0)), acc_rows[0]); - acc_rows[1] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_1), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 85)), acc_rows[1]); - acc_rows[2] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_2), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 170)), acc_rows[2]); - acc_rows[3] = _mm256_fmadd_ps(_mm256_cvtepi32_ps(iacc_row_3), _mm256_mul_ps(col_scale_f32, _mm256_shuffle_ps(row_scale_f32, row_scale_f32, 255)), acc_rows[3]); - } - - // Store the accumulated values - for (int i = 0; i < 4; i++) { - _mm256_storeu_ps((float *)(s + ((y * 4 + i) * bs + x * 8)), acc_rows[i]); - } - } - } -#else +#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) float sumf[4][8]; int sumi; @@ -3258,5 +3215,4 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void * } } } -#endif } From ea9c32be71b91b42ecc538bd902e93cbb5fb36cb Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Wed, 25 Sep 2024 17:26:01 +0200 Subject: [PATCH 28/30] ci : fix docker build number and tag name (#9638) * ci : fix docker build number and tag name * fine-grant permissions --- .dockerignore | 2 +- .github/workflows/docker.yml | 58 +++++++++++++++++++++++------------- 2 files changed, 39 insertions(+), 21 deletions(-) diff --git a/.dockerignore b/.dockerignore index 8916e2a66..064b7c7be 100644 --- a/.dockerignore +++ b/.dockerignore @@ -1,7 +1,7 @@ *.o *.a .cache/ -.git/ +# Do not ignore .git directory, otherwise the reported build number will always be 0 .github/ .gitignore .vs/ diff --git a/.github/workflows/docker.yml b/.github/workflows/docker.yml index 9044cd78b..a4ac9b217 100644 --- a/.github/workflows/docker.yml +++ b/.github/workflows/docker.yml @@ -15,11 +15,17 @@ on: branches: - master paths: ['.github/workflows/docker.yml', '.devops/*.Dockerfile', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal'] + workflow_dispatch: # allows manual triggering, useful for debugging concurrency: group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} cancel-in-progress: true +# Fine-grant permission +# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token +permissions: + packages: write + jobs: push_to_registry: name: Push Docker image to Docker Hub @@ -46,6 +52,8 @@ jobs: steps: - name: Check out the repo uses: actions/checkout@v4 + with: + fetch-depth: 0 # preserve git history, so we can determine the build number - name: Set up QEMU uses: docker/setup-qemu-action@v2 @@ -60,6 +68,34 @@ jobs: username: ${{ github.repository_owner }} password: ${{ secrets.GITHUB_TOKEN }} + - name: Determine tag name + id: tag + shell: bash + run: | + BUILD_NUMBER="$(git rev-list --count HEAD)" + SHORT_HASH="$(git rev-parse --short=7 HEAD)" + REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case + REPO_NAME="${{ github.event.repository.name }}" + + # determine tag name postfix (build number, commit hash) + if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then + TAG_POSTFIX="b${BUILD_NUMBER}" + else + SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-') + TAG_POSTFIX="${SAFE_NAME}-${SHORT_HASH}" + fi + + # list all tags possible + TAGS="" + TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }}," + TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }}-${TAG_POSTFIX}" + + echo "output_tags=$TAGS" >> $GITHUB_OUTPUT + echo "output_tags=$TAGS" # print out for debugging + env: + GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }} + GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}' + # https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example - name: Free Disk Space (Ubuntu) uses: jlumbroso/free-disk-space@main @@ -77,25 +113,6 @@ jobs: docker-images: true swap-storage: true - - name: Determine tag name - id: tag - shell: bash - run: | - BUILD_NUMBER="$(git rev-list --count HEAD)" - SHORT_HASH="$(git rev-parse --short=7 HEAD)" - if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then - echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT - else - SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-') - echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT - fi - - - name: Downcase github.repository_owner - run: | - echo "repository_owner_lowercase=${GITHUB_REPOSITORY_OWNER@L}" >> $GITHUB_ENV - env: - GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}' - - name: Build and push Docker image (tagged + versioned) if: github.event_name == 'push' uses: docker/build-push-action@v6 @@ -103,5 +120,6 @@ jobs: context: . push: true platforms: ${{ matrix.config.platforms }} - tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}" + # tag list is generated from step above + tags: ${{ steps.tag.outputs.output_tags }} file: ${{ matrix.config.dockerfile }} From 7691654c68aa5316108f881136c59f815ccb6809 Mon Sep 17 00:00:00 2001 From: R0CKSTAR Date: Thu, 26 Sep 2024 09:27:40 +0800 Subject: [PATCH 29/30] mtgpu: enable VMM (#9597) Signed-off-by: Xiaodong Ye --- ggml/src/ggml-cuda.cu | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 0bb7f2d99..6efdab14c 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -187,7 +187,7 @@ static ggml_cuda_device_info ggml_cuda_init() { for (int id = 0; id < info.device_count; ++id) { int device_vmm = 0; -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) CUdevice device; CU_CHECK(cuDeviceGet(&device, id)); CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); @@ -199,7 +199,7 @@ static ggml_cuda_device_info ggml_cuda_init() { alloc_prop.location.id = id; CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED)); } -#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) +#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) info.devices[id].vmm = !!device_vmm; cudaDeviceProp prop; @@ -335,7 +335,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool { }; // pool with virtual memory -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) struct ggml_cuda_pool_vmm : public ggml_cuda_pool { static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB @@ -429,14 +429,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool { GGML_ASSERT(ptr == (void *) (pool_addr + pool_used)); } }; -#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) +#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) std::unique_ptr ggml_backend_cuda_context::new_pool_for_device(int device) { -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) +#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) if (ggml_cuda_info().devices[device].vmm) { return std::unique_ptr(new ggml_cuda_pool_vmm(device)); } -#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA) +#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) return std::unique_ptr(new ggml_cuda_pool_leg(device)); } From 95bc82fbc0df6d48cf66c857a4dda3d044f45ca2 Mon Sep 17 00:00:00 2001 From: Neo Zhang Jianyu Date: Thu, 26 Sep 2024 17:38:31 +0800 Subject: [PATCH 30/30] [SYCL] add missed dll file in package (#9577) * update oneapi to 2024.2 * use 2024.1 --------- Co-authored-by: arthw <14088817+arthw@users.noreply.github.com> --- .github/workflows/build.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index a54c5de99..e6a977b60 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -956,6 +956,7 @@ jobs: cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl7.dll" ./build/bin cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin + cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin echo "cp oneAPI running time dll files to ./build/bin done" 7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*