Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/workflows/build.yml
#	.github/workflows/docker.yml
#	README.md
#	build-xcframework.sh
#	common/CMakeLists.txt
#	examples/CMakeLists.txt
#	ggml/src/ggml-cpu/CMakeLists.txt
#	ggml/src/ggml-cuda/CMakeLists.txt
#	ggml/src/ggml-metal/ggml-metal.m
#	ggml/src/ggml-metal/ggml-metal.metal
#	ggml/src/ggml-sycl/CMakeLists.txt
#	ggml/src/ggml-sycl/backend.hpp
#	ggml/src/ggml-sycl/common.hpp
#	ggml/src/ggml-sycl/ggml-sycl.cpp
#	ggml/src/ggml-sycl/mmvq.cpp
#	ggml/src/ggml-sycl/vecdotq.hpp
#	scripts/compare-llama-bench.py
#	src/CMakeLists.txt
#	src/llama-model.cpp
#	src/llama.cpp
#	tests/test-backend-ops.cpp
#	tests/test-opt.cpp
#	tools/llama-bench/README.md
#	tools/llama-bench/llama-bench.cpp
#	tools/mtmd/CMakeLists.txt
#	tools/mtmd/README.md
#	tools/mtmd/clip.cpp
#	tools/rpc/rpc-server.cpp
#	tools/server/CMakeLists.txt
#	tools/server/README.md
This commit is contained in:
Concedo 2025-05-13 00:28:35 +08:00
commit 21e31e255b
90 changed files with 4390 additions and 1388 deletions

View file

@ -41,7 +41,7 @@ using json = nlohmann::ordered_json;
std::initializer_list<enum llama_example> mmproj_examples = {
LLAMA_EXAMPLE_LLAVA,
// TODO: add LLAMA_EXAMPLE_SERVER when it's ready
LLAMA_EXAMPLE_SERVER,
};
static std::string read_file(const std::string & fname) {
@ -2205,32 +2205,33 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
add_opt(common_arg(
{"--mmproj"}, "FILE",
"path to a multimodal projector file. see tools/mtmd/README.md",
"path to a multimodal projector file. see tools/mtmd/README.md\n"
"note: if -hf is used, this argument can be omitted",
[](common_params & params, const std::string & value) {
params.mmproj.path = value;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
add_opt(common_arg(
{"--mmproj-url"}, "URL",
"URL to a multimodal projector file. see tools/mtmd/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.url = value;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
add_opt(common_arg(
{"--no-mmproj"},
"explicitly disable multimodal projector, useful when using -hf",
[](common_params & params) {
params.no_mmproj = true;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
add_opt(common_arg(
{"--no-mmproj-offload"},
"do not offload multimodal projector to GPU",
[](common_params & params) {
params.mmproj_use_gpu = false;
}
).set_examples(mmproj_examples));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
add_opt(common_arg(
{"--image"}, "FILE",
"path to an image file. use with multimodal models. Specify multiple times for batching",
@ -2437,6 +2438,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
}
));
add_opt(common_arg(
{"--no-op-offload"},
string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
[](common_params & params) {
params.no_op_offload = true;
}
));
add_opt(common_arg(
{"--lora"}, "FNAME",
"path to LoRA adapter (can be repeated to use multiple adapters)",

View file

@ -15,6 +15,7 @@
#include "json-schema-to-grammar.cpp"
#include "llama.h"
#include "chat.cpp"
#include "ggml/src/ggml-opt.cpp" //dear god pls
#include <algorithm>
#include <cinttypes>
@ -1120,6 +1121,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
if (params.reranking) {
cparams.embeddings = true;
@ -1571,3 +1573,20 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
const int64_t ne_datapoint = llama_n_ctx(ctx);
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
ggml_opt_dataset_t result = ggml_opt_dataset_init(
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
for (int64_t idata = 0; idata < ndata; ++idata) {
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
}
return result;
}

View file

@ -328,6 +328,7 @@ struct common_params {
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device
bool single_turn = false; // single turn chat conversation
@ -661,3 +662,9 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count";
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
}
//
// training utils
//
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);

View file

@ -189,6 +189,7 @@ static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab)
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
/* .use_approximate_greedy_tokenize_fn = */ false,
/* .tokenize_user_data = */ vocab,
/* .slices = */ nullptr,
};
char error_buffer[1024];

View file

@ -426,7 +426,11 @@ class ModelBase:
logger.warning(f"Failed to load model config from {dir_model}: {e}")
logger.warning("Trying to load config.json instead")
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
config = json.load(f)
if "llm_config" in config:
# rename for InternVL
config["text_config"] = config["llm_config"]
return config
@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
@ -794,6 +798,9 @@ class TextModel(ModelBase):
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
# ref: https://huggingface.co/mistral-community/pixtral-12b
res = "pixtral"
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
res = "seed-coder"
if res is None:
logger.warning("\n")
@ -2606,6 +2613,11 @@ class Qwen2Model(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if self.hf_arch == "Qwen2Model":
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
if "language_model." in name:
name = name.replace("language_model.", "") # for InternVL
if name.startswith("mlp") or name.startswith("vision_model"):
# skip visual tensors
return []
yield from super().modify_tensors(data_torch, name, bid)
@ -2709,6 +2721,62 @@ class Qwen2VLVisionModel(VisionModel):
return [] # skip other tensors
@ModelBase.register("InternVisionModel")
class InternVisionModel(VisionModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.INTERNVL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
# hidden_act
if hparams["hidden_act"] == "silu":
self.gguf_writer.add_vision_use_silu(True)
elif hparams["hidden_act"] == "gelu":
self.gguf_writer.add_vision_use_gelu(True)
else:
raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
# downsample_ratio
downsample_ratio = self.global_config.get("downsample_ratio")
assert downsample_ratio is not None
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("vision_model") or name.startswith("mlp"):
# process visual tensors
# correct name
if name.startswith("vision_model"):
name = "vision_tower." + name
if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
name += ".weight"
# split QKV tensors if needed
if ".qkv." in name:
if data_torch.ndim == 2: # weight
c3, _ = data_torch.shape
else: # bias
c3 = data_torch.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = data_torch[:c]
wk = data_torch[c: c * 2]
wv = data_torch[c * 2:]
return [
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
(self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
]
return [(self.map_tensor_name(name), data_torch)]
return [] # skip other tensors
@ModelBase.register("WavTokenizerDec")
class WavTokenizerDecModel(TextModel):
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
@ -3360,6 +3428,11 @@ class InternLM2Model(TextModel):
head_dim = n_embd // num_heads
num_groups = num_heads // q_per_kv
name = name.replace("language_model.", "") # InternVL
if name.startswith("mlp") or name.startswith("vision_model"):
# skip visual tensors
return []
if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
qkv = data_torch
@ -3433,6 +3506,10 @@ class InternLM3Model(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
name = name.replace("language_model.", "") # InternVL
if name.startswith("mlp") or name.startswith("vision_model"):
# skip visual tensors
return []
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):

View file

@ -116,6 +116,7 @@ models = [
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
]

77
docs/multimodal.md Normal file
View file

@ -0,0 +1,77 @@
# Multimodal
llama.cpp supports multimodal input via `libmtmd`. Currently, there are 2 tools support this feature:
- [llama-mtmd-cli](../tools/mtmd/README.md)
- [llama-server](../tools/server/README.md) via OpenAI-compatible `/chat/completions` API
To enable it, can use use one of the 2 methods below:
- Use `-hf` option with a supported model (see a list of pre-quantized model below)
- To load a model using `-hf` while disabling multimodal, use `--no-mmproj`
- To load a model using `-hf` while using a custom mmproj file, use `--mmproj local_file.gguf`
- Use `-m model.gguf` option with `--mmproj file.gguf` to specify text and multimodal projector respectively
By default, multimodal projector will be offloaded to GPU. To disable this, add `--no-mmproj-offload`
For example:
```sh
# simple usage with CLI
llama-mtmd-cli -hf ggml-org/gemma-3-4b-it-GGUF
# simple usage with server
llama-server -hf ggml-org/gemma-3-4b-it-GGUF
# using local file
llama-server -m gemma-3-4b-it-Q4_K_M.gguf --mmproj mmproj-gemma-3-4b-it-Q4_K_M.gguf
# no GPU offload
llama-server -hf ggml-org/gemma-3-4b-it-GGUF --no-mmproj-offload
```
## Pre-quantized models
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default.
Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server`
NOTE: some models may require large context window, for example: `-c 8192`
```sh
# Gemma 3
(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF
(tool_name) -hf ggml-org/gemma-3-12b-it-GGUF
(tool_name) -hf ggml-org/gemma-3-27b-it-GGUF
# SmolVLM
(tool_name) -hf ggml-org/SmolVLM-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM-256M-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM-500M-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-2.2B-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-256M-Video-Instruct-GGUF
(tool_name) -hf ggml-org/SmolVLM2-500M-Video-Instruct-GGUF
# Pixtral 12B
(tool_name) -hf ggml-org/pixtral-12b-GGUF
# Qwen 2 VL
(tool_name) -hf ggml-org/Qwen2-VL-2B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2-VL-7B-Instruct-GGUF
# Qwen 2.5 VL
(tool_name) -hf ggml-org/Qwen2.5-VL-3B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-7B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-32B-Instruct-GGUF
(tool_name) -hf ggml-org/Qwen2.5-VL-72B-Instruct-GGUF
# Mistral Small 3.1 24B (IQ2_M quantization)
(tool_name) -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF
# InternVL 2.5 and 3
(tool_name) -hf ggml-org/InternVL2_5-1B-GGUF
(tool_name) -hf ggml-org/InternVL2_5-4B-GGUF
(tool_name) -hf ggml-org/InternVL3-1B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-2B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-8B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-14B-Instruct-GGUF
```

View file

@ -0,0 +1,5 @@
set(TARGET llama-finetune)
add_executable(${TARGET} finetune.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,17 @@
# llama.cpp/examples/training
This directory contains examples related to language model training using llama.cpp/GGML.
So far finetuning is technically functional (for FP32 models and limited hardware setups) but the code is very much WIP.
Finetuning of Stories 260K and LLaMA 3.2 1b seems to work with 24 GB of memory.
**For CPU training, compile llama.cpp without any additional backends such as CUDA.**
**For CUDA training, use the maximum number of GPU layers.**
Proof of concept:
``` sh
export model_name=llama_3.2-1b && export quantization=f32
./build/bin/finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
./build/bin/perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
```
The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs.

View file

@ -0,0 +1,96 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
int main(int argc, char ** argv) {
common_params params;
params.escape = false;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
return 1;
}
if (params.use_mmap) {
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__);
params.use_mmap = false;
}
if (params.cache_type_k != GGML_TYPE_F32) {
LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
params.cache_type_k = GGML_TYPE_F32;
}
if (params.cache_type_v != GGML_TYPE_F32) {
LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
params.cache_type_v = GGML_TYPE_F32;
}
common_init();
llama_backend_init();
llama_numa_init(params.numa);
// load the model and apply lora adapter, if any
common_init_result llama_init = common_init_from_params(params);
llama_model_ptr & model = llama_init.model;
llama_context_ptr & ctx = llama_init.context;
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
constexpr float val_split = 0.05f;
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2);
struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr);
optimizer_params.adamw.alpha = 1e-7f; // learning rate
struct llama_opt_params lopt_params {
/*n_ctx_train =*/ 0,
/*param_filter =*/ llama_opt_param_filter_all,
/*param_filter_ud =*/ nullptr,
/*get_opt_pars =*/ ggml_opt_get_constant_optimizer_params,
/*get_opt_pars_ud =*/ &optimizer_params,
};
llama_opt_init(ctx.get(), model.get(), lopt_params);
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split);
ggml_opt_result_t result_train = ggml_opt_result_init();
ggml_opt_result_t result_eval = ggml_opt_result_init();
for (int epoch = 0; epoch < 2; ++epoch) {
llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
fprintf(stderr, "\n");
ggml_opt_result_reset(result_train);
ggml_opt_result_reset(result_eval);
}
ggml_opt_result_free(result_train);
ggml_opt_result_free(result_eval);
llama_model_save_to_file(model.get(), "finetuned-model.gguf");
llama_backend_free();
return 0;
}

View file

@ -248,7 +248,7 @@ extern "C" {
// preferrably to run on the same backend as the buffer
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false, true);
// initialize buffers from a max size graph (optional)
reserve_graph = build_graph(sched, max_batch_size);
@ -289,7 +289,7 @@ extern "C" {
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph

View file

@ -37,6 +37,8 @@ extern "C" {
// ====== Dataset ======
GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
enum ggml_type type_data, // the type for the internal data tensor
enum ggml_type type_label, // the type for the internal labels tensor
int64_t ne_datapoint, // number of elements per datapoint
int64_t ne_label, // number of elements per label
int64_t ndata, // total number of datapoints/labels
@ -44,6 +46,7 @@ extern "C" {
GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
// get underlying tensors that store the data
GGML_API int64_t ggml_opt_dataset_ndata (ggml_opt_dataset_t dataset);
GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
@ -56,13 +59,19 @@ extern "C" {
struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
int64_t ibatch);
GGML_API void ggml_opt_dataset_get_batch_host(
ggml_opt_dataset_t dataset,
void * data_batch,
size_t nb_data_batch,
void * labels_batch,
int64_t ibatch);
// ====== Model / Context ======
enum ggml_opt_build_type {
GGML_OPT_BUILD_TYPE_FORWARD,
GGML_OPT_BUILD_TYPE_GRAD,
GGML_OPT_BUILD_TYPE_OPT,
GGML_OPT_BUILD_TYPE_FORWARD = 10,
GGML_OPT_BUILD_TYPE_GRAD = 20,
GGML_OPT_BUILD_TYPE_OPT = 30,
};
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
@ -81,18 +90,20 @@ extern "C" {
// userdata can be used to pass arbitrary data
typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
// returns the default optimizer params (constant)
// returns the default optimizer params (constant, hard-coded values)
// userdata is not used
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
// casts userdata to ggml_opt_optimizer_params and returns it
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata);
// parameters for initializing a new optimization context
struct ggml_opt_params {
ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
struct ggml_context * ctx_compute; // created in user code, holds non-static tensors
// the forward graph is defined by inputs and outputs
// those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
// by default the forward graph needs to be reconstructed for each eval
// if ctx_compute, inputs, and outputs are set the graphs are instead allocated statically
struct ggml_context * ctx_compute;
struct ggml_tensor * inputs;
struct ggml_tensor * outputs;
@ -107,11 +118,8 @@ extern "C" {
// get parameters for an optimization context with defaults set where possible
// parameters for which no sensible defaults exist are supplied as arguments to this function
GGML_API ggml_opt_params ggml_opt_default_params(
GGML_API struct ggml_opt_params ggml_opt_default_params(
ggml_backend_sched_t backend_sched,
struct ggml_context * ctx_compute,
struct ggml_tensor * inputs,
struct ggml_tensor * outputs,
enum ggml_opt_loss_type loss_type);
GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
@ -121,6 +129,7 @@ extern "C" {
GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
// get underlying tensors that store data
// if not using static graphs these pointers become invalid with the next call to ggml_opt_alloc
GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
@ -128,11 +137,12 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
// get the gradient accumulator for a node from the forward graph
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
// ====== Optimization Result ======
GGML_API ggml_opt_result_t ggml_opt_result_init();
GGML_API ggml_opt_result_t ggml_opt_result_init(void);
GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
@ -144,11 +154,20 @@ extern "C" {
// ====== Computation ======
// do forward pass, increment result if not NULL
GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
// if not using static graphs, this function must be called prior to ggml_opt_alloc
GGML_API void ggml_opt_prepare_alloc(
ggml_opt_context_t opt_ctx,
struct ggml_context * ctx_compute,
struct ggml_cgraph * gf,
struct ggml_tensor * inputs,
struct ggml_tensor * outputs);
// do forward pass, increment result if not NULL, do backward pass
GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
// allocate the next graph for evaluation, either forward or forward + backward
// must be called exactly once prior to calling ggml_opt_eval
GGML_API void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward);
// do forward pass, increment result if not NULL, do backward pass if allocated
GGML_API void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
// ############################################################################
// ## The high-level functions start here. They do not depend on any private ##
@ -200,9 +219,9 @@ extern "C" {
// fit model defined by inputs and outputs to dataset
GGML_API void ggml_opt_fit(
ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
struct ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
struct ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
enum ggml_opt_loss_type loss_type, // loss to minimize
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)

View file

@ -781,7 +781,7 @@ extern "C" {
// Tensor flags
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API void ggml_set_param(struct ggml_tensor * tensor);
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
//
@ -951,7 +951,7 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
// concat a and b along dim
// used in stable-diffusion
@ -2062,15 +2062,14 @@ extern "C" {
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(
struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
struct ggml_context * ctx_compute, // context for gradient computation
struct ggml_context * ctx, // context for gradient computation
struct ggml_cgraph * cgraph,
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
struct ggml_tensor ** grad_accs);
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);

View file

@ -674,6 +674,8 @@ struct ggml_backend_sched {
char * context_buffer;
size_t context_buffer_size;
bool op_offload;
int debug;
};
@ -772,7 +774,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
// check if a backend with higher prio wants to offload the op
if (src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
for (int b = 0; b < src_backend_id; b++) {
if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
SET_CAUSE(tensor, "1.off");
@ -1115,7 +1117,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
const int node_backend_id = tensor_backend_id(node);
assert(node_backend_id != -1); // all nodes should be assigned by now
assert(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
// check if we should start a new split based on the sources of the current node
bool need_new_split = false;
@ -1458,7 +1460,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
ggml_backend_buffer_type_t * bufts,
int n_backends,
size_t graph_size,
bool parallel) {
bool parallel,
bool op_offload) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
// GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
@ -1503,6 +1506,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
}
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
sched->op_offload = op_offload;
ggml_backend_sched_reset(sched);

View file

@ -4,16 +4,22 @@
// KleidiAI micro-kernels
#include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h"
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h"
#include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h"
#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h"
#include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h"
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h"
#include "kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.h"
#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
#include "kai_common.h"
#include "kernels.h"
@ -61,6 +67,53 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
},
/* .required_cpu = */ CPU_FEATURE_SME,
/* .lhs_type = */ GGML_TYPE_F32,
/* .rhs_type = */ GGML_TYPE_Q4_0,
/* .op_type = */ GGML_TYPE_F32,
},
{
/* SME GEMM */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* SME GEMV */
/* .kern_info = */ {
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
},
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
},
/* .required_cpu = */ CPU_FEATURE_SME,
/* .lhs_type = */ GGML_TYPE_F32,
/* .rhs_type = */ GGML_TYPE_F16,
/* .op_type = */ GGML_TYPE_F32,
},
#endif
#if defined(__APPLE__)
@ -105,6 +158,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
/* .lhs_type = */ GGML_TYPE_F32,
/* .rhs_type = */ GGML_TYPE_Q4_0,
/* .op_type = */ GGML_TYPE_F32,
},
#endif
#if defined(__ARM_FEATURE_MATMUL_INT8)
@ -148,6 +204,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
/* .lhs_type = */ GGML_TYPE_F32,
/* .rhs_type = */ GGML_TYPE_Q4_0,
/* .op_type = */ GGML_TYPE_F32,
},
#endif
#else
@ -192,6 +251,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
/* .lhs_type = */ GGML_TYPE_F32,
/* .rhs_type = */ GGML_TYPE_Q4_0,
/* .op_type = */ GGML_TYPE_F32,
},
#endif
#if defined(__ARM_FEATURE_DOTPROD)
@ -235,12 +297,33 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
/* .lhs_type = */ GGML_TYPE_F32,
/* .rhs_type = */ GGML_TYPE_Q4_0,
/* .op_type = */ GGML_TYPE_F32,
},
#endif
#endif
};
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) {
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) {
ggml_kleidiai_kernels * kernel = nullptr;
if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) {
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu &&
gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type &&
gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type &&
gemm_gemv_kernels[i].op_type == tensor->type) {
kernel = &gemm_gemv_kernels[i];
break;
}
}
}
return kernel;
}
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) {
ggml_kleidiai_kernels * kernels = nullptr;
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {

View file

@ -4,6 +4,9 @@
#pragma once
#include <functional>
#include "ggml.h"
enum cpu_feature {
CPU_FEATURE_NONE = 0,
CPU_FEATURE_DOTPROD = 1,
@ -26,26 +29,53 @@ struct kernel_info {
size_t (*get_nr)(void);
size_t (*get_kr)(void);
size_t (*get_sr)(void);
size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl);
size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl);
std::variant<
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
std::function<size_t(size_t m_idx, size_t k)>
> get_lhs_offset;
std::variant<
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
std::function<size_t(size_t n_idx, size_t k)>
> get_rhs_packed_offset;
size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride);
size_t (*get_dst_size)(size_t m, size_t n);
void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max);
std::variant<
std::function<void(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max)>,
std::function<void(size_t m, size_t n, size_t k, const void* lhs_packed, const void* rhs_packed, void* dst, size_t dst_stride_row,
size_t dst_stride_col, float clamp_min, float clamp_max)>
> run_kernel;
};
struct lhs_packing_info {
size_t (*get_offset)(size_t m_idx, size_t lhs_stride);
size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
size_t lhs_stride, void* lhs_packed);
std::variant<
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
std::function<size_t(size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr)>
> get_packed_offset;
std::variant<
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
std::function<size_t(size_t m, size_t k, size_t mr, size_t kr, size_t sr)>
> packed_size;
std::variant<
std::function<void(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
size_t lhs_stride, void* lhs_packed)>,
std::function<void(size_t m, size_t k, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const void* lhs, size_t lhs_stride,
void* lhs_packed)>
> pack_func;
};
struct rhs_packing_info {
size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl);
void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params);
std::variant<
std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>,
std::function<size_t(size_t n, size_t k)>
> packed_size;
std::variant<
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>,
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs,
const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)>
> pack_func;
};
struct ggml_kleidiai_kernels {
@ -55,6 +85,10 @@ struct ggml_kleidiai_kernels {
rhs_packing_info rhs_info;
cpu_feature required_cpu;
ggml_type lhs_type;
ggml_type rhs_type;
ggml_type op_type;
};
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features);
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor);
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features);

View file

@ -34,8 +34,9 @@
#include "ggml-common.h"
struct ggml_kleidiai_context {
cpu_feature features;
ggml_kleidiai_kernels * kernels;
} static ctx = { NULL };
} static ctx = { CPU_FEATURE_NONE, NULL };
static void init_kleidiai_context(void) {
@ -47,7 +48,7 @@ static void init_kleidiai_context(void) {
const char *env_var = getenv("GGML_KLEIDIAI_SME");
int sme_enabled = 0;
cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
@ -56,9 +57,9 @@ static void init_kleidiai_context(void) {
}
if (sme_enabled != 0) {
features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
}
ctx.kernels = ggml_kleidiai_select_kernels(features);
ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features);
}
ggml_critical_section_end();
}
@ -68,34 +69,215 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
return tensor->ne[dim];
}
template<typename Ret, typename Variant, typename... Args>
static Ret variant_call(const Variant & var, Args&&... args) {
return std::visit([&](auto&& func) -> Ret {
if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
return func(std::forward<Args>(args)...);
} else {
throw std::runtime_error("Invalid function type in variant_call");
}
}, var);
}
namespace ggml::cpu::kleidiai {
static size_t round_down(size_t x, size_t y) {
return y == 0 ? x : x - (x % y);
}
static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) {
size_t src_stride = rhs_stride / sizeof(uint16_t);
size_t dst_stride = n;
for (size_t k_idx = 0; k_idx < k; ++k_idx) {
for (size_t n_idx = 0; n_idx < n; ++n_idx) {
uint16_t v = *(src + k_idx + n_idx * src_stride);
*(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v);
}
}
}
class tensor_traits : public ggml::cpu::tensor_traits {
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
GGML_ASSERT(ctx.kernels);
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
GGML_ASSERT(kernels);
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
size_t k = op->src[0]->ne[0];
size_t n = op->src[0]->ne[1];
size_t m = op->src[1]->ne[1];
size_t mr = kernel->get_mr();
size_t kr = kernel->get_kr();
size_t sr = kernel->get_sr();
size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr);
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
k * n * sizeof(float) + n * sizeof(float);
} else {
GGML_ASSERT(false);
}
return true;
}
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
if (dst->op == GGML_OP_MUL_MAT) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
return compute_forward_q4_0(params, dst);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
return compute_forward_kv_cache(params, dst);
}
}
return false;
}
bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(ctx.kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
lhs_packing_info * lhs_info = &ctx.kernels->lhs_info;
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
GGML_ASSERT(kernel);
const int nth = params->nth;
const int ith = params->ith;
const int64_t lhs_batch_size0 = ne12;
const int64_t rhs_batch_size0 = ne02;
const int64_t batch_size = rhs_batch_size0;
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
const int64_t m = ne11 * r;
const int64_t n = ne01;
const int64_t k = ne00;
const size_t lhs_stride = src1->nb[1];
const size_t rhs_stride = src0->nb[1];
const size_t dst_stride = dst->nb[1];
const int64_t mr = static_cast<int64_t>(kernel->get_mr());
const int64_t nr = static_cast<int64_t>(kernel->get_nr());
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
GGML_ASSERT(wsize_required <= params->wsize);
uint8_t * lhs_packed = static_cast<uint8_t *>(params->wdata);
uint8_t * rhs_packed = lhs_packed + lhs_packed_size;
uint8_t * rhs_kxn = rhs_packed + rhs_packed_size;
uint8_t * bias = rhs_kxn + kxn_size;
for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
// LHS packing
{
const int64_t m_roundup_mr = kai_roundup(m, mr);
const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);
if (ith < num_threads) {
const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;
const int64_t m_start = ith * num_m_per_thread0;
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
}
}
// RHS packing
if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
// First thread to reach this point handles RHS packing
memset(bias, 0, n * sizeof(float));
transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);
variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
}
ggml_barrier(params->threadpool);
first_to_arrive.clear(std::memory_order_release);
// Perform the matmul
{
const int64_t m_to_process = m;
const int64_t m_start = 0;
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
const int64_t num_threads = KAI_MIN(n / n_step, nth);
if (ith < num_threads) {
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
const int64_t n_start = ith * num_n_per_thread0;
const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
const void * lhs_ptr = lhs_packed + lhs_packed_offset;
const void * rhs_ptr = rhs_packed + rhs_packed_offset;
float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
}
}
if (batch_idx != batch_size - 1) {
// This barrier is necessary when the batch size is larger than 1. While processing a batch,
// the work data buffer (params->wdata) is used as temporary storage which means that only
// a single batch can be processed at any given time. No barrier is needed for the last
// batch since GGML inserts a barrier between the execution of every operator.
ggml_barrier(params->threadpool);
}
}
return true;
}
bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = &kernels->lhs_info;
GGML_ASSERT(kernel);
@ -106,6 +288,14 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const size_t m = ne11;
const size_t n = ne01;
size_t mr = kernel->get_mr();
size_t kr = kernel->get_kr();
size_t sr = kernel->get_sr();
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
uint8_t * lhs_packed = (uint8_t*)params->wdata;
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
const size_t n_step = kernel->get_n_step();
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
const size_t n_start = ith * num_n_per_thread;
@ -115,14 +305,6 @@ class tensor_traits : public ggml::cpu::tensor_traits {
n_to_process = n - n_start;
}
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
uint8_t * lhs_packed = (uint8_t*)params->wdata;
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
size_t mr = kernel->get_mr();
size_t kr = kernel->get_kr();
size_t sr = kernel->get_sr();
// Calculate number of columns to be processed per thread
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
const size_t m_start = ith * num_m_per_thread;
@ -131,33 +313,32 @@ class tensor_traits : public ggml::cpu::tensor_traits {
m_to_process = m - m_start;
}
if(m_start < m) {
if (m_start < m) {
// Transform LHS
const size_t src_stride = src1->nb[1];
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr);
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
variant_call<void>(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
}
ggml_barrier(params->threadpool);
// Perform the operation
const size_t dst_stride = dst->nb[1];
const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr);
const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k, QK4_0);
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr,
dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
sizeof(float), -FLT_MAX, FLT_MAX);
return true;
}
return false;
}
public:
int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) {
@ -169,13 +350,13 @@ public:
size_t sr = ctx.kernels->gemm.get_sr();
#ifndef NDEBUG
const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0);
const size_t repacked_size = variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
#endif
struct kai_rhs_pack_qs4cxs1s0_param params;
params.lhs_zero_point = 1;
params.rhs_zero_point = 8;
ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, &params);
variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, &params);
return 0;
@ -189,7 +370,7 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc
}
} // namespace ggml::cpu::kleidiai
GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
GGML_UNUSED(buffer);
@ -238,12 +419,11 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b
namespace ggml::cpu::kleidiai {
class extra_buffer_type : ggml::cpu::extra_buffer_type {
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
if ( op->op == GGML_OP_MUL_MAT &&
if (op->op == GGML_OP_MUL_MAT &&
op->src[0]->type == GGML_TYPE_Q4_0 &&
op->src[0]->buffer &&
(ggml_n_dims(op->src[0]) == 2) &&
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels
) {
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
@ -260,6 +440,19 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
op->src[0]->op == GGML_OP_VIEW &&
(op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
op->src[1]->ne[1] > 1) {
if ((op->src[0]->nb[0] != 2) ||
(op->src[1]->nb[0] != 4) ||
(op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
return nullptr;
}
return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL);
}
}
return nullptr;
}

View file

@ -1,47 +1,61 @@
#include "acc.cuh"
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, int offset) {
const int i = blockDim.x * blockIdx.x + threadIdx.x;
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int64_t ne,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
const int64_t s11, const int64_t s12, const int64_t s13, const int64_t offset) {
const int64_t i = blockDim.x * blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
int src1_idx = i - offset;
int oz = src1_idx / nb2;
int oy = (src1_idx - (oz * nb2)) / nb1;
int ox = src1_idx % nb1;
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
} else {
dst[i] = x[i];
int64_t src1_idx = i - offset;
int64_t tmp = src1_idx;
const int64_t i13 = tmp / s13;
tmp -= i13 * s13;
const int64_t i12 = tmp / s12;
tmp -= i12 * s12;
const int64_t i11 = tmp / s11;
tmp -= i11 * s11;
const int64_t i10 = tmp;
float val = x[i];
if (src1_idx >= 0 && i10 < ne10 && i11 < ne11 && i12 < ne12 && i13 < ne13) {
val += y[((i13*ne12 + i12) * ne11 + i11) * ne10 + i10];
}
dst[i] = val;
}
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int64_t n_elements,
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
const int64_t s1, const int64_t s2, const int64_t s3, const int64_t offset, cudaStream_t stream) {
const int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, ne13, s1, s2, s3, offset);
}
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(dst->nb[0] == ggml_element_size(dst));
GGML_ASSERT(ggml_is_contiguously_allocated(dst));
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
const int64_t s1 = dst->op_params[0] / sizeof(float);
const int64_t s2 = dst->op_params[1] / sizeof(float);
const int64_t s3 = dst->op_params[2] / sizeof(float);
const int64_t offset = dst->op_params[3] / sizeof(float);
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], s1, s2, s3, offset, stream);
}

View file

@ -296,6 +296,25 @@ static __device__ void no_device_code(
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
#endif // __CUDA_ARCH__
// The compiler is always able to unroll loops if they contain continue expressions.
// In such cases loop unrolling can still be achieved via recursion:
template <int n>
struct ggml_cuda_unroll {
template <typename Func, typename... Args>
__device__ void operator()(const Func & f, Args... args) const {
f(n - 1, args...);
ggml_cuda_unroll<n - 1>{}(f, args...);
}
};
template <>
struct ggml_cuda_unroll<1> {
template <typename Func, typename... Args>
__device__ void operator()(const Func & f, Args... args) const {
f(0, args...);
}
};
template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE

View file

@ -2,6 +2,17 @@
#include "common.cuh"
static __device__ __forceinline__ unsigned int ggml_cuda_cvta_generic_to_shared(void * generic_ptr) {
#ifdef CP_ASYNC_AVAILABLE
return __cvta_generic_to_shared(generic_ptr);
#else
GGML_UNUSED(generic_ptr);
NO_DEVICE_CODE;
return 0;
#endif // CP_ASYNC_AVAILABLE
}
// Copies data from global to shared memory, cg == cache global.
// Both the src and dst pointers must be aligned to 16 bit.
// Shared memory uses 32 bit addressing, the pointer is passed as unsigned int.

View file

@ -516,7 +516,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
nullptr;
}
template<int D, int ncols1, int ncols2, int KQ_stride> // D == head size
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
@ -665,13 +665,13 @@ static void on_no_fattn_vec_case(const int D) {
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
GGML_ABORT("fatal error");
} else {
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
fprintf(stderr, "Unsupported KV type combination for head_size %d.\n", D);
fprintf(stderr, "Only f16 is supported.\n");
GGML_ABORT("fatal error");
}
}
template <int D, int ncols1, int ncols2, int KQ_stride>
template <int DV, int ncols1, int ncols2>
void launch_fattn(
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
@ -754,10 +754,13 @@ void launch_fattn(
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
const dim3 block_dim(warp_size, nwarps, 1);
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
dim3 blocks_num;
if (stream_k) {
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
const int max_blocks = 2*nsm;
const int max_blocks = max_blocks_per_sm*nsm;
const int tiles_nwaves = (ntiles_total + max_blocks - 1) / max_blocks;
const int tiles_efficiency_percent = 100 * ntiles_total / (max_blocks*tiles_nwaves);
@ -769,14 +772,11 @@ void launch_fattn(
blocks_num.y = 1;
blocks_num.z = 1;
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + D) * sizeof(float));
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
} else {
GGML_ASSERT(K->ne[1] % KQ_row_granularity == 0);
const int ntiles_KQ = K->ne[1] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
// parallel_blocks should be at least large enough to achieve max. occupancy for a single wave:
parallel_blocks = std::max((nsm * max_blocks_per_sm) / ntiles_total, 1);
@ -853,19 +853,19 @@ void launch_fattn(
if (stream_k) {
if (ntiles_total % blocks_num.x != 0) { // Fixup is only needed if the SMs work on fractional tiles.
const dim3 block_dim_combine(D, 1, 1);
const dim3 block_dim_combine(DV, 1, 1);
const dim3 blocks_num_combine = {blocks_num.x, ncols1, ncols2};
flash_attn_stream_k_fixup<D, ncols1, ncols2, KQ_stride>
flash_attn_stream_k_fixup<DV, ncols1, ncols2>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
}
} else if (parallel_blocks > 1) {
const dim3 block_dim_combine(D, 1, 1);
const dim3 block_dim_combine(DV, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], 1, blocks_num.z);
const size_t nbytes_shared_combine = parallel_blocks*sizeof(float2);
flash_attn_combine_results<D>
flash_attn_combine_results<DV>
<<<blocks_num_combine, block_dim_combine, nbytes_shared_combine, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data, parallel_blocks);
}

File diff suppressed because it is too large Load diff

View file

@ -307,7 +307,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
case 128: {
@ -315,7 +315,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
} break;
default: {

View file

@ -318,7 +318,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
case 128: {
@ -326,7 +326,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
constexpr int nwarps = 8;
constexpr size_t nbytes_shared = 0;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
launch_fattn<D, cols_per_block, 1, -1>
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
} break;
default: {

View file

@ -168,6 +168,7 @@ static __global__ void flash_attn_vec_ext_f16(
for (int j = 0; j < ncols; ++j) {
KQ[j*D + tid] = -HALF_MAX_HALF;
}
__syncthreads();
half2 VKQ[ncols] = {{0.0f, 0.0f}};
@ -315,7 +316,7 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
template <int D, ggml_type type_K, ggml_type type_V>

View file

@ -310,7 +310,7 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
template <int D, ggml_type type_K, ggml_type type_V>

View file

@ -490,7 +490,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, cols_per_block, 1, -1>(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size);
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size);
}
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View file

@ -8,58 +8,32 @@
#include "fattn-wmma-f16.cuh"
#include "fattn.cuh"
template <int D, int ncols2>
template <int DKQ, int DV, int ncols2>
static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
if constexpr (ncols2 <= 8) {
if (Q->ne[1] <= 8/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<D, 8/ncols2, ncols2>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 8/ncols2, ncols2>(ctx, dst);
return;
}
}
if (Q->ne[1] <= 16/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<D, 16/ncols2, ncols2>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 16/ncols2, ncols2>(ctx, dst);
return;
}
if (Q->ne[1] <= 32/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<D, 32/ncols2, ncols2>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 32/ncols2, ncols2>(ctx, dst);
return;
}
ggml_cuda_flash_attn_ext_mma_f16_case<D, 64/ncols2, ncols2>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 64/ncols2, ncols2>(ctx, dst);
}
template <int ncols2>
static void ggml_cuda_flash_attn_ext_mma_f16_switch_hs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 64, ncols2>(ctx, dst);
break;
case 80:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 80, ncols2>(ctx, dst);
break;
case 96:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 96, ncols2>(ctx, dst);
break;
case 112:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<112, ncols2>(ctx, dst);
break;
case 128:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<128, ncols2>(ctx, dst);
break;
case 256:
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<256, ncols2>(ctx, dst);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
template <int DKQ, int DV>
static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
@ -68,27 +42,79 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
const float use_gqa_opt = mask && max_bias == 0.0f;
const bool use_gqa_opt = mask && max_bias == 0.0f;
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
if (use_gqa_opt && gqa_ratio % 8 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<8>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 8>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio == 4) {
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<4>(ctx, dst);
if (use_gqa_opt && gqa_ratio % 4 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 4>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio == 2) {
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<2>(ctx, dst);
if (use_gqa_opt && gqa_ratio % 2 == 0) {
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 2>(ctx, dst);
return;
}
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<1>(ctx, dst);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<DKQ, DV, 1>(ctx, dst);
}
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
switch (Q->ne[0]) {
case 64:
GGML_ASSERT(V->ne[0] == 64);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 64, 64>(ctx, dst);
break;
case 80:
GGML_ASSERT(V->ne[0] == 80);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 80, 80>(ctx, dst);
break;
case 96:
GGML_ASSERT(V->ne[0] == 96);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 96, 96>(ctx, dst);
break;
case 112:
GGML_ASSERT(V->ne[0] == 112);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<112, 112>(ctx, dst);
break;
case 128:
GGML_ASSERT(V->ne[0] == 128);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<128, 128>(ctx, dst);
break;
case 256:
GGML_ASSERT(V->ne[0] == 256);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst);
break;
case 576: {
// For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels.
GGML_ASSERT(V->ne[0] == 512);
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
const bool use_gqa_opt = mask && max_bias == 0.0f;
GGML_ASSERT(use_gqa_opt);
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
GGML_ASSERT(gqa_ratio % 16 == 0);
ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst);
} break;
default:
GGML_ABORT("fatal error");
break;
}
}
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
@ -299,7 +325,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion;
const bool can_use_vector_kernel = Q->ne[0] % (2*warp_size) == 0;
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
if (prec == GGML_PREC_DEFAULT) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);

View file

@ -1910,13 +1910,19 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
// If src0 is a temporary compute buffer it may have some padding that needs to be cleared for mul_mat_vec_q or mul_mat_q.
// But if src0 is also a view of another tensor then this cannot be done safely because it may overwrite valid tensor data.
// Therefore, in such cases use cuBLAS.
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE
&& ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src;
bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
bool use_mul_mat_q = ggml_is_quantized(src0->type)
bool use_mul_mat_q = ggml_is_quantized(src0->type) && !bad_padding_clear
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
bool any_gpus_with_slow_fp16 = false;
@ -3220,16 +3226,16 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return false;
#endif // FLASH_ATTN_AVAILABLE
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
// different head sizes of K and V are not supported yet
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
if (!new_mma_available(cc) || cc < GGML_CUDA_CC_AMPERE) {
return false;
}
const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0;
}
if (op->src[0]->ne[0] == 192) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek MLA
return false;
}
if (op->src[0]->ne[3] != 1) {
return false;
}

View file

@ -91,11 +91,11 @@ void ggml_cuda_mul_mat_q(
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}

View file

@ -515,11 +515,11 @@ void ggml_cuda_mul_mat_vec_q(
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}

View file

@ -31,7 +31,7 @@ void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
const float * src0_d = (const float *) src0->data;
float * dst_d = (float *) dst->data;

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 1, 8);
DECL_FATTN_MMA_F16_CASE(80, 1, 8);
DECL_FATTN_MMA_F16_CASE(96, 1, 8);
DECL_FATTN_MMA_F16_CASE(112, 1, 8);
DECL_FATTN_MMA_F16_CASE(128, 1, 8);
DECL_FATTN_MMA_F16_CASE(256, 1, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 1, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 1, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 1, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 1, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 1, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 1, 8);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 16, 1);
DECL_FATTN_MMA_F16_CASE(80, 16, 1);
DECL_FATTN_MMA_F16_CASE(96, 16, 1);
DECL_FATTN_MMA_F16_CASE(112, 16, 1);
DECL_FATTN_MMA_F16_CASE(128, 16, 1);
DECL_FATTN_MMA_F16_CASE(256, 16, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 16, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 16, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 16, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 1);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 16, 2);
DECL_FATTN_MMA_F16_CASE(80, 16, 2);
DECL_FATTN_MMA_F16_CASE(96, 16, 2);
DECL_FATTN_MMA_F16_CASE(112, 16, 2);
DECL_FATTN_MMA_F16_CASE(128, 16, 2);
DECL_FATTN_MMA_F16_CASE(256, 16, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 16, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 16, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 16, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 2);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 16, 4);
DECL_FATTN_MMA_F16_CASE(80, 16, 4);
DECL_FATTN_MMA_F16_CASE(96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 16, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 16, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 16, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 16, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 16, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 16, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 16, 4);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 2, 4);
DECL_FATTN_MMA_F16_CASE(80, 2, 4);
DECL_FATTN_MMA_F16_CASE(96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 2, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 2, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 2, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 2, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 4);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 2, 8);
DECL_FATTN_MMA_F16_CASE(80, 2, 8);
DECL_FATTN_MMA_F16_CASE(96, 2, 8);
DECL_FATTN_MMA_F16_CASE(112, 2, 8);
DECL_FATTN_MMA_F16_CASE(128, 2, 8);
DECL_FATTN_MMA_F16_CASE(256, 2, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 2, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 2, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 2, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 2, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 2, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 2, 8);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 32, 1);
DECL_FATTN_MMA_F16_CASE(80, 32, 1);
DECL_FATTN_MMA_F16_CASE(96, 32, 1);
DECL_FATTN_MMA_F16_CASE(112, 32, 1);
DECL_FATTN_MMA_F16_CASE(128, 32, 1);
DECL_FATTN_MMA_F16_CASE(256, 32, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 32, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 32, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 32, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 32, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 32, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 32, 1);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 32, 2);
DECL_FATTN_MMA_F16_CASE(80, 32, 2);
DECL_FATTN_MMA_F16_CASE(96, 32, 2);
DECL_FATTN_MMA_F16_CASE(112, 32, 2);
DECL_FATTN_MMA_F16_CASE(128, 32, 2);
DECL_FATTN_MMA_F16_CASE(256, 32, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 32, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 32, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 32, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 32, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 32, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 32, 2);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 4, 2);
DECL_FATTN_MMA_F16_CASE(80, 4, 2);
DECL_FATTN_MMA_F16_CASE(96, 4, 2);
DECL_FATTN_MMA_F16_CASE(112, 4, 2);
DECL_FATTN_MMA_F16_CASE(128, 4, 2);
DECL_FATTN_MMA_F16_CASE(256, 4, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 4, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 4, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 4, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 2);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 4, 4);
DECL_FATTN_MMA_F16_CASE(80, 4, 4);
DECL_FATTN_MMA_F16_CASE(96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 4, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 4, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 4, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 4, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 4);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 4, 8);
DECL_FATTN_MMA_F16_CASE(80, 4, 8);
DECL_FATTN_MMA_F16_CASE(96, 4, 8);
DECL_FATTN_MMA_F16_CASE(112, 4, 8);
DECL_FATTN_MMA_F16_CASE(128, 4, 8);
DECL_FATTN_MMA_F16_CASE(256, 4, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 4, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 4, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 4, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 4, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 4, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 4, 8);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 64, 1);
DECL_FATTN_MMA_F16_CASE(80, 64, 1);
DECL_FATTN_MMA_F16_CASE(96, 64, 1);
DECL_FATTN_MMA_F16_CASE(112, 64, 1);
DECL_FATTN_MMA_F16_CASE(128, 64, 1);
DECL_FATTN_MMA_F16_CASE(256, 64, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 64, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 64, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 64, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 64, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 64, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 64, 1);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 1);
DECL_FATTN_MMA_F16_CASE(80, 8, 1);
DECL_FATTN_MMA_F16_CASE(96, 8, 1);
DECL_FATTN_MMA_F16_CASE(112, 8, 1);
DECL_FATTN_MMA_F16_CASE(128, 8, 1);
DECL_FATTN_MMA_F16_CASE(256, 8, 1);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 1);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 1);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 1);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 1);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 1);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 1);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 2);
DECL_FATTN_MMA_F16_CASE(80, 8, 2);
DECL_FATTN_MMA_F16_CASE(96, 8, 2);
DECL_FATTN_MMA_F16_CASE(112, 8, 2);
DECL_FATTN_MMA_F16_CASE(128, 8, 2);
DECL_FATTN_MMA_F16_CASE(256, 8, 2);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 2);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 2);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 2);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 2);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 2);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 2);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 4);
DECL_FATTN_MMA_F16_CASE(80, 8, 4);
DECL_FATTN_MMA_F16_CASE(96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 8, 4);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 4);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 4);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 4);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 4);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 4);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 4);

View file

@ -2,9 +2,9 @@
#include "../fattn-mma-f16.cuh"
DECL_FATTN_MMA_F16_CASE(64, 8, 8);
DECL_FATTN_MMA_F16_CASE(80, 8, 8);
DECL_FATTN_MMA_F16_CASE(96, 8, 8);
DECL_FATTN_MMA_F16_CASE(112, 8, 8);
DECL_FATTN_MMA_F16_CASE(128, 8, 8);
DECL_FATTN_MMA_F16_CASE(256, 8, 8);
DECL_FATTN_MMA_F16_CASE(64, 64, 8, 8);
DECL_FATTN_MMA_F16_CASE(80, 80, 8, 8);
DECL_FATTN_MMA_F16_CASE(96, 96, 8, 8);
DECL_FATTN_MMA_F16_CASE(112, 112, 8, 8);
DECL_FATTN_MMA_F16_CASE(128, 128, 8, 8);
DECL_FATTN_MMA_F16_CASE(256, 256, 8, 8);

View file

@ -18,7 +18,7 @@ SOURCE_FATTN_MMA_START = """// This file has been autogenerated by generate_cu_f
"""
SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size}, {ncols1}, {ncols2});\n"
SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size_kq}, {head_size_v}, {ncols1}, {ncols2});\n"
TYPES_MMQ = [
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
@ -57,18 +57,21 @@ for vkq_size in [16, 32]:
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
for ncols in [8, 16, 32, 64, 128]:
for ncols2 in [1, 2, 4, 8]:
for ncols in [8, 16, 32, 64]:
for ncols2 in [1, 2, 4, 8, 16]:
if ncols2 > ncols:
continue
ncols1 = ncols // ncols2
if ncols == 128:
continue # Too much register pressure.
with open(f"fattn-mma-f16-instance-ncols1_{ncols1}-ncols2_{ncols2}.cu", "w") as f:
f.write(SOURCE_FATTN_MMA_START)
for head_size in [64, 80, 96, 112, 128, 256]:
if ncols == 128 and head_size == 256:
continue # Needs too much shared memory.
f.write(SOURCE_FATTN_MMA_CASE.format(ncols1=ncols1, ncols2=ncols2, head_size=head_size))
for head_size_kq in [64, 80, 96, 112, 128, 256, 576]:
if head_size_kq != 576 and ncols2 == 16:
continue
if head_size_kq == 576 and ncols2 != 16:
continue
head_size_v = head_size_kq if head_size_kq != 576 else 512
f.write(SOURCE_FATTN_MMA_CASE.format(ncols1=ncols1, ncols2=ncols2, head_size_kq=head_size_kq, head_size_v=head_size_v))
for type in TYPES_MMQ:
with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f:

View file

@ -207,6 +207,10 @@ typedef struct {
float attn_factor;
float beta_fast;
float beta_slow;
int32_t sect_0;
int32_t sect_1;
int32_t sect_2;
int32_t sect_3;
} ggml_metal_kargs_rope;
typedef struct {

View file

@ -332,6 +332,10 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32,
GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16,
GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32,
GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16,
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
@ -1275,6 +1279,10 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, mul_mm_id_iq4_xs_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32, rope_multi_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16, rope_multi_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32, rope_vision_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16, rope_vision_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
@ -1637,16 +1645,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
case GGML_OP_ROPE:
{
const int mode = ((const int32_t *) op->op_params)[2];
if (mode & GGML_ROPE_TYPE_MROPE) {
return false;
}
if (mode & GGML_ROPE_TYPE_VISION) {
return false;
}
return true;
}
case GGML_OP_IM2COL:
return op->src[0]->type == GGML_TYPE_F16;
case GGML_OP_POOL_1D:
@ -3826,6 +3825,7 @@ static bool ggml_metal_encode_node(
} break;
case GGML_OP_ROPE:
{
// make sure we have one or more position id(ne10) per token(ne02)
GGML_ASSERT(ne10 % ne02 == 0);
GGML_ASSERT(ne10 >= ne02);
@ -3853,19 +3853,41 @@ static bool ggml_metal_encode_node(
memcpy(&beta_slow, (const int32_t *) dst->op_params + 10, sizeof(float));
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
// mrope
const int sect_0 = ((const int32_t *) dst->op_params)[11];
const int sect_1 = ((const int32_t *) dst->op_params)[12];
const int sect_2 = ((const int32_t *) dst->op_params)[13];
const int sect_3 = ((const int32_t *) dst->op_params)[14];
id<MTLComputePipelineState> pipeline = nil;
if (!is_neox) {
if (is_neox) {
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
default: GGML_ABORT("fatal error");
};
} else if (is_mrope && !is_vision) {
GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16].pipeline; break;
default: GGML_ABORT("fatal error");
};
} else if (is_vision) {
GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16].pipeline; break;
default: GGML_ABORT("fatal error");
};
} else {
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
default: GGML_ABORT("fatal error");
};
}
@ -3896,6 +3918,10 @@ static bool ggml_metal_encode_node(
/*.attn_factor =*/ attn_factor,
/*.beta_fast =*/ beta_fast,
/*.beta_slow =*/ beta_slow,
/* sect_0 =*/ sect_0,
/* sect_1 =*/ sect_1,
/* sect_2 =*/ sect_2,
/* sect_3 =*/ sect_3,
};
[encoder setComputePipelineState:pipeline];

View file

@ -2713,8 +2713,148 @@ kernel void kernel_rope_neox(
}
}
template<typename T>
kernel void kernel_rope_multi(
constant ggml_metal_kargs_rope & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 tptg [[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int i3 = tgpig[2];
const int i2 = tgpig[1];
const int i1 = tgpig[0];
float corr_dims[2];
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
device const int32_t * pos = (device const int32_t *) src1;
const float inv_ndims = -1.f/args.n_dims;
float cos_theta;
float sin_theta;
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
if (i0 < args.n_dims) {
const int ic = i0/2;
// mrope theta calculations
// note: the rest is the same as kernel_rope_neox
const int sect_dims = args.sect_0 + args.sect_1 + args.sect_2 + args.sect_3;
const int sec_w01 = args.sect_0 + args.sect_1; // end of section 1
const int sec_w012 = args.sect_0 + args.sect_1 + args.sect_2; // end of section 2
const int sector = ic % sect_dims;
float theta_base;
if (sector < args.sect_0) {
theta_base = (float) pos[i2];
} else if (sector < sec_w01) {
theta_base = (float) pos[i2 + args.ne02];
} else if (sector < sec_w012) {
theta_base = (float) pos[i2 + args.ne02 * 2];
} else {
theta_base = (float) pos[i2 + args.ne02 * 3];
}
// end of mrope
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0);
const float x0 = src[0];
const float x1 = src[args.n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[args.n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
template<typename T>
kernel void kernel_rope_vision(
constant ggml_metal_kargs_rope & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 tptg [[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int i3 = tgpig[2];
const int i2 = tgpig[1];
const int i1 = tgpig[0];
float corr_dims[2];
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
device const int32_t * pos = (device const int32_t *) src1;
const float inv_ndims = -1.f/args.n_dims;
float cos_theta;
float sin_theta;
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
if (i0 < 2*args.n_dims) { // different from kernel_rope_multi
const int ic = i0/2;
// mrope theta calculations (only support 2 dimensions)
const int sect_dims = args.sect_0 + args.sect_1;
const int sector = ic % sect_dims;
float p;
float theta_base;
if (sector < args.sect_1) {
p = (float) sector;
theta_base = (float) pos[i2];
} else {
p = (float) sector - args.sect_0;
theta_base = (float) pos[i2 + args.ne02];
}
const float theta = theta_base * pow(args.freq_base, 2.0f * inv_ndims * p);
// end of mrope
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0);
const float x0 = src[0];
const float x1 = src[args.n_dims]; // different from kernel_rope_multi
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[args.n_dims] = x0*sin_theta + x1*cos_theta; // different from kernel_rope_multi
} else {
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
typedef decltype(kernel_rope_norm<float>) kernel_rope_norm_t;
typedef decltype(kernel_rope_neox<float>) kernel_rope_neox_t;
typedef decltype(kernel_rope_multi<float>) kernel_rope_multi_t;
typedef decltype(kernel_rope_vision<float>) kernel_rope_vision_t;
template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm<float>;
template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm<half>;
@ -2722,6 +2862,12 @@ template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_
template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox<float>;
template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox<half>;
template [[host_name("kernel_rope_multi_f32")]] kernel kernel_rope_multi_t kernel_rope_multi<float>;
template [[host_name("kernel_rope_multi_f16")]] kernel kernel_rope_multi_t kernel_rope_multi<half>;
template [[host_name("kernel_rope_vision_f32")]] kernel kernel_rope_vision_t kernel_rope_vision<float>;
template [[host_name("kernel_rope_vision_f16")]] kernel kernel_rope_vision_t kernel_rope_vision<half>;
typedef void (im2col_t)(
device const float * x,
device char * dst,

View file

@ -32,12 +32,15 @@ struct ggml_opt_context {
ggml_cgraph * allocated_graph = nullptr;
ggml_cgraph * allocated_graph_copy = nullptr;
struct ggml_context * ctx_static = nullptr;
struct ggml_context * ctx_static_cpu = nullptr;
struct ggml_context * ctx_cpu = nullptr;
struct ggml_context * ctx_compute = nullptr;
struct ggml_context * ctx_copy = nullptr;
ggml_backend_buffer_t buf_static = nullptr;
ggml_backend_buffer_t buf_static_cpu = nullptr;
ggml_backend_buffer_t buf_cpu = nullptr;
std::mt19937 rng;
enum ggml_opt_loss_type loss_type;
enum ggml_opt_build_type build_type;
enum ggml_opt_build_type build_type_alloc;
struct ggml_tensor * inputs = nullptr;
struct ggml_tensor * outputs = nullptr;
@ -50,6 +53,11 @@ struct ggml_opt_context {
struct ggml_cgraph * gf = nullptr;
struct ggml_cgraph * gb_grad = nullptr;
struct ggml_cgraph * gb_opt = nullptr;
bool static_graphs = false;
bool eval_ready = false;
std::vector<struct ggml_tensor *> grad_accs;
std::vector<struct ggml_tensor *> grad_m;
std::vector<struct ggml_tensor *> grad_v;
int64_t iter = 1;
int32_t opt_period = 1;
@ -73,7 +81,13 @@ struct ggml_opt_result {
// ====== Dataset ======
ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, int64_t ndata, int64_t ndata_shard) {
ggml_opt_dataset_t ggml_opt_dataset_init(
enum ggml_type type_data,
enum ggml_type type_label,
int64_t ne_datapoint,
int64_t ne_label,
int64_t ndata,
int64_t ndata_shard) {
GGML_ASSERT(ne_datapoint > 0);
GGML_ASSERT(ne_label >= 0);
GGML_ASSERT(ndata > 0);
@ -92,11 +106,11 @@ ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label,
result->ctx = ggml_init(params);
}
result->data = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_datapoint, ndata);
result->data = ggml_new_tensor_2d(result->ctx, type_data, ne_datapoint, ndata);
result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata;
if (ne_label > 0) {
result->labels = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_label, ndata);
result->labels = ggml_new_tensor_2d(result->ctx, type_label, ne_label, ndata);
result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata;
} else {
result->labels = nullptr;
@ -119,6 +133,10 @@ void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) {
delete dataset;
}
int64_t ggml_opt_dataset_ndata(ggml_opt_dataset_t dataset) {
return dataset->ndata;
}
struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) {
return dataset->data;
}
@ -144,6 +162,8 @@ void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor *
GGML_ASSERT( data_batch && ggml_is_contiguous(data_batch));
GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch));
GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
GGML_ASSERT( data_batch->type == dataset->data->type);
GGML_ASSERT(!labels_batch || labels_batch->type == dataset->labels->type);
const size_t nb_data_batch = ggml_nbytes(data_batch);
GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
@ -171,6 +191,31 @@ void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor *
}
}
void ggml_opt_dataset_get_batch_host(ggml_opt_dataset_t dataset, void * data_batch, size_t nb_data_batch, void * labels_batch, int64_t ibatch) {
GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;
GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));
for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];
const char * ptr_data = (const char *) dataset->data->data + ishard *dataset->nbs_data;
char * ptr_data_batch = (char *) data_batch + ishard_batch*dataset->nbs_data;
memcpy(ptr_data_batch, ptr_data, dataset->nbs_data);
if (!labels_batch) {
continue;
}
const char * ptr_labels = (const char *) dataset->labels->data + ishard *dataset->nbs_labels;
char * ptr_labels_batch = (char *) labels_batch + ishard_batch*dataset->nbs_labels;
memcpy(ptr_labels_batch, ptr_labels, dataset->nbs_labels);
}
}
// ====== Model / Context ======
struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) {
@ -187,17 +232,18 @@ struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * us
return result;
}
struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata) {
return *((struct ggml_opt_optimizer_params *) userdata);
}
struct ggml_opt_params ggml_opt_default_params(
ggml_backend_sched_t backend_sched,
struct ggml_context * ctx_compute,
struct ggml_tensor * inputs,
struct ggml_tensor * outputs,
enum ggml_opt_loss_type loss_type) {
return {
/*backend_sched =*/ backend_sched,
/*ctx_compute =*/ ctx_compute,
/*inputs =*/ inputs,
/*logits =*/ outputs,
/*ctx_compute =*/ nullptr,
/*inputs =*/ nullptr,
/*logits =*/ nullptr,
/*loss_type =*/ loss_type,
/*build_type =*/ GGML_OPT_BUILD_TYPE_OPT,
/*opt_period =*/ 1,
@ -266,195 +312,246 @@ static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) {
return dst;
}
static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) {
GGML_ASSERT(graph);
if (opt_ctx->allocated_graph == graph) {
return;
}
static void ggml_opt_build(ggml_opt_context_t opt_ctx) {
GGML_ASSERT(opt_ctx->ctx_compute && "no compute context set, either use static graphs or set one with ggml_opt_prepare_alloc");
GGML_ASSERT((!opt_ctx->static_graphs || opt_ctx->inputs->data) && "when using static graphs the inputs must be allocated statically");
ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph
const bool accumulate = opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD &&
!(opt_ctx->static_graphs && opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period == 1);
{
ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ggml_free(opt_ctx->ctx_copy);
opt_ctx->ctx_copy = ggml_init(params);
}
opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph);
ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
opt_ctx->allocated_graph = graph;
}
ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
ggml_opt_context_t result = new struct ggml_opt_context;
result->backend_sched = params.backend_sched;
result->ctx_compute = params.ctx_compute;
result->inputs = params.inputs;
result->outputs = params.outputs;
result->opt_period = params.opt_period;
result->get_opt_pars = params.get_opt_pars;
result->get_opt_pars_ud = params.get_opt_pars_ud;
GGML_ASSERT(result->inputs->data && "the inputs must be allocated statically");
GGML_ASSERT(result->opt_period >= 1);
const bool accumulate = params.build_type == GGML_OPT_BUILD_TYPE_GRAD ||
(params.build_type == GGML_OPT_BUILD_TYPE_OPT && result->opt_period > 1);
ggml_set_input(result->inputs);
ggml_set_output(result->outputs);
result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass.
ggml_build_forward_expand(result->gf, result->outputs);
ggml_set_input(opt_ctx->inputs);
ggml_set_output(opt_ctx->outputs);
int n_param = 0;
for (int i = 0; i < result->gf->n_nodes; ++i) {
if (result->gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
for (int i = 0; i < opt_ctx->gf->n_nodes; ++i) {
const struct ggml_tensor * node = opt_ctx->gf->nodes[i];
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
n_param++;
}
GGML_ASSERT(!(node->flags & GGML_TENSOR_FLAG_LOSS) && "support for extra loss terms not implemented");
}
{
if (!opt_ctx->ctx_static) {
// The static context is used for:
// - gradients (1 tensor per param if using gradient accumulation)
// - gradients (1 per loss, 1 tensor per param if using gradient accumulation)
// - optimizer momenta (2 tensors per param)
// - labels
// - loss + its gradient (up to 5 tensors)
// - pred
// - ncorrect (2 tensors).
const size_t tensors_per_param = (accumulate ? 1 : 0) + (params.build_type == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0);
const size_t size_meta = (tensors_per_param*n_param + 9) * ggml_tensor_overhead();
// - labels (if using static graphs)
// - loss (if using static graphs, up to 5 tensors)
// - pred (if using static graphs)
// - ncorrect (if using static graphs, 2 tensors).
constexpr size_t n_loss = 1;
const size_t tensors_per_param = (accumulate ? 1 : 0) +
(opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0);
const size_t tensors_const = opt_ctx->static_graphs ? 9 : 0;
const size_t size_meta = (n_loss + tensors_per_param*n_param + tensors_const) * ggml_tensor_overhead();
struct ggml_init_params params = {
/*.mem_size =*/ size_meta,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
result->ctx_static = ggml_init(params);
opt_ctx->ctx_static = ggml_init(params);
}
GGML_ASSERT(opt_ctx->build_type <= opt_ctx->build_type_alloc);
{
// The static cpu context is used for:
// - optimizer parameters (1 for the entire context)
// The cpu context is allocated statically if using static graphs, dynamically otherwise.
// It is used for:
// - optimizer parameters (1 shared for all optimizer invocations)
const size_t size_meta = 1 * ggml_tensor_overhead();
struct ggml_init_params params = {
/*.mem_size =*/ size_meta,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
result->ctx_static_cpu = ggml_init(params);
ggml_free(opt_ctx->ctx_cpu);
opt_ctx->ctx_cpu = ggml_init(params);
ggml_backend_buffer_free(opt_ctx->buf_cpu);
opt_ctx->buf_cpu = nullptr;
}
struct ggml_context * ctx_results = opt_ctx->static_graphs ? opt_ctx->ctx_static : opt_ctx->ctx_compute;
switch (params.loss_type) {
switch (opt_ctx->loss_type) {
case GGML_OPT_LOSS_TYPE_MEAN: {
result->loss = ggml_sum(result->ctx_static, result->outputs);
ggml_set_name(result->loss, "loss_sum");
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
result->loss = ggml_scale(result->ctx_static, result->loss, scale);
ggml_set_name(result->loss, "loss_mean");
result->loss_per_datapoint = true;
opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs);
ggml_set_name(opt_ctx->loss, "loss_sum");
const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs));
opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale);
ggml_set_name(opt_ctx->loss, "loss_mean");
opt_ctx->loss_per_datapoint = true;
break;
}
case GGML_OPT_LOSS_TYPE_SUM: {
result->loss = ggml_sum(result->ctx_static, result->outputs);
ggml_set_name(result->loss, "loss_sum");
result->loss_per_datapoint = false;
opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs);
ggml_set_name(opt_ctx->loss, "loss_sum");
opt_ctx->loss_per_datapoint = false;
break;
}
case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: {
result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
ggml_set_input(result->labels);
ggml_set_name(result->labels, "labels");
result->loss = ggml_cross_entropy_loss(result->ctx_static, result->outputs, result->labels);
ggml_set_name(result->loss, "loss_cross_entropy");
if (result->opt_period > 1) {
result->loss = ggml_scale(result->ctx_static, result->loss, 1.0f / result->opt_period);
ggml_set_name(result->loss, "loss_cross_entropy_scaled");
opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs);
ggml_set_input(opt_ctx->labels);
ggml_set_name(opt_ctx->labels, "labels");
opt_ctx->loss = ggml_cross_entropy_loss(ctx_results, opt_ctx->outputs, opt_ctx->labels);
ggml_set_name(opt_ctx->loss, "loss_cross_entropy");
if (opt_ctx->opt_period > 1) {
opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, 1.0f / opt_ctx->opt_period);
ggml_set_name(opt_ctx->loss, "loss_cross_entropy_scaled");
}
result->loss_per_datapoint = true;
opt_ctx->loss_per_datapoint = true;
break;
}
case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: {
result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
ggml_set_input(result->labels);
ggml_set_name(result->labels, "labels");
result->loss = ggml_sub(result->ctx_static, result->outputs, result->labels);
ggml_set_name(result->loss, "loss_error");
result->loss = ggml_sqr(result->ctx_static, result->loss);
ggml_set_name(result->loss, "loss_squared_error");
result->loss = ggml_sum(result->ctx_static, result->loss);
ggml_set_name(result->loss, "loss_sum_squared_error");
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
result->loss = ggml_scale(result->ctx_static, result->loss, scale);
ggml_set_name(result->loss, "loss_mean_squared_error");
result->loss_per_datapoint = true;
opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs);
ggml_set_input(opt_ctx->labels);
ggml_set_name(opt_ctx->labels, "labels");
opt_ctx->loss = ggml_sub(ctx_results, opt_ctx->outputs, opt_ctx->labels);
ggml_set_name(opt_ctx->loss, "loss_error");
opt_ctx->loss = ggml_sqr(ctx_results, opt_ctx->loss);
ggml_set_name(opt_ctx->loss, "loss_squared_error");
opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->loss);
ggml_set_name(opt_ctx->loss, "loss_sum_squared_error");
const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs));
opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale);
ggml_set_name(opt_ctx->loss, "loss_mean_squared_error");
opt_ctx->loss_per_datapoint = true;
break;
}
}
ggml_set_output(result->loss);
ggml_set_loss(result->loss);
ggml_build_forward_expand(result->gf, result->loss);
ggml_set_output(opt_ctx->loss);
ggml_set_loss(opt_ctx->loss);
ggml_build_forward_expand(opt_ctx->gf, opt_ctx->loss);
result->pred = ggml_argmax(result->ctx_static, result->outputs);
ggml_set_name(result->pred, "pred");
ggml_set_output(result->pred);
ggml_build_forward_expand(result->gf, result->pred);
if (opt_ctx->loss_type == GGML_OPT_LOSS_TYPE_CROSS_ENTROPY) {
opt_ctx->pred = ggml_argmax(ctx_results, opt_ctx->outputs);
ggml_set_name(opt_ctx->pred, "pred");
ggml_set_output(opt_ctx->pred);
ggml_build_forward_expand(opt_ctx->gf, opt_ctx->pred);
if (result->labels) {
result->ncorrect = ggml_count_equal(result->ctx_static, result->pred, ggml_argmax(result->ctx_static, result->labels));
ggml_set_name(result->ncorrect, "ncorrect");
ggml_set_output(result->ncorrect);
ggml_build_forward_expand(result->gf, result->ncorrect);
} else {
result->ncorrect = nullptr;
opt_ctx->ncorrect = ggml_count_equal(ctx_results, opt_ctx->pred, ggml_argmax(ctx_results, opt_ctx->labels));
ggml_set_name(opt_ctx->ncorrect, "ncorrect");
ggml_set_output(opt_ctx->ncorrect);
ggml_build_forward_expand(opt_ctx->gf, opt_ctx->ncorrect);
}
if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
return result;
if (opt_ctx->buf_static) {
if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
return;
}
} else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_FORWARD) {
opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(
opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
return;
}
if (opt_ctx->grad_accs.empty()) {
GGML_ASSERT(opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD);
const int n_nodes = opt_ctx->gf->n_nodes;
opt_ctx->grad_accs.resize(n_nodes);
for (int i = 0; i < n_nodes; ++i) {
ggml_tensor * node = opt_ctx->gf->nodes[i];
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
opt_ctx->grad_accs[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
} else {
opt_ctx->grad_accs[i] = nullptr;
}
}
if (opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_OPT) {
opt_ctx->grad_m.resize(n_nodes);
opt_ctx->grad_v.resize(n_nodes);
for (int i = 0; i < n_nodes; ++i) {
ggml_tensor * node = opt_ctx->gf->nodes[i];
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
opt_ctx->grad_m[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
opt_ctx->grad_v[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
} else {
opt_ctx->grad_m[i] = nullptr;
opt_ctx->grad_v[i] = nullptr;
}
}
}
}
// gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients.
result->gb_grad = ggml_graph_dup(result->ctx_compute, result->gf);
ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate);
opt_ctx->gb_grad = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gf, /*force_grads =*/ true);
ggml_build_backward_expand(opt_ctx->ctx_compute, opt_ctx->gb_grad, opt_ctx->grad_accs.data());
if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) {
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
ggml_graph_reset(result->gb_grad);
if (opt_ctx->buf_static) {
if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_GRAD) {
return;
}
} else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_GRAD) {
opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
ggml_graph_reset(opt_ctx->gb_grad);
}
GGML_ASSERT(opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT);
// gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
opt_ctx->gb_opt = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gb_grad, /*force_grads =*/ true);
opt_ctx->adamw_params = ggml_new_tensor_1d(opt_ctx->ctx_cpu, GGML_TYPE_F32, 7);
ggml_set_input(opt_ctx->adamw_params);
ggml_set_name(opt_ctx->adamw_params, "adamw_params");
for (int i = opt_ctx->gf->n_nodes-1; i >= 0; --i) {
struct ggml_tensor * node = opt_ctx->gb_opt->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(opt_ctx->gb_opt, node);
if (grad && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
struct ggml_tensor * m = opt_ctx->grad_m[i];
struct ggml_tensor * v = opt_ctx->grad_v[i];
struct ggml_tensor * opt_step = ggml_opt_step_adamw(opt_ctx->ctx_compute, node, grad, m, v, opt_ctx->adamw_params);
ggml_set_name(m, (std::string("AdamW m for ") + std::string(node->name)).c_str());
ggml_set_name(v, (std::string("AdamW v for ") + std::string(node->name)).c_str());
ggml_set_name(opt_step, (std::string("AdamW step for ") + std::string(node->name)).c_str());
ggml_build_forward_expand(opt_ctx->gb_opt, opt_step);
}
}
if (!opt_ctx->buf_static) {
opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(
opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
ggml_graph_reset(opt_ctx->gb_opt);
}
opt_ctx->buf_cpu = ggml_backend_alloc_ctx_tensors_from_buft(opt_ctx->ctx_cpu, ggml_backend_cpu_buffer_type());
}
ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
ggml_opt_context_t result = new struct ggml_opt_context;
result->backend_sched = params.backend_sched;
result->ctx_compute = params.ctx_compute;
result->loss_type = params.loss_type;
result->build_type = params.build_type;
result->build_type_alloc = params.build_type;
result->inputs = params.inputs;
result->outputs = params.outputs;
result->opt_period = params.opt_period;
result->get_opt_pars = params.get_opt_pars;
result->get_opt_pars_ud = params.get_opt_pars_ud;
GGML_ASSERT(result->opt_period >= 1);
result->static_graphs = result->ctx_compute;
if (!result->static_graphs) {
GGML_ASSERT(!result->inputs);
GGML_ASSERT(!result->outputs);
return result;
}
GGML_ASSERT(params.build_type == GGML_OPT_BUILD_TYPE_OPT);
GGML_ASSERT(result->inputs);
GGML_ASSERT(result->outputs);
// gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
result->gb_opt = ggml_graph_dup(result->ctx_compute, result->gb_grad);
result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass.
ggml_build_forward_expand(result->gf, result->outputs);
result->adamw_params = ggml_new_tensor_1d(result->ctx_static_cpu, GGML_TYPE_F32, 7);
ggml_set_input(result->adamw_params);
ggml_set_name(result->adamw_params, "adamw_params");
for (int i = result->gf->n_nodes-1; i >= 0; --i) {
struct ggml_tensor * node = result->gb_opt->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(result->gb_opt, node);
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
struct ggml_tensor * m = ggml_dup_tensor(result->ctx_static, node);
struct ggml_tensor * v = ggml_dup_tensor(result->ctx_static, node);
struct ggml_tensor * opt_step = ggml_opt_step_adamw(result->ctx_compute, node, grad, m, v, result->adamw_params);
ggml_build_forward_expand(result->gb_opt, opt_step);
}
}
result->buf_static = ggml_backend_alloc_ctx_tensors(
result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type());
ggml_graph_reset(result->gb_opt);
ggml_opt_build(result);
return result;
}
@ -464,9 +561,9 @@ void ggml_opt_free(ggml_opt_context_t opt_ctx) {
return;
}
ggml_backend_buffer_free(opt_ctx->buf_static);
ggml_backend_buffer_free(opt_ctx->buf_static_cpu);
ggml_backend_buffer_free(opt_ctx->buf_cpu);
ggml_free(opt_ctx->ctx_static);
ggml_free(opt_ctx->ctx_static_cpu);
ggml_free(opt_ctx->ctx_cpu);
delete opt_ctx;
}
@ -582,8 +679,79 @@ void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, doubl
// ====== Computation ======
static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_opt_result * result) {
if (graph != opt_ctx->gf) {
void ggml_opt_prepare_alloc(
ggml_opt_context_t opt_ctx,
struct ggml_context * ctx_compute,
struct ggml_cgraph * gf,
struct ggml_tensor * inputs,
struct ggml_tensor * outputs) {
GGML_ASSERT(!opt_ctx->static_graphs);
opt_ctx->ctx_compute = ctx_compute;
opt_ctx->gf = gf;
opt_ctx->inputs = inputs;
opt_ctx->outputs = outputs;
}
void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward) {
GGML_ASSERT(!opt_ctx->eval_ready);
if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period > 1 && opt_ctx->opt_i == 0) {
ggml_graph_reset(opt_ctx->gb_grad);
}
if (backward) {
const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
opt_ctx->build_type = opt_i_next == 0 ? GGML_OPT_BUILD_TYPE_OPT : GGML_OPT_BUILD_TYPE_GRAD;
} else {
opt_ctx->build_type = GGML_OPT_BUILD_TYPE_FORWARD;
}
if (!opt_ctx->static_graphs) {
ggml_opt_build(opt_ctx);
}
struct ggml_cgraph * graph = nullptr;
switch (opt_ctx->build_type) {
case GGML_OPT_BUILD_TYPE_FORWARD: {
graph = opt_ctx->gf;
} break;
case GGML_OPT_BUILD_TYPE_GRAD: {
graph = opt_ctx->gb_grad;
} break;
case GGML_OPT_BUILD_TYPE_OPT: {
graph = opt_ctx->gb_opt;
} break;
}
GGML_ASSERT(graph);
if (opt_ctx->allocated_graph == graph) {
opt_ctx->eval_ready = true;
return;
}
ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph
if (opt_ctx->static_graphs) {
ggml_init_params params = {
/*.mem_size =*/ graph->size*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph->size, graph->grads),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ggml_free(opt_ctx->ctx_copy);
opt_ctx->ctx_copy = ggml_init(params);
opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph);
} else {
opt_ctx->allocated_graph_copy = graph;
}
ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
opt_ctx->allocated_graph = graph;
opt_ctx->eval_ready = true;
}
void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result) {
GGML_ASSERT(opt_ctx->eval_ready);
if (opt_ctx->allocated_graph == opt_ctx->gb_opt) {
struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);
GGML_ASSERT(opt_pars.adamw.alpha > 0.0f);
@ -609,9 +777,19 @@ static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph,
adamw_par_data[6] = beta2h;
}
ggml_opt_alloc_graph(opt_ctx, graph);
ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt;
opt_ctx->opt_i = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
if (!opt_ctx->static_graphs) {
opt_ctx->gf = nullptr;
opt_ctx->gb_grad = nullptr;
opt_ctx->gb_opt = nullptr;
opt_ctx->allocated_graph = nullptr;
opt_ctx->allocated_graph_copy = nullptr;
}
opt_ctx->eval_ready = false;
if (!result) {
return;
@ -635,12 +813,14 @@ static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph,
ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss));
result->loss.push_back(loss);
if (opt_ctx->pred) {
GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32);
std::vector<int32_t> pred(ndata);
ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred));
result->pred.insert(result->pred.end(), pred.begin(), pred.end());
}
if (!opt_ctx->labels || result->ncorrect < 0) {
if (!opt_ctx->ncorrect || result->ncorrect < 0) {
result->ncorrect = -1;
return;
}
@ -652,26 +832,6 @@ static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph,
result->ncorrect += ncorrect;
}
void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
ggml_opt_eval_graph(opt_ctx, opt_ctx->gf, result);
}
void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
if (opt_ctx->opt_period == 1) {
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
return;
}
const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
if (opt_i_next == 0) {
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
ggml_opt_reset(opt_ctx, /*optimizer =*/ false);
} else {
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_grad, result);
}
opt_ctx->opt_i = opt_i_next;
}
// ====== High-Level Functions ======
void ggml_opt_epoch(
@ -700,16 +860,18 @@ void ggml_opt_epoch(
int64_t ibatch = 0;
int64_t t_loop_start = ggml_time_us();
for (; ibatch < ibatch_split; ++ibatch) {
ggml_opt_alloc(opt_ctx, /*backward =*/ true);
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
ggml_opt_forward_backward(opt_ctx, result_train);
ggml_opt_eval(opt_ctx, result_train);
if (callback_train) {
callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start);
}
}
t_loop_start = ggml_time_us();
for (; ibatch < nbatches; ++ibatch) {
ggml_opt_alloc(opt_ctx, /*backward =*/ false);
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
ggml_opt_forward(opt_ctx, result_eval);
ggml_opt_eval(opt_ctx, result_eval);
if (callback_eval) {
callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start);
}
@ -726,13 +888,26 @@ void ggml_opt_epoch_callback_progress_bar(
int64_t t_start_us) {
fprintf(stderr, "%s[", train ? "train: " : "val: ");
constexpr int64_t bar_length = 25;
// The progress bar consists of partially filled blocks, unicode has 8 separate fill levels.
constexpr int64_t bar_length = 8;
const int64_t ibatch8 = 8 * ibatch;
for (int64_t j = 0; j < bar_length; ++j) {
const int64_t ibatch_j = ibatch_max * j/bar_length;
if (ibatch_j < ibatch) {
fprintf(stderr, "=");
} else if (ibatch_max * (j - 1)/bar_length < ibatch) {
fprintf(stderr, ">");
if (ibatch_max * (8*j + 8) / bar_length < ibatch8) {
fprintf(stderr, "\u2588"); // full block
} else if (ibatch_max * (8*j + 7) / bar_length < ibatch8) {
fprintf(stderr, "\u2589"); // 7/8 filled
} else if (ibatch_max * (8*j + 6) / bar_length < ibatch8) {
fprintf(stderr, "\u258A"); // 6/8 filled
} else if (ibatch_max * (8*j + 5) / bar_length < ibatch8) {
fprintf(stderr, "\u258B"); // 5/8 filled
} else if (ibatch_max * (8*j + 4) / bar_length < ibatch8) {
fprintf(stderr, "\u258C"); // 4/8 filled
} else if (ibatch_max * (8*j + 3) / bar_length < ibatch8) {
fprintf(stderr, "\u258D"); // 3/8 filled
} else if (ibatch_max * (8*j + 2) / bar_length < ibatch8) {
fprintf(stderr, "\u258E"); // 2/8 filled
} else if (ibatch_max * (8*j + 1) / bar_length < ibatch8) {
fprintf(stderr, "\u258F"); // 1/8 filled
} else {
fprintf(stderr, " ");
}
@ -764,8 +939,8 @@ void ggml_opt_epoch_callback_progress_bar(
const int64_t t_eta_m = t_eta_s / 60;
t_eta_s -= t_eta_m * 60;
fprintf(stderr, "| data=%06" PRId64 "/%06" PRId64 ", loss=%.6lf+-%.6lf, accuracy=%.2lf+-%.2lf%%, "
"t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 ", ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 "]\r",
fprintf(stderr, "] data=%07" PRId64 "/%07" PRId64 " loss=%.5lf±%.5lf acc=%.2lf±%.2lf%% "
"t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " \r",
idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc,
t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s);
if (ibatch == ibatch_max) {
@ -806,7 +981,10 @@ void ggml_opt_fit(
int64_t epoch = 1;
ggml_opt_params params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type);
ggml_opt_params params = ggml_opt_default_params(backend_sched, loss_type);
params.ctx_compute = ctx_compute;
params.inputs = inputs;
params.outputs = outputs;
params.opt_period = opt_period;
params.get_opt_pars = get_opt_pars;
params.get_opt_pars_ud = &epoch;

View file

@ -0,0 +1,61 @@
//
// MIT license
// Copyright (C) 2025 Codeplay Software Ltd.
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#ifndef GGML_SYCL_QUANTS_HPP
#define GGML_SYCL_QUANTS_HPP
#include "ggml-common.h"
#include "ggml.h"
namespace ggml_sycl_reordered {
// The reordered block moves quants (qs) and scales(d) to two
// uniform regions of memory that is contiguous in the same tensor.
// What this means is that instead of having:
// [d0, qs0] [d1, qs1] [d2, qs2] ... [dN, qsN]
// We have:
// [qs0, qs1, qs2, ..., qsN] [d0, d1, d2, ..., dN]
//
// Notes: out-of-bounds qs will run into d values
// Aligment relies on the allocated size of qs
template <ggml_type type> struct block_q_t;
// qk number of weights / quants in a block
// qr number of weights in a byte (described as 'before dequantization')
// for quantization types that has low and high bits split, qr is calculated with
// using the lower bits, e.g for Q6 quants QR6 is 2
// qi number of 32 bit integers needed to represent all the quants from a block (`qs` field)
// See ggml-common.h to see how these are calculated
template <> struct block_q_t<GGML_TYPE_Q4_0> {
struct traits {
static constexpr uint32_t qk = QK4_0;
static constexpr uint32_t qi = QI4_0;
static constexpr uint32_t qr = QR4_0;
static constexpr uint32_t vdr_mmvq = 2;
};
static constexpr int get_block_offset(const int block_index) { return block_index * (traits::qk / traits::qr); }
static constexpr int get_d_offset(int nrows, int ncols, const int block_index) {
return (ncols / traits::qr * nrows) + block_index * sizeof(ggml_half);
}
static constexpr int block_to_q8_1_ratio() { return traits::qk / QK8_1; }
};
} // namespace ggml_sycl_reordered
#endif // GGML_SYCL_QUANTS_HPP

View file

@ -5512,7 +5512,7 @@ static void ggml_compute_backward(
// tensor = src0 * 1 + src1 * 0
if (src0_needs_grads) {
// dsrc0 = dtensor * 1
ggml_add_or_set(ctx, cgraph, isrc0, grad);
ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad, src0));
}
if (src1_needs_grads) {
// dsrc1 = dtensor * 0 -> noop
@ -5793,10 +5793,9 @@ void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor *
}
void ggml_build_backward_expand(
struct ggml_context * ctx_static,
struct ggml_context * ctx_compute,
struct ggml_context * ctx,
struct ggml_cgraph * cgraph,
bool accumulate) {
struct ggml_tensor ** grad_accs) {
GGML_ASSERT(cgraph->n_nodes > 0);
GGML_ASSERT(cgraph->grads);
GGML_ASSERT(cgraph->grad_accs);
@ -5869,21 +5868,24 @@ void ggml_build_backward_expand(
GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
GGML_ASSERT(igrad != GGML_HASHSET_FULL);
GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad));
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node);
cgraph->grads[igrad] = cgraph->grad_accs[igrad];
ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name);
const size_t ihash = ggml_hash_find(&cgraph->visited_hash_set, node);
GGML_ASSERT(ihash != GGML_HASHSET_FULL);
GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, ihash));
if (grad_accs && grad_accs[i]) {
cgraph->grad_accs[ihash] = grad_accs[i];
cgraph->grads[ihash] = cgraph->grad_accs[ihash];
} else if (node->flags & GGML_TENSOR_FLAG_LOSS) {
// loss tensors always need a gradient accumulator
cgraph->grad_accs[ihash] = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
cgraph->grads[ihash] = cgraph->grad_accs[ihash];
}
grads_needed[igrad] = true;
grads_needed[ihash] = true;
}
for (int i = n_nodes_f - 1; i >= 0; --i) {
// inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
// use allocator to automatically make inplace operations
ggml_compute_backward(ctx_compute, cgraph, i, grads_needed);
ggml_compute_backward(ctx, cgraph, i, grads_needed);
}
free(grads_needed);
@ -6029,8 +6031,8 @@ void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
}
}
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads) {
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads || force_grads);
ggml_graph_cpy(cgraph, result);
return result;
}
@ -6049,6 +6051,9 @@ struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
}
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
if (!cgraph) {
return;
}
GGML_ASSERT(cgraph->grads != NULL);
for (int i = 0; i < cgraph->n_nodes; i++) {
@ -6358,8 +6363,8 @@ void ggml_set_output(struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
}
void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
GGML_UNUSED(ctx); // TODO: remove this parameter
void ggml_set_param(struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->op == GGML_OP_NONE);
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
}

View file

@ -483,7 +483,9 @@ class MODEL_TENSOR(IntEnum):
V_ENC_EMBD_PATCH = auto()
V_ENC_EMBD_POS = auto()
V_ENC_ATTN_Q = auto()
V_ENC_ATTN_Q_NORM = auto()
V_ENC_ATTN_K = auto()
V_ENC_ATTN_K_NORM = auto()
V_ENC_ATTN_V = auto()
V_ENC_INPUT_NORM = auto()
V_ENC_OUTPUT = auto()
@ -491,6 +493,8 @@ class MODEL_TENSOR(IntEnum):
V_ENC_FFN_UP = auto()
V_ENC_FFN_GATE = auto()
V_ENC_FFN_DOWN = auto()
V_LAYER_SCALE_1 = auto()
V_LAYER_SCALE_2 = auto()
V_PRE_NORM = auto()
V_POST_NORM = auto()
V_MM_INP_NORM = auto()
@ -740,7 +744,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_ENC_EMBD_PATCH: "v.patch_embd",
MODEL_TENSOR.V_ENC_EMBD_POS: "v.position_embd",
MODEL_TENSOR.V_ENC_ATTN_Q: "v.blk.{bid}.attn_q",
MODEL_TENSOR.V_ENC_ATTN_Q_NORM: "v.blk.{bid}.attn_q_norm",
MODEL_TENSOR.V_ENC_ATTN_K: "v.blk.{bid}.attn_k",
MODEL_TENSOR.V_ENC_ATTN_K_NORM: "v.blk.{bid}.attn_k_norm",
MODEL_TENSOR.V_ENC_ATTN_V: "v.blk.{bid}.attn_v",
MODEL_TENSOR.V_ENC_INPUT_NORM: "v.blk.{bid}.ln1",
MODEL_TENSOR.V_ENC_OUTPUT: "v.blk.{bid}.attn_out",
@ -748,6 +754,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_ENC_FFN_UP: "v.blk.{bid}.ffn_up",
MODEL_TENSOR.V_ENC_FFN_GATE: "v.blk.{bid}.ffn_gate",
MODEL_TENSOR.V_ENC_FFN_DOWN: "v.blk.{bid}.ffn_down",
MODEL_TENSOR.V_LAYER_SCALE_1: "v.blk.{bid}.ls1",
MODEL_TENSOR.V_LAYER_SCALE_2: "v.blk.{bid}.ls2",
MODEL_TENSOR.V_PRE_NORM: "v.pre_ln",
MODEL_TENSOR.V_POST_NORM: "v.post_ln",
MODEL_TENSOR.V_MM_INP_PROJ: "mm.input_projection",
@ -778,7 +786,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_ENC_EMBD_PATCH,
MODEL_TENSOR.V_ENC_EMBD_POS,
MODEL_TENSOR.V_ENC_ATTN_Q,
MODEL_TENSOR.V_ENC_ATTN_Q_NORM,
MODEL_TENSOR.V_ENC_ATTN_K,
MODEL_TENSOR.V_ENC_ATTN_K_NORM,
MODEL_TENSOR.V_ENC_ATTN_V,
MODEL_TENSOR.V_ENC_INPUT_NORM,
MODEL_TENSOR.V_ENC_OUTPUT,
@ -786,6 +796,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_ENC_FFN_UP,
MODEL_TENSOR.V_ENC_FFN_GATE,
MODEL_TENSOR.V_ENC_FFN_DOWN,
MODEL_TENSOR.V_LAYER_SCALE_1,
MODEL_TENSOR.V_LAYER_SCALE_2,
MODEL_TENSOR.V_PRE_NORM,
MODEL_TENSOR.V_POST_NORM,
MODEL_TENSOR.V_MM_INP_PROJ,
@ -2167,6 +2179,7 @@ class VisionProjectorType:
PIXTRAL = "pixtral"
QWEN2VL = "qwen2vl_merger"
QWEN25VL = "qwen2.5vl_merger"
INTERNVL = "internvl"
# Items here are (block size, type size)

View file

@ -905,6 +905,7 @@ class TensorNameMap:
MODEL_TENSOR.V_MMPROJ_MLP: (
"model.mm_projector.mlp.mlp.{bid}",
"mlp1.{bid}", # InternVL
),
MODEL_TENSOR.V_MMPROJ_PEG: (
@ -937,6 +938,10 @@ class TensorNameMap:
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
),
MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
),
MODEL_TENSOR.V_ENC_ATTN_K: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
"vpm.encoder.layers.{bid}.self_attn.k_proj",
@ -945,6 +950,10 @@ class TensorNameMap:
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
),
MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
),
MODEL_TENSOR.V_ENC_ATTN_V: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
"vpm.encoder.layers.{bid}.self_attn.v_proj",
@ -955,6 +964,7 @@ class TensorNameMap:
MODEL_TENSOR.V_ENC_INPUT_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
"vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
"vpm.encoder.layers.{bid}.layer_norm1",
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
@ -963,6 +973,7 @@ class TensorNameMap:
MODEL_TENSOR.V_ENC_OUTPUT: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
"vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
"vpm.encoder.layers.{bid}.self_attn.out_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
@ -971,6 +982,7 @@ class TensorNameMap:
MODEL_TENSOR.V_ENC_OUTPUT_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
"vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
"vpm.encoder.layers.{bid}.layer_norm2",
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
@ -1000,6 +1012,14 @@ class TensorNameMap:
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
),
MODEL_TENSOR.V_LAYER_SCALE_1: (
"vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
),
MODEL_TENSOR.V_LAYER_SCALE_2: (
"vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
),
MODEL_TENSOR.V_PRE_NORM: (
"vision_tower.vision_model.pre_layrnorm",
"vision_tower.ln_pre", # pixtral

View file

@ -6,6 +6,7 @@
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
#include "ggml-opt.h"
#include <stddef.h>
#include <stdint.h>
@ -114,6 +115,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
};
enum llama_rope_type {
@ -364,6 +366,7 @@ extern "C" {
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
bool op_offload; // whether to offload host tensor operations to device
};
// model quantization parameters
@ -445,6 +448,10 @@ extern "C" {
size_t n_paths,
struct llama_model_params params);
LLAMA_API void llama_model_save_to_file(
const struct llama_model * model,
const char * path_model);
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
"use llama_model_free instead");
@ -1433,6 +1440,37 @@ extern "C" {
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
//
// training
//
// function that returns whether or not a given tensor contains trainable parameters
typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata);
// always returns true
LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata);
struct llama_opt_params {
uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0
llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters
void * param_filter_ud; // userdata for determining which tensors contain trainable parameters
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
};
LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params);
LLAMA_API void llama_opt_epoch(
struct llama_context * lctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
#ifdef __cplusplus
}
#endif

View file

@ -64,6 +64,7 @@ Current version indicated by LITEVER below.
--img_save_mono:url("");
--img_load:url("");
--img_delete:url("");
--img_delete_mono:url("");
--img_download:url("");
--img_mic:url("");
--img_mic_live:url("");
@ -2132,7 +2133,7 @@ Current version indicated by LITEVER below.
color: #3bf723;
}
.color_lightgreen {
color: #b6ffa6;
color: #6db95e;
}
.color_offwhite {
color: #bedae9;
@ -3146,6 +3147,7 @@ Current version indicated by LITEVER below.
var last_request_str = "No Requests Available"; //full context of last submitted request
var last_response_obj = null;
var lastcheckgenkey = ""; //for checking polled-streaming unique id when generating in kcpp
var kai_poll_recoverykey = ""; //for recovering a lost polled streaming in case of disconnect.
var globalabortcontroller = null;
var passed_ai_warning_local = false;
var welcome = "";
@ -4947,6 +4949,33 @@ Current version indicated by LITEVER below.
console.log("AbortController Not Supported: " + e);
}
}
function show_last_incomplete_kai_syncpoll_request()
{
if(kai_poll_recoverykey=="")
{
return;
}
hide_msgbox();
fetch(custom_kobold_endpoint + koboldcpp_check_endpoint, {
method: 'POST',
headers: get_kobold_header(),
body: JSON.stringify({
"genkey": kai_poll_recoverykey
}),
})
.then((response) => response.json())
.then((data) => {
//makes sure a delayed response doesnt arrive late and mess up
if (data && data.results != null && data.results.length > 0 && data.results[0].text) {
let recovered = data.results[0].text;
msgbox(recovered,"Recovered Last Response");
}
})
.catch((error) => {
console.error('Error:', error);
});
kai_poll_recoverykey = "";
}
function kobold_api_sync_req(sub_endpt,submit_payload,trackedgenid)
{
let reqOpt = {
@ -4987,6 +5016,7 @@ Current version indicated by LITEVER below.
//offer to abort
msgboxYesNo("Attempt to abort existing request?","Send Abort Command?",()=>{
lastcheckgenkey = "";
kai_poll_recoverykey = "";
abort_generation();
},null);
}
@ -4998,9 +5028,18 @@ Current version indicated by LITEVER below.
console.error('Error:', error);
if(error.name!="AbortError") //aborts are silent
{
if(synchro_pending_stream!="" && lastcheckgenkey!="")
{
kai_poll_recoverykey = lastcheckgenkey;
}
flush_streaming_text();
if(kai_poll_recoverykey!="")
{
msgbox(`Error while submitting prompt: ${error}<br><br><a href="#" onclick="show_last_incomplete_kai_syncpoll_request()" class="color_blueurl">Click Here</a> to attempt to recover the last response. This is not guaranteed to work.`,"Error Encountered",true);
}else{
msgbox("Error while submitting prompt: " + error);
}
}
clear_poll_flags();
render_gametext();
});
@ -14886,9 +14925,11 @@ Current version indicated by LITEVER below.
if((custom_kobold_endpoint != "" && is_using_kcpp_with_streaming()))
{
lastcheckgenkey = "KCPP"+(Math.floor(1000 + Math.random() * 9000)).toString();
kai_poll_recoverykey = "";
submit_payload.params.genkey = lastcheckgenkey;
}else{
lastcheckgenkey = "";
kai_poll_recoverykey = "";
}
//v2 api specific fields
@ -15354,6 +15395,7 @@ Current version indicated by LITEVER below.
targetep = pollinations_text_endpoint;
oai_payload.private = true;
oai_payload.referrer = "koboldai";
oai_payload.seed = Math.floor(Math.random() * 99999999);
}
if(is_browser_supports_sse() && localsettings.tokenstreammode!=0)
@ -21569,7 +21611,7 @@ Current version indicated by LITEVER below.
<div style="padding:2px;font-size:14px;margin-left:8px;font-weight:600;line-height:1.1;margin-top:12px">Quick Slot Load</div>
<hr style="margin-top:4px;margin-bottom:6px" />
<div class="corpoleftpanelitemsinner" id="corpoleftpanelitemsinner"></div>
<div style="margin-top: auto; margin-bottom:2px; width: 230px;"><div onclick="quicksave()" class="corpo_leftpanel_btn" type="button" style="width:110px;padding-left: 44px;display:inline-block;background-image: var(--img_save_mono);">Save</div><div onclick="quickdelete()" class="corpo_leftpanel_btn red" type="button" style="width:110px;padding-left: 44px;display:inline-block;background-image: var(--img_delete);">Delete</div></div>
<div style="margin-top: auto; margin-bottom:2px; width: 230px;"><div onclick="quicksave()" class="corpo_leftpanel_btn" type="button" style="width:110px;padding-left: 44px;display:inline-block;background-image: var(--img_save_mono);">Save</div><div onclick="quickdelete()" class="corpo_leftpanel_btn red" type="button" style="width:110px;padding-left: 44px;display:inline-block;background-image: var(--img_delete_mono);">Delete</div></div>
</div>
</div>
<button title="Show Corpo Side Panel" class="corpo_leftpanel_open mainnav" onclick="show_corpo_leftpanel(true)"><div class="corpo_arrow_right"></div></button>
@ -23346,6 +23388,7 @@ Current version indicated by LITEVER below.
<div><input type="checkbox" id="useoainonstandard" title="Send Non-Standard Fields">
<div class="box-label">Non-Standard Fields</div></div>
</div>
<div class="todoremove color_yellow">Looking for the Streaming Toggle? It's now in Advanced Settings -> Streaming!</div>
<span id="useoaichatcomplbox" class="hidden" onload="toggleoaichatcompl();">
<br>
Main Message Role:
@ -23482,6 +23525,7 @@ Current version indicated by LITEVER below.
<div class="box-label">Allow Thinking</div>
</div>
</div>
<div class="todoremove color_yellow">Looking for the Streaming Toggle? It's now in Advanced Settings -> Streaming!</div>
</div>
<div id="coherecustom" class="menutext hidden">
Uses Cohere's models through their own API.<br><br>

View file

@ -52,7 +52,7 @@ logit_bias_max = 512
dry_seq_break_max = 128
# global vars
KcppVersion = "1.91"
KcppVersion = "1.92"
showdebug = True
kcpp_instance = None #global running instance
global_memory = {"tunnel_url": "", "restart_target":"", "input_to_exit":False, "load_complete":False}

View file

@ -253,6 +253,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
std::vector<ggml_backend_buffer_type_t> buft_extra;
{
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
@ -291,6 +294,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
buft = ggml_backend_dev_buffer_type(cpu_dev);
break;

View file

@ -93,6 +93,7 @@ llama_context::llama_context(
}
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
cparams.op_offload = params.op_offload;
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
@ -243,7 +244,7 @@ llama_context::llama_context(
}
}
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel));
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel, cparams.op_offload));
if (pipeline_parallel) {
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
@ -358,7 +359,9 @@ llama_context::llama_context(
}
}
llama_context::~llama_context() = default;
llama_context::~llama_context() {
ggml_opt_free(opt_ctx);
}
void llama_context::synchronize() {
ggml_backend_sched_synchronize(sched.get());
@ -1787,10 +1790,13 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
}
}
if (memory) {
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_read(io);
}
return io.n_bytes();
}
@ -1798,9 +1804,11 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
GGML_UNUSED(seq_id);
if (memory) {
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_write(io, seq_id);
}
return io.n_bytes();
}
@ -1808,9 +1816,11 @@ size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id s
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
GGML_UNUSED(seq_id);
if (memory) {
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_read(io, seq_id);
}
return io.n_bytes();
}
@ -1838,6 +1848,215 @@ void llama_context::perf_reset() {
t_p_eval_us = n_p_eval = 0;
}
//
// training
//
static void llama_set_param(struct ggml_tensor * tensor, llama_opt_param_filter param_filter, void * userdata) {
if (!tensor || tensor->type != GGML_TYPE_F32) {
return;
}
if (!param_filter(tensor, userdata)) {
return;
}
if (strcmp(tensor->name, "token_embd.weight") == 0) {
return; // FIXME
}
if (strcmp(tensor->name, "rope_freqs.weight") == 0) {
return; // FIXME
}
ggml_set_param(tensor);
}
void llama_context::opt_init(struct llama_model * model, struct llama_opt_params lopt_params) {
GGML_ASSERT(!opt_ctx);
model->hparams.n_ctx_train = lopt_params.n_ctx_train > 0 ? lopt_params.n_ctx_train : n_ctx();
const uint32_t n_batch = std::min(this->n_batch(), model->hparams.n_ctx_train);
const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);
GGML_ASSERT(model->hparams.n_ctx_train % n_batch == 0);
GGML_ASSERT(n_batch % n_ubatch == 0);
ggml_opt_params opt_params = ggml_opt_default_params(sched.get(), GGML_OPT_LOSS_TYPE_CROSS_ENTROPY);
opt_params.opt_period = n_batch / n_ubatch;
opt_params.get_opt_pars = lopt_params.get_opt_pars;
opt_params.get_opt_pars_ud = lopt_params.get_opt_pars_ud;
opt_ctx = ggml_opt_init(opt_params);
llama_opt_param_filter param_filter = lopt_params.param_filter;
void * param_filter_ud = lopt_params.param_filter_ud;
//llama_set_param(model->tok_embd, param_filter, param_filter_ud); // FIXME
llama_set_param(model->type_embd, param_filter, param_filter_ud);
llama_set_param(model->pos_embd, param_filter, param_filter_ud);
llama_set_param(model->tok_norm, param_filter, param_filter_ud);
llama_set_param(model->tok_norm_b, param_filter, param_filter_ud);
llama_set_param(model->output_norm, param_filter, param_filter_ud);
llama_set_param(model->output_norm_b, param_filter, param_filter_ud);
llama_set_param(model->output, param_filter, param_filter_ud);
llama_set_param(model->output_b, param_filter, param_filter_ud);
llama_set_param(model->output_norm_enc, param_filter, param_filter_ud);
llama_set_param(model->cls, param_filter, param_filter_ud);
llama_set_param(model->cls_b, param_filter, param_filter_ud);
llama_set_param(model->cls_out, param_filter, param_filter_ud);
llama_set_param(model->cls_out_b, param_filter, param_filter_ud);
for (struct llama_layer & layer : model->layers) {
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
llama_set_param(reinterpret_cast<struct ggml_tensor **>(&layer)[i], param_filter, param_filter_ud);
}
}
}
void llama_context::opt_epoch_iter(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
const std::vector<llama_token> & tokens,
const std::vector<llama_token> & labels_sparse,
llama_batch & batch,
ggml_opt_epoch_callback callback,
bool train,
int64_t idata_in_loop,
int64_t ndata_in_loop,
int64_t t_loop_start) {
GGML_ASSERT(opt_ctx);
const uint32_t n_ctx = llama_model_n_ctx_train(&model);
const uint32_t n_batch = std::min(this->n_batch(), n_ctx);
const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->clear();
llama_kv_cache_guard kv_guard(kv_self);
for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) {
batch.n_tokens = n_batch;
for (uint32_t pos_batch = 0; pos_batch < n_batch; ++pos_batch) {
batch.token [pos_batch] = tokens[pos_ctx + pos_batch];
batch.pos [pos_batch] = pos_ctx + pos_batch;
batch.n_seq_id[pos_batch] = 1;
batch.seq_id [pos_batch][0] = 0;
batch.logits [pos_batch] = true;
}
const auto n_tokens_all = batch.n_tokens;
n_queued_tokens += n_tokens_all;
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
embd_seq.clear();
int64_t n_outputs_all = n_tokens_all;
llama_sbatch sbatch = kv_self->sbatch_init(batch, /*logits_all =*/ true);
// reserve output buffer
if (output_reserve(n_outputs_all) < n_outputs_all) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all);
GGML_ABORT("TODO: handle this error");
};
for (uint32_t pos_batch = 0; pos_batch < n_batch; pos_batch += n_ubatch) {
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
n_outputs = ubatch.n_tokens;
// TODO: not sure if this is needed
if (!kv_self->find_slot(ubatch)) {
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
GGML_ABORT("TODO: handle this error");
}
auto * gf = graph_init();
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);
struct ggml_context * ctx_compute_opt;
{
const size_t size_gf = ggml_graph_size(gf);
const size_t size_meta = 4*size_gf*ggml_tensor_overhead() + 2*ggml_graph_overhead_custom(size_gf, /*grads = */ true);
struct ggml_init_params params = {
/*.mem_size =*/ size_meta,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ctx_compute_opt = ggml_init(params);
}
ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits());
ggml_opt_alloc(opt_ctx, train);
res->set_inputs(&ubatch);
{
struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
GGML_ASSERT(labels->ne[1] == n_ubatch);
ggml_set_zero(labels);
const float onef = 1.0f;
for (uint32_t pos_ubatch = 0; pos_ubatch < n_ubatch; ++pos_ubatch) {
const uint32_t ilabel = pos_ctx + pos_batch + pos_ubatch;
GGML_ASSERT(labels_sparse[ilabel] < labels->ne[0]);
ggml_backend_tensor_set(labels, &onef, (pos_ubatch*labels->ne[0] + labels_sparse[ilabel])*sizeof(float), sizeof(float));
}
}
ggml_opt_eval(opt_ctx, result);
if (callback) {
callback(train, opt_ctx, dataset, result, idata_in_loop + (pos_ctx + pos_batch)/n_ubatch + 1, ndata_in_loop, t_loop_start);
}
ggml_free(ctx_compute_opt);
}
}
kv_guard.commit();
}
void llama_context::opt_epoch(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval) {
const uint32_t n_ctx = this->n_ctx();
const uint32_t n_batch = std::min(cparams.n_batch, n_ctx);
const uint32_t n_ubatch = std::min(cparams.n_ubatch, n_batch);
const int64_t ndata = ggml_opt_dataset_ndata(dataset);
GGML_ASSERT(idata_split >= 0);
GGML_ASSERT(idata_split <= ndata);
const uint32_t ubatch_per_ctx = n_ctx / n_ubatch;
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
std::vector<llama_token> tokens(n_ctx);
std::vector<llama_token> labels_sparse(n_ctx);
int64_t idata = 0;
int64_t t_loop_start = ggml_time_us();
int64_t ndata_in_loop = idata_split*ubatch_per_ctx;
for (; idata < idata_split; ++idata) {
constexpr bool train = true;
const int64_t idata_in_loop = idata*ubatch_per_ctx;
ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
opt_epoch_iter(dataset, result_train, tokens, labels_sparse, batch,
callback_train, train, idata_in_loop, ndata_in_loop, t_loop_start);
}
t_loop_start = ggml_time_us();
ndata_in_loop = (ndata - idata_split)*ubatch_per_ctx;
for (; idata < ndata; ++idata) {
constexpr bool train = false;
const int64_t idata_in_loop = (idata - idata_split)*ubatch_per_ctx;
ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
opt_epoch_iter(dataset, result_eval, tokens, labels_sparse, batch,
callback_eval, train, idata_in_loop, ndata_in_loop, t_loop_start);
}
llama_batch_free(batch);
}
//
// interface implementation
//
@ -1871,6 +2090,7 @@ llama_context_params llama_context_default_params() {
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
/*.op_offload =*/ true,
};
return result;
@ -2455,3 +2675,34 @@ void llama_perf_context_print(const llama_context * ctx) {
void llama_perf_context_reset(llama_context * ctx) {
ctx->perf_reset();
}
//
// training
//
bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata) {
GGML_UNUSED(tensor);
GGML_UNUSED(userdata);
return true;
}
void llama_opt_init(struct llama_context * ctx, struct llama_model * model, struct llama_opt_params lopt_params) {
ctx->opt_init(model, lopt_params);
}
void llama_opt_epoch(
struct llama_context * ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval) {
ctx->opt_epoch(
dataset,
result_train,
result_eval,
idata_split,
callback_train,
callback_eval);
}

View file

@ -7,6 +7,7 @@
#include "llama-adapter.h"
#include "ggml-cpp.h"
#include "ggml-opt.h"
#include <map>
#include <vector>
@ -133,6 +134,32 @@ struct llama_context {
llama_perf_context_data perf_get_data() const;
void perf_reset();
//
// training
//
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
void opt_epoch(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
void opt_epoch_iter(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
const std::vector<llama_token> & tokens,
const std::vector<llama_token> & labels_sparse,
llama_batch & batch,
ggml_opt_epoch_callback callback,
bool train,
int64_t idata_in_loop,
int64_t ndata_in_loop,
int64_t t_loop_start);
private:
//
// output
@ -212,6 +239,9 @@ private:
ggml_context_ptr ctx_compute;
// training
ggml_opt_context_t opt_ctx = nullptr;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;

View file

@ -30,6 +30,7 @@ struct llama_cparams {
bool flash_attn;
bool no_perf;
bool warmup;
bool op_offload;
enum llama_pooling_type pooling_type;

View file

@ -971,6 +971,7 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
@ -1227,8 +1228,19 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
if (v_mla) {
#if 0
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
cur = ggml_mul_mat(ctx0, v_mla, cur);
#else
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
// The permutations are noops and only change how the tensor data is interpreted.
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_mul_mat(ctx0, v_mla, cur);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);

View file

@ -298,6 +298,7 @@ class llm_graph_result_i {
public:
virtual ~llm_graph_result_i() = default;
virtual ggml_tensor * get_tokens() = 0;
virtual ggml_tensor * get_logits() = 0;
virtual ggml_tensor * get_embd() = 0;
virtual ggml_tensor * get_embd_pooled() = 0;
@ -312,6 +313,7 @@ class llm_graph_result : public llm_graph_result_i {
public:
virtual ~llm_graph_result() = default;
ggml_tensor * get_tokens() override { return t_tokens; }
ggml_tensor * get_logits() override { return t_logits; }
ggml_tensor * get_embd() override { return t_embd; }
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
@ -328,6 +330,7 @@ public:
}
// important graph nodes
ggml_tensor * t_tokens = nullptr;
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;

View file

@ -305,12 +305,12 @@ namespace GGUFMeta {
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
}
result.resize(arr_info.length);
@ -334,12 +334,12 @@ namespace GGUFMeta {
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
switch (arr_info.gt) {
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
case GGUF_TYPE_INT32: GGML_ASSERT(
(std::is_same<T, int32_t>::value) ||
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
default:
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
}
if (arr_info.length > N_MAX) {
@ -828,6 +828,10 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
mmaps_used.reserve(files.size());
for (const auto & file : files) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
if (!reg) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
mmaps_used.emplace_back(mapping->size(), 0);

281
src/llama-model-saver.cpp Normal file
View file

@ -0,0 +1,281 @@
#include "llama-model-saver.h"
#include "gguf.h"
#include "llama.h"
#include "llama-hparams.h"
#include "llama-model.h"
#include "llama-vocab.h"
#include <string>
llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) {
gguf_ctx = gguf_init_empty();
}
llama_model_saver::~llama_model_saver() {
gguf_free(gguf_ctx);
}
void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) {
gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) {
gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const float value) {
gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const bool value) {
gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value);
}
void llama_model_saver::add_kv(const enum llm_kv key, const char * value) {
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value);
}
[[noreturn]]
void llama_model_saver::add_kv(const enum llm_kv key, const char value) {
GGML_UNUSED(key);
GGML_UNUSED(value);
GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile
}
template <typename Container>
void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) {
const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size();
GGML_ASSERT(n_values <= value.size());
if (n_values == 0) {
return;
}
if (per_layer) {
bool all_values_the_same = true;
for (size_t i = 1; i < n_values; ++i) {
if (value[i] != value[0]) {
all_values_the_same = false;
break;
}
}
if (all_values_the_same) {
add_kv(key, value[0]);
return;
}
}
if (std::is_same<typename Container::value_type, uint8_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, int8_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, uint32_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, int32_t>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values);
} else if (std::is_same<typename Container::value_type, float>::value) {
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values);
} else if (std::is_same<Container, std::string>::value) {
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data()));
} else {
GGML_ABORT("fatal error");
}
}
void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) {
std::vector<const char *> tmp(value.size());
for (size_t i = 0; i < value.size(); ++i) {
tmp[i] = value[i].c_str();
}
gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size());
}
void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) {
if (!tensor) {
return;
}
if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) {
GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME
return;
}
gguf_add_tensor(gguf_ctx, tensor);
}
void llama_model_saver::add_kv_from_model() {
const llama_hparams & hparams = model.hparams;
const llama_vocab & vocab = model.vocab;
const int32_t n_vocab = vocab.n_tokens();
std::vector<std::string> tokens(n_vocab);
std::vector<float> scores(n_vocab);
std::vector<int32_t> token_types(n_vocab);
for (int32_t id = 0; id < n_vocab; ++id) {
const llama_vocab::token_data & token_data = vocab.get_token_data(id);
tokens[id] = token_data.text;
scores[id] = token_data.score;
switch(token_data.attr) {
case LLAMA_TOKEN_ATTR_UNKNOWN: token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN; break;
case LLAMA_TOKEN_ATTR_UNUSED: token_types[id] = LLAMA_TOKEN_TYPE_UNUSED; break;
case LLAMA_TOKEN_ATTR_NORMAL: token_types[id] = LLAMA_TOKEN_TYPE_NORMAL; break;
case LLAMA_TOKEN_ATTR_CONTROL: token_types[id] = LLAMA_TOKEN_TYPE_CONTROL; break;
case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break;
case LLAMA_TOKEN_ATTR_BYTE: token_types[id] = LLAMA_TOKEN_TYPE_BYTE; break;
case LLAMA_TOKEN_ATTR_UNDEFINED:
default: token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED; break;
}
}
// add_kv(LLM_KV_GENERAL_TYPE, ???);
add_kv(LLM_KV_GENERAL_ARCHITECTURE, model.arch_name());
// add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION, ???);
// add_kv(LLM_KV_GENERAL_ALIGNMENT, ???);
add_kv(LLM_KV_GENERAL_NAME, model.name);
// add_kv(LLM_KV_GENERAL_AUTHOR, ???);
// add_kv(LLM_KV_GENERAL_VERSION, ???);
// add_kv(LLM_KV_GENERAL_URL, ???);
// add_kv(LLM_KV_GENERAL_DESCRIPTION, ???);
// add_kv(LLM_KV_GENERAL_LICENSE, ???);
// add_kv(LLM_KV_GENERAL_SOURCE_URL, ???);
// add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO, ???);
add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens());
add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer);
add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true);
add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
add_kv(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
// add_kv(LLM_KV_TENSOR_DATA_LAYOUT, ???);
add_kv(LLM_KV_EXPERT_COUNT, hparams.n_expert);
add_kv(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
add_kv(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
add_kv(LLM_KV_POOLING_TYPE, uint32_t(hparams.pooling_type));
add_kv(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
add_kv(LLM_KV_DECODER_START_TOKEN_ID, hparams.dec_start_token_id);
add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping);
add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping);
add_kv(LLM_KV_SWIN_NORM, hparams.swin_norm);
add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers);
add_kv(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
add_kv(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
add_kv(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
add_kv(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, true);
add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, true);
add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
add_kv(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
add_kv(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k);
add_kv(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v);
add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
add_kv(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
add_kv(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
add_kv(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
add_kv(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train;
add_kv(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot);
add_kv(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train);
// add_kv(LLM_KV_ROPE_SCALE_LINEAR, rope_scaling_factor); // old name
add_kv(LLM_KV_ROPE_SCALING_TYPE, llama_rope_scaling_type_name(hparams.rope_scaling_type_train));
add_kv(LLM_KV_ROPE_SCALING_FACTOR, rope_scaling_factor);
add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor);
add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn);
add_kv(LLM_KV_ROPE_SCALING_FINETUNED, hparams.rope_finetuned);
add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
// TODO: implement split file support
// add_kv(LLM_KV_SPLIT_NO, ???);
// add_kv(LLM_KV_SPLIT_COUNT, ???);
// add_kv(LLM_KV_SPLIT_TENSORS_COUNT, ???);
add_kv(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
add_kv(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
add_kv(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
add_kv(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
add_kv(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms);
add_kv(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
add_kv(LLM_KV_TOKENIZER_MODEL, vocab.get_tokenizer_model());
add_kv(LLM_KV_TOKENIZER_PRE, vocab.get_tokenizer_pre());
add_kv(LLM_KV_TOKENIZER_LIST, tokens);
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE, token_types);
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, vocab.n_token_types());
add_kv(LLM_KV_TOKENIZER_SCORES, scores);
add_kv(LLM_KV_TOKENIZER_MERGES, vocab.get_bpe_merges());
// FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though
add_kv(LLM_KV_TOKENIZER_BOS_ID, uint32_t(vocab.token_bos()));
add_kv(LLM_KV_TOKENIZER_EOS_ID, uint32_t(vocab.token_eos()));
add_kv(LLM_KV_TOKENIZER_EOT_ID, uint32_t(vocab.token_eot()));
add_kv(LLM_KV_TOKENIZER_EOM_ID, uint32_t(vocab.token_eom()));
add_kv(LLM_KV_TOKENIZER_UNK_ID, uint32_t(vocab.token_unk()));
add_kv(LLM_KV_TOKENIZER_SEP_ID, uint32_t(vocab.token_sep()));
add_kv(LLM_KV_TOKENIZER_PAD_ID, uint32_t(vocab.token_pad()));
// add_kv(LLM_KV_TOKENIZER_CLS_ID, uint32_t(vocab.token_bos())); // deprecated
// add_kv(LLM_KV_TOKENIZER_MASK_ID, ???);
add_kv(LLM_KV_TOKENIZER_ADD_BOS, vocab.get_add_bos());
add_kv(LLM_KV_TOKENIZER_ADD_EOS, vocab.get_add_eos());
add_kv(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.get_add_space_prefix());
add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.get_remove_extra_whitespaces());
add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, vocab.get_precompiled_charsmap());
// add_kv(LLM_KV_TOKENIZER_HF_JSON, ???);
// add_kv(LLM_KV_TOKENIZER_RWKV, ???);
add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID, uint32_t(vocab.token_fim_pre()));
add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID, uint32_t(vocab.token_fim_suf()));
add_kv(LLM_KV_TOKENIZER_FIM_MID_ID, uint32_t(vocab.token_fim_mid()));
add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID, uint32_t(vocab.token_fim_pad()));
add_kv(LLM_KV_TOKENIZER_FIM_REP_ID, uint32_t(vocab.token_fim_rep()));
add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID, uint32_t(vocab.token_fim_sep()));
// TODO: implement LoRA support
// add_kv(LLM_KV_ADAPTER_TYPE, ???);
// add_kv(LLM_KV_ADAPTER_LORA_ALPHA, ???);
// deprecated
// add_kv(LLM_KV_TOKENIZER_PREFIX_ID, ???);
// add_kv(LLM_KV_TOKENIZER_SUFFIX_ID, ???);
// add_kv(LLM_KV_TOKENIZER_MIDDLE_ID, ???);
}
void llama_model_saver::add_tensors_from_model() {
if (std::string(model.output->name) != std::string(model.tok_embd->name)) {
add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output
}
add_tensor(model.type_embd);
add_tensor(model.pos_embd);
add_tensor(model.tok_norm);
add_tensor(model.tok_norm_b);
add_tensor(model.output_norm);
add_tensor(model.output_norm_b);
add_tensor(model.output);
add_tensor(model.output_b);
add_tensor(model.output_norm_enc);
add_tensor(model.cls);
add_tensor(model.cls_b);
add_tensor(model.cls_out);
add_tensor(model.cls_out_b);
for (const struct llama_layer & layer : model.layers) {
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]);
}
}
}
void llama_model_saver::save(const std::string & path_model) {
gguf_write_to_file(gguf_ctx, path_model.c_str(), false);
}

37
src/llama-model-saver.h Normal file
View file

@ -0,0 +1,37 @@
#pragma once
#include "llama.h"
#include "llama-arch.h"
#include <vector>
struct llama_model_saver {
struct gguf_context * gguf_ctx = nullptr;
const struct llama_model & model;
const struct LLM_KV llm_kv;
llama_model_saver(const struct llama_model & model);
~llama_model_saver();
void add_kv(enum llm_kv key, uint32_t value);
void add_kv(enum llm_kv key, int32_t value);
void add_kv(enum llm_kv key, float value);
void add_kv(enum llm_kv key, bool value);
void add_kv(enum llm_kv key, const char * value);
[[noreturn]]
void add_kv(enum llm_kv key, char value); // needed to make the template below compile
template <typename Container>
void add_kv(enum llm_kv key, const Container & value, bool per_layer = false);
void add_kv(enum llm_kv key, const std::vector<std::string> & value);
void add_tensor(const struct ggml_tensor * tensor);
void add_kv_from_model();
void add_tensors_from_model();
void save(const std::string & path_model);
};

View file

@ -122,6 +122,10 @@ static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
};
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
}
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
if (kv.second == name) {
@ -304,6 +308,10 @@ static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & de
// add extra buffer types, only if no GPU device is present
// ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
@ -1496,6 +1504,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
clblast_offload_fallback_layers = n_gpu_layers;
i_gpu_start = std::max((int64_t) hparams.n_layer, (int64_t) 0);
#endif
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
@ -1687,6 +1699,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
auto * buft_dev = ggml_backend_buft_get_device(buft);
if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error("no CPU backend found");
}
buft = ggml_backend_dev_buffer_type(cpu_dev);
}
@ -4218,6 +4233,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
if (!dev) {
// FIXME: workaround for CPU backend buft having a NULL device
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
}
ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props);
@ -4347,7 +4365,7 @@ uint64_t llama_model::n_elements() const {
}
void llama_model::print_info() const {
const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
bool is_var = false;
@ -4408,7 +4426,7 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);

View file

@ -96,6 +96,8 @@ enum llm_type {
LLM_TYPE_235B_A22B,
};
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type);
struct llama_layer_posnet {
// resnet
struct ggml_tensor * norm1 = nullptr;

View file

@ -522,7 +522,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
nthread = std::thread::hardware_concurrency();
}
// mmap consistently increases speed Linux, and also increases speed on Windows with
// mmap consistently increases speed on Linux, and also increases speed on Windows with
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
constexpr bool use_mmap = true;
@ -532,7 +532,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
llama_model_kv_override * kv_overrides = nullptr;
if (params->kv_overrides) {
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
auto * v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}

View file

@ -1,5 +1,7 @@
#include "llama-vocab.h"
#include "ggml.h"
#include "gguf.h"
#include "llama-impl.h"
#include "llama-model-loader.h"
@ -640,6 +642,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_SEED_CODER:
regex_exprs = {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\r\n]+|\\s*[\r\n]+|\\s+(?!\\S)|\\s+"
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\\r\\n]+|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@ -1452,6 +1461,9 @@ struct fragment_buffer_variant {
struct llama_vocab::impl {
uint32_t n_token_types = 0; // for BERT-style token types
std::string tokenizer_model;
std::string tokenizer_pre;
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@ -1587,9 +1599,6 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// determine vocab type
{
std::string tokenizer_model;
std::string tokenizer_pre;
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
@ -1694,7 +1703,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
if (precompiled_charsmap_keyidx != -1) {
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
GGML_ASSERT(pc_type == GGUF_TYPE_INT8 || pc_type == GGUF_TYPE_UINT8);
const size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN
@ -1869,6 +1881,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "bailingmoe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
clean_spaces = false;
} else if (
tokenizer_pre == "seed-coder") {
pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
clean_spaces = false;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}
@ -3049,6 +3065,14 @@ void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
pimpl->load(ml, kv);
}
std::string llama_vocab::get_tokenizer_model() const {
return pimpl->tokenizer_model;
}
std::string llama_vocab::get_tokenizer_pre() const {
return pimpl->tokenizer_pre;
}
enum llama_vocab_type llama_vocab::get_type() const {
return pimpl->type;
}
@ -3279,6 +3303,20 @@ int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string
return it->second;
}
std::vector<std::string> llama_vocab::get_bpe_merges() const {
std::vector<std::string> result(pimpl->bpe_ranks.size());
for (const auto & pair : pimpl->bpe_ranks) {
result[pair.second] = pair.first.first + " " + pair.first.second;
}
return result;
}
std::vector<char> llama_vocab::get_precompiled_charsmap() const {
return pimpl->precompiled_charsmap;
}
int32_t llama_vocab::tokenize(
const char * text,
int32_t text_len,

View file

@ -22,6 +22,9 @@ struct llama_vocab {
void load(llama_model_loader & ml, const LLM_KV & kv);
std::string get_tokenizer_model() const;
std::string get_tokenizer_pre() const;
enum llama_vocab_type get_type() const;
enum llama_vocab_pre_type get_pre_type() const;
@ -81,6 +84,9 @@ struct llama_vocab {
int max_token_len() const;
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
std::vector<std::string> get_bpe_merges() const;
std::vector<char> get_precompiled_charsmap() const;
int32_t tokenize(
const char * text,

View file

@ -13,6 +13,7 @@ static bool old_mixtral_warning_showed = false;
#include "llama-sampling.cpp"
#include "llama-kv-cache.cpp"
#include "llama-model-loader.cpp"
#include "llama-model-saver.cpp"
#include "llama-model.cpp"
#include "llama-quant.cpp"
#include "llama-hparams.cpp"
@ -281,6 +282,13 @@ struct llama_model * llama_model_load_from_splits(
return llama_model_load_from_file_impl(splits.front(), splits, params);
}
void llama_model_save_to_file(const struct llama_model * model, const char * path_model) {
llama_model_saver ms(*model);
ms.add_kv_from_model();
ms.add_tensors_from_model();
ms.save(path_model);
}
//
// chat templates
//
@ -366,3 +374,4 @@ const char * llama_print_system_info(void) {
return s.c_str();
}

View file

@ -153,7 +153,12 @@ int main(int argc, char ** argv) {
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
LOG_ERR("%s: no CPU backend found\n", __func__);
return 1;
}
auto * reg = ggml_backend_dev_backend_reg(cpu_dev);
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");

View file

@ -33,9 +33,6 @@
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
#define KEY_USE_GLU_MLP "clip.use_glu_mlp" // for qwen2.5vl
#define KEY_USE_RMS_NORM "clip.use_rms_norm" // for qwen2.5vl
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
@ -56,12 +53,16 @@
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_ATTN_K_NORM "%s.blk.%d.attn_k_norm.%s"
#define TN_ATTN_Q_NORM "%s.blk.%d.attn_q_norm.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s" // layer norm
#define TN_LN_2 "%s.blk.%d.ln2.%s" // layer norm
#define TN_LS_1 "%s.blk.%d.ls1.%s" // layer scale
#define TN_LS_2 "%s.blk.%d.ls2.%s" // layer scale
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_LLAVA_PROJ "mm.%d.%s"
@ -93,6 +94,9 @@
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
// align x to upper multiple of n
#define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
@ -105,6 +109,7 @@ enum projector_type {
PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN25VL,
PROJECTOR_TYPE_INTERNVL,
PROJECTOR_TYPE_UNKNOWN,
};
@ -119,6 +124,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},
{ PROJECTOR_TYPE_INTERNVL, "internvl"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {

View file

@ -189,6 +189,10 @@ struct clip_hparams {
int32_t n_layer;
int32_t proj_scale_factor = 0; // idefics3
// for models using dynamic image size, we need to have a smaller image size to warmup
// otherwise, user will get OOM everytime they load the model
int32_t warmup_image_size = 0;
ffn_op_type ffn_op = FFN_GELU;
patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
@ -216,6 +220,9 @@ struct clip_layer {
ggml_tensor * o_w = nullptr;
ggml_tensor * o_b = nullptr;
ggml_tensor * k_norm = nullptr;
ggml_tensor * q_norm = nullptr;
// layernorm 1
ggml_tensor * ln_1_w = nullptr;
ggml_tensor * ln_1_b = nullptr;
@ -230,6 +237,10 @@ struct clip_layer {
// layernorm 2
ggml_tensor * ln_2_w = nullptr;
ggml_tensor * ln_2_b = nullptr;
// layer scale (no bias)
ggml_tensor * ls_1_w = nullptr;
ggml_tensor * ls_2_w = nullptr;
};
struct clip_vision_model {
@ -398,7 +409,7 @@ struct clip_ctx {
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
sched.reset(
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
);
}
@ -612,6 +623,9 @@ struct clip_graph {
// Qwen2VL and Qwen2.5VL use M-RoPE
ggml_cgraph * build_qwen2vl() {
GGML_ASSERT(model.patch_bias == nullptr);
GGML_ASSERT(model.class_embedding == nullptr);
const int batch_size = 1;
const bool use_window_attn = hparams.n_wa_pattern > 0;
const int n_wa_pattern = hparams.n_wa_pattern;
@ -648,10 +662,6 @@ struct clip_graph {
n_embd, n_patches_x * n_patches_y, batch_size);
}
if (model.patch_bias) {
inp = ggml_add(ctx0, inp, model.patch_bias);
}
ggml_tensor * inpL = inp;
ggml_tensor * window_mask = nullptr;
ggml_tensor * window_idx = nullptr;
@ -882,6 +892,73 @@ struct clip_graph {
return gf;
}
ggml_cgraph * build_internvl() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1;
ggml_tensor * inp = build_inp();
// add CLS token
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
// The larger models use a different ViT, which uses RMS norm instead of layer norm
// ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
: NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
ggml_tensor * cur = build_vit(
inp, n_pos,
norm_t,
hparams.ffn_op,
model.position_embeddings,
nullptr);
// remove CLS token
cur = ggml_view_2d(ctx0, cur,
n_embd, n_patches,
ggml_row_size(cur->type, n_embd), 0);
// pixel shuffle
{
const int scale_factor = model.hparams.proj_scale_factor;
const int bsz = 1; // batch size, always 1 for now since we don't support batching
const int height = n_patches_y;
const int width = n_patches_x;
GGML_ASSERT(scale_factor > 0);
cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
height / scale_factor,
width / scale_factor,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// flatten to 2D
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
cur->ne[1] * cur->ne[2]);
}
// projector (always using GELU activation)
{
// projector LayerNorm uses pytorch's default eps = 1e-5
// ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
cur = ggml_add(ctx0, cur, model.mm_1_b);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
cur = ggml_add(ctx0, cur, model.mm_3_b);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
// this graph is used by llava, granite and glm
// due to having embedding_stack (used by granite), we cannot reuse build_vit
ggml_cgraph * build_llava() {
@ -913,10 +990,6 @@ struct clip_graph {
ggml_tensor * inp = build_inp();
if (model.patch_bias) {
inp = ggml_add(ctx0, inp, model.patch_bias);
}
// concat class_embeddings and patch_embeddings
if (model.class_embedding) {
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
@ -1283,11 +1356,6 @@ private:
ggml_tensor * learned_pos_embd,
std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
) {
if (model.patch_bias) {
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
}
if (learned_pos_embd) {
inp = ggml_add(ctx0, inp, learned_pos_embd);
cb(inp, "pos_embed", -1);
@ -1327,6 +1395,16 @@ private:
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
}
if (layer.q_norm) {
Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
cb(Qcur, "Qcur_norm", il);
}
if (layer.k_norm) {
Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
cb(Kcur, "Kcur_norm", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
@ -1347,6 +1425,11 @@ private:
cb(cur, "attn_out", il);
}
if (layer.ls_1_w) {
cur = ggml_mul(ctx0, cur, layer.ls_1_w);
cb(cur, "attn_out_scaled", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
@ -1367,6 +1450,11 @@ private:
cb(cur, "ffn_out", il);
if (layer.ls_2_w) {
cur = ggml_mul(ctx0, cur, layer.ls_2_w);
cb(cur, "ffn_out_scaled", il);
}
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
@ -1388,6 +1476,10 @@ private:
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
if (model.patch_bias) {
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
}
return inp;
}
@ -1650,6 +1742,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{
res = graph.build_minicpmv();
} break;
case PROJECTOR_TYPE_INTERNVL:
{
res = graph.build_internvl();
} break;
default:
{
res = graph.build_llava();
@ -1719,8 +1815,8 @@ struct clip_model_loader {
{
bool check1 = false;
bool check2 = false;
get_bool(KEY_USE_GLU_MLP, check1, false);
get_bool(KEY_USE_RMS_NORM, check2, false);
get_bool("clip.use_glu_mlp", check1, false);
get_bool("clip.use_rms_norm", check2, false);
if(proj_type==PROJECTOR_TYPE_QWEN2VL && check1 && check2)
{
printf("\nWARNING: OLD QWEN2.5VL PROJECTOR DETECTED! Trying to patch in support, but please obtain a new Qwen2.5VL Projector!\n\n");
@ -1761,6 +1857,9 @@ struct clip_model_loader {
get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
// default warmup value
hparams.warmup_image_size = hparams.image_size;
ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
|| ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
|| ctx_clip.proj_type == PROJECTOR_TYPE_LDP
@ -1834,12 +1933,14 @@ struct clip_model_loader {
}
} break;
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_INTERNVL:
{
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
hparams.rope_theta = 10000.0f;
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
} break;
case PROJECTOR_TYPE_GEMMA3:
@ -1850,8 +1951,24 @@ struct clip_model_loader {
// test model (tinygemma3) has a different value, we optionally read it
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_QWEN2VL:
{
// max image size = sqrt(max_pixels) = 3584
// ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
// however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
// ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
hparams.image_size = 1024;
hparams.warmup_image_size = hparams.patch_size * 8;
} break;
case PROJECTOR_TYPE_QWEN25VL:
{
// max image size = sqrt(max_pixels)
// https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
// however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
// ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
hparams.image_size = 1024;
hparams.warmup_image_size = hparams.patch_size * 8;
if (q25vl_migrated) {
hparams.n_wa_pattern = 8;
} else {
@ -1943,8 +2060,13 @@ struct clip_model_loader {
layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight"));
layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, "v", il, "weight"), false);
layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, "v", il, "weight"), false);
layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false);
layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false);
layer.ls_1_w = get_tensor(string_format(TN_LS_1, "v", il, "weight"), false); // no bias
layer.ls_2_w = get_tensor(string_format(TN_LS_2, "v", il, "weight"), false); // no bias
layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false);
layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false);
layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false);
@ -1952,7 +2074,7 @@ struct clip_model_loader {
layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false);
layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false);
// new naming
// ffn
layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight"));
layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false);
layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
@ -2100,6 +2222,15 @@ struct clip_model_loader {
vision_model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
vision_model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
} break;
case PROJECTOR_TYPE_INTERNVL:
{
vision_model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
vision_model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
vision_model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
vision_model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
vision_model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
vision_model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
} break;
default:
GGML_ASSERT(false && "unknown projector type");
}
@ -2152,13 +2283,14 @@ struct clip_model_loader {
// create a fake batch
clip_image_f32_batch batch;
clip_image_f32_ptr img(clip_image_f32_init());
img->nx = ctx_clip.vision_model.hparams.image_size;
img->ny = ctx_clip.vision_model.hparams.image_size;
img->nx = ctx_clip.vision_model.hparams.warmup_image_size;
img->ny = ctx_clip.vision_model.hparams.warmup_image_size;
img->buf.resize(img->nx * img->ny * 3);
batch.entries.push_back(std::move(img));
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
ggml_backend_t backend = ctx_clip.backend_ptrs[i];
ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
@ -2241,9 +2373,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
g_logger_state.verbosity_thold = ctx_params.verbosity;
clip_ctx * ctx_clip = new clip_ctx(ctx_params);
clip_ctx * ctx_clip = nullptr;
try {
ctx_clip = new clip_ctx(ctx_params);
clip_model_loader loader(fname, *ctx_clip);
loader.load_hparams();
loader.load_tensors();
@ -2643,8 +2776,8 @@ struct image_manipulation {
float target_width_f = static_cast<float>(inp_size.width) * scale;
float target_height_f = static_cast<float>(inp_size.height) * scale;
int aligned_width = GGML_PAD((int)target_width_f, align_size);
int aligned_height = GGML_PAD((int)target_height_f, align_size);
int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
return {aligned_width, aligned_height};
}
@ -2963,10 +3096,9 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
}
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
clip_image_u8 resized;
auto patch_size = clip_get_patch_size(ctx) * 2;
int nx = ceil((float)img->nx / patch_size) * patch_size;
int ny = ceil((float)img->ny / patch_size) * patch_size;
image_manipulation::bicubic_resize(*img, resized, nx, ny);
auto patch_size = params.patch_size * 2;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
clip_image_f32_ptr img_f32(clip_image_f32_init());
// clip_image_f32_ptr res(clip_image_f32_init());
@ -2977,7 +3109,9 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
}
else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
|| ctx->proj_type == PROJECTOR_TYPE_GEMMA3
|| ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
|| ctx->proj_type == PROJECTOR_TYPE_IDEFICS3
|| ctx->proj_type == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
) {
clip_image_u8 resized_image;
int sz = params.image_size;
image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
@ -3131,9 +3265,13 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
n_patches = 256; //kcpp hardcode gemma3 vision to 256 size
}
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
if (ctx->proj_type == PROJECTOR_TYPE_LDP
|| ctx->proj_type == PROJECTOR_TYPE_LDPV2
|| ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
n_patches /= 4;
if (ctx->vision_model.mm_glm_tok_boi) {
n_patches += 2; // for BOI and EOI token embeddings
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
if (ctx->minicpmv_version == 2) {
n_patches = 96;
@ -3156,7 +3294,8 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
int n_per_side = params.image_size / params.patch_size;
int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
n_patches = n_per_side_2d_pool * n_per_side_2d_pool;
} else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
} else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3 || ctx->proj_type == PROJECTOR_TYPE_INTERNVL) {
// both W and H are divided by proj_scale_factor
n_patches /= (params.proj_scale_factor * params.proj_scale_factor);
} else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
int n_merge = params.spatial_merge_size;
@ -3551,6 +3690,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
} break;
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_INTERNVL:
{
// do nothing
} break;
@ -3571,6 +3711,14 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
// the last node is the embedding tensor
ggml_tensor * embeddings = ggml_graph_node(gf, -1);
// sanity check (only support batch size of 1 for now)
const int n_tokens_out = embeddings->ne[1];
const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
if (n_tokens_out != expected_n_tokens_out) {
LOG_ERR("%s: expected %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
GGML_ABORT("Invalid number of output tokens");
}
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
@ -3768,6 +3916,8 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->vision_model.mm_input_proj_w->ne[0];
case PROJECTOR_TYPE_IDEFICS3:
return ctx->vision_model.projection->ne[1];
case PROJECTOR_TYPE_INTERNVL:
return ctx->vision_model.mm_3_w->ne[1];
default:
GGML_ABORT("Unknown projector type");
}

View file

@ -212,6 +212,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
ggml_build_forward_expand(gf, flatten);
ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
GGML_ASSERT(backend != nullptr && "failed to initialize CPU backend");
ggml_backend_graph_compute(backend.get(), gf);
struct ggml_tensor* result = ggml_graph_node(gf, -1);

310
tools/mtmd/mtmd-helper.cpp Normal file
View file

@ -0,0 +1,310 @@
#include "mtmd.h"
#include "llama.h"
#include <algorithm>
#include <cinttypes>
#include <vector>
#define LOG_INF(...) fprintf(stdout, __VA_ARGS__)
#define LOG_ERR(...) fprintf(stderr, __VA_ARGS__)
size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_tokens += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_tokens;
}
llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
llama_pos n_pos = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_pos += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_pos;
}
// helper struct to make working with embd batch easier
// note: this will be removed after llama_batch_ext refactoring
struct decode_embd_batch {
int n_pos_per_embd;
int n_mmproj_embd;
std::vector<llama_pos> pos;
std::vector<llama_pos> pos_view; // used by mrope
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
pos .resize(n_tokens * n_pos_per_embd);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
}
void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
seq_id_0[0] = seq_id;
for (int i = 0; i < batch.n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
GGML_ASSERT(n_pos_per_embd == 4);
seq_id_0[0] = seq_id;
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
int i = y * nx + x;
pos[i ] = pos_0;
pos[i + batch.n_tokens ] = pos_0 + y;
pos[i + batch.n_tokens * 2] = pos_0 + x;
pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
}
}
for (int i = 0; i < batch.n_tokens; i++) {
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
llama_batch get_view(int offset, int n_tokens) {
llama_pos * pos_ptr;
pos_view.clear();
pos_view.reserve(n_tokens * n_pos_per_embd);
if (n_pos_per_embd > 1) {
// mrope
// for example, with layout of src: 1234...1234...1234...1234...
// offset 2 will give us dst: 34...34...34...34...
for (int i = 0; i < n_pos_per_embd; i++) {
// assume n_tokens is less than or equal to batch.n_tokens
// batch.n_tokens is number of **total** tokens
// n_tokens is number of viewed token
size_t src_idx = i * batch.n_tokens + offset;
pos_view.insert(pos_view.end(),
pos.data() + src_idx,
pos.data() + src_idx + n_tokens);
}
pos_ptr = pos_view.data();
} else {
// normal
pos_ptr = pos.data() + offset;
}
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ batch.embd + offset * n_mmproj_embd,
/*pos =*/ pos_ptr,
/*n_seq_id =*/ batch.n_seq_id + offset,
/*seq_id =*/ batch.seq_id + offset,
/*logits =*/ batch.logits + offset,
};
}
};
// Helper function for decoding an image whose embeddings have already been calculated
int32_t mtmd_helper_decode_image_chunk(
mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
float * encoded_embd,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
llama_pos * new_n_past) {
if (mtmd_input_chunk_get_type(chunk) != MTMD_INPUT_CHUNK_TYPE_IMAGE) {
LOG_ERR("failed to decode image chunk: input chunk not of image type\n");
return -1;
}
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
if (!image_tokens) {
LOG_ERR("failed to decode image chunk: image tokens are null\n");
return -1;
}
const llama_model * model = llama_get_model(lctx);
int n_mmproj_embd = llama_model_n_embd(model);
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
int32_t i_batch = 0;
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
const int nx = mtmd_image_tokens_get_nx(image_tokens);
const int ny = mtmd_image_tokens_get_ny(image_tokens);
if (mtmd_decode_use_mrope(ctx)) {
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
} else {
batch_embd.set_position_normal(n_past, seq_id);
}
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, false);
// TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
}
while (i_batch < n_img_batches) { // split into batches
int pos_offset = i_batch*n_batch;
int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
int64_t t1 = ggml_time_ms();
int32_t ret = llama_decode(lctx, batch_embd_view);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_set_causal_attn(lctx, true); // restore causal attn
return ret;
}
LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
i_batch++;
}
n_past += mtmd_image_tokens_get_n_pos(image_tokens);
*new_n_past = n_past;
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, true);
}
return 0;
}
int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
int32_t ret;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
// LOG_INF("decoding text chunk, n_tokens = %zu\n", n_tokens);
size_t i = 0;
while (i < n_tokens) { // split into batches
text_batch.n_tokens = 0; // clear the batch
for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
text_batch.n_tokens++;
text_batch.token [i] = tokens[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
bool is_last_token = (i == n_tokens);
if (logits_last && is_last_token) {
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
}
*new_n_past += text_batch.n_tokens;
}
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
int64_t t0 = ggml_time_ms();
LOG_INF("encoding image or slice...\n");
ret = mtmd_encode(ctx, image_tokens);
if (ret != 0) {
LOG_ERR("failed to encode image\n");
llama_batch_free(text_batch);
return ret;
}
LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
float * embd = mtmd_get_output_embd(ctx);
ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_batch_free(text_batch);
return ret;
}
} else {
GGML_ABORT("chunk type not supported");
}
return 0;
}
int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunks * chunks,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
size_t n_chunks = mtmd_input_chunks_size(chunks);
if (n_chunks == 0) {
LOG_ERR("no chunks to eval\n");
return 0;
}
for (size_t i = 0; i < n_chunks; i++) {
bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
auto chunk = mtmd_input_chunks_get(chunks, i);
int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
if (res != 0) {
LOG_ERR("failed to eval chunk %zu\n", i);
return res;
}
*new_n_past = n_past;
}
return 0;
}

View file

@ -252,6 +252,13 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
}
else if (proj_type == PROJECTOR_TYPE_INTERNVL) {
// <img> ... (image embeddings) ... </img>
marker_modified = "<img>" + ctx->image_marker + "</img>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
// llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
// for glm-edge, BOI and EOI token's embeddings are not present in the text model
@ -454,307 +461,26 @@ float * mtmd_get_output_embd(mtmd_context * ctx) {
return ctx->image_embd_v.data();
}
size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_tokens += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
return true;
}
}
return n_tokens;
return false;
}
llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
llama_pos n_pos = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_pos += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_pos;
bool mtmd_decode_use_mrope(mtmd_context * ctx) {
return ctx->use_mrope;
}
// helper struct to make working with embd batch easier
// note: this will be removed after llama_batch_ext refactoring
struct decode_embd_batch {
int n_pos_per_embd;
int n_mmproj_embd;
std::vector<llama_pos> pos;
std::vector<llama_pos> pos_view; // used by mrope
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
pos .resize(n_tokens * n_pos_per_embd);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
}
void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
seq_id_0[0] = seq_id;
for (int i = 0; i < batch.n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
GGML_ASSERT(n_pos_per_embd == 4);
seq_id_0[0] = seq_id;
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
int i = y * nx + x;
pos[i ] = pos_0;
pos[i + batch.n_tokens ] = pos_0 + y;
pos[i + batch.n_tokens * 2] = pos_0 + x;
pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
}
}
for (int i = 0; i < batch.n_tokens; i++) {
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
llama_batch get_view(int offset, int n_tokens) {
llama_pos * pos_ptr;
pos_view.clear();
pos_view.reserve(n_tokens * n_pos_per_embd);
if (n_pos_per_embd > 1) {
// mrope
// for example, with layout of src: 1234...1234...1234...1234...
// offset 2 will give us dst: 34...34...34...34...
for (int i = 0; i < n_pos_per_embd; i++) {
// assume n_tokens is less than or equal to batch.n_tokens
// batch.n_tokens is number of **total** tokens
// n_tokens is number of viewed token
size_t src_idx = i * batch.n_tokens + offset;
pos_view.insert(pos_view.end(),
pos.data() + src_idx,
pos.data() + src_idx + n_tokens);
}
pos_ptr = pos_view.data();
} else {
// normal
pos_ptr = pos.data() + offset;
}
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ batch.embd + offset * n_mmproj_embd,
/*pos =*/ pos_ptr,
/*n_seq_id =*/ batch.n_seq_id + offset,
/*seq_id =*/ batch.seq_id + offset,
/*logits =*/ batch.logits + offset,
};
}
};
// Helper function for decoding an image whose embeddings have already been calculated
int32_t mtmd_helper_decode_image_chunk(
mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
float * encoded_embd,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
llama_pos * new_n_past) {
if (mtmd_input_chunk_get_type(chunk) != MTMD_INPUT_CHUNK_TYPE_IMAGE) {
LOG_ERR("failed to decode image chunk: input chunk not of image type\n");
return -1;
}
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
if (!image_tokens) {
LOG_ERR("failed to decode image chunk: image tokens are null\n");
return -1;
}
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
int32_t i_batch = 0;
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
const int nx = mtmd_image_tokens_get_nx(image_tokens);
const int ny = mtmd_image_tokens_get_ny(image_tokens);
if (mtmd_decode_use_mrope(ctx)) {
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
} else {
batch_embd.set_position_normal(n_past, seq_id);
}
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, false);
// TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
}
while (i_batch < n_img_batches) { // split into batches
int pos_offset = i_batch*n_batch;
int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
int64_t t1 = ggml_time_ms();
int32_t ret = llama_decode(lctx, batch_embd_view);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_set_causal_attn(lctx, true); // restore causal attn
return ret;
}
if (ctx->print_timings) {
LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
}
i_batch++;
}
n_past += mtmd_image_tokens_get_n_pos(image_tokens);
*new_n_past = n_past;
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, true);
}
return 0;
void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
mtmd_image_tokens_free(val);
}
int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
int32_t ret;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
LOG_DBG("decoding text chunk, n_tokens = %zu\n", n_tokens);
size_t i = 0;
while (i < n_tokens) { // split into batches
text_batch.n_tokens = 0; // clear the batch
for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
text_batch.n_tokens++;
text_batch.token [i] = tokens[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
bool is_last_token = (i == n_tokens);
if (logits_last && is_last_token) {
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
}
*new_n_past += text_batch.n_tokens;
}
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
int64_t t0 = ggml_time_ms();
if (ctx->print_timings) {
LOG_INF("encoding image or slice...\n");
}
ret = mtmd_encode(ctx, image_tokens);
if (ret != 0) {
LOG_ERR("failed to encode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
}
float * embd = mtmd_get_output_embd(ctx);
ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_batch_free(text_batch);
return ret;
}
} else {
GGML_ABORT("chunk type not supported");
}
return 0;
}
int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunks * chunks,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
size_t n_chunks = mtmd_input_chunks_size(chunks);
if (n_chunks == 0) {
LOG_WRN("no chunks to eval\n");
return 0;
}
for (size_t i = 0; i < n_chunks; i++) {
bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
auto chunk = mtmd_input_chunks_get(chunks, i);
int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
if (res != 0) {
LOG_ERR("failed to eval chunk %zu\n", i);
return res;
}
*new_n_past = n_past;
}
return 0;
}
// these 2 helpers below use internal clip_image_u8_ptr,
// so unfortunately they cannot moved to mtmd-helper.h
// however, in theory, user can decode image file to bitmap using
// whichever library they want, and then use mtmd_bitmap_init() to create bitmap
mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
@ -780,23 +506,6 @@ mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname) {
return mtmd_bitmap_init(nx, ny, data);
}
bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
return true;
}
return false;
}
bool mtmd_decode_use_mrope(mtmd_context * ctx) {
return ctx->use_mrope;
}
void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
mtmd_image_tokens_free(val);
}
//
// public API functions
//

View file

@ -10,6 +10,7 @@
#include <stdbool.h>
#ifdef __cplusplus
#include <string>
#include <vector>
#include <cinttypes>
#include <memory>

View file

@ -40,7 +40,6 @@ add_test "llama-mtmd-cli" "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M" "deepseek"
add_test "llama-mtmd-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-mtmd-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K" "vicuna"
add_test "llama-mtmd-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K" "vicuna"
@ -50,6 +49,8 @@ add_test "llama-mtmd-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
add_test "llama-mtmd-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-mtmd-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/InternVL2_5-1B-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/InternVL3-1B-Instruct-GGUF:Q8_0"
# to test the big models, run: ./tests.sh big
if [ "$RUN_BIG_TESTS" = true ]; then
@ -59,6 +60,8 @@ if [ "$RUN_BIG_TESTS" = true ]; then
add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-7B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-7B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/InternVL3-8B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/InternVL3-14B-Instruct-GGUF:Q4_K_M"
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-32B-Instruct-GGUF:Q4_K_M" # does not work on my mac M3 Ultra
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-72B-Instruct-GGUF:Q4_K_M" # too big
fi
@ -70,6 +73,7 @@ fi
# this model has broken chat template, not usable
# add_test "llama-mtmd-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
# add_test "llama-mtmd-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M" "deepseek"
###############

View file

@ -7,6 +7,7 @@
#include "log.h"
#include "sampling.h"
#include "speculative.h"
#include "mtmd.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
@ -198,7 +199,7 @@ struct server_task {
// used by SERVER_TASK_TYPE_INFERENCE
slot_params params;
llama_tokens prompt_tokens;
server_tokens prompt_tokens;
int id_selected_slot = -1;
// used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
@ -1248,6 +1249,9 @@ struct server_slot {
llama_context * ctx = nullptr;
llama_context * ctx_dft = nullptr;
// multimodal
mtmd_context * mctx = nullptr;
common_speculative * spec = nullptr;
std::vector<common_adapter_lora_info> lora;
@ -1275,14 +1279,14 @@ struct server_slot {
int32_t n_prompt_tokens_processed = 0;
// input prompt tokens
llama_tokens prompt_tokens;
server_tokens prompt_tokens;
size_t last_nl_pos = 0;
std::string generated_text;
llama_tokens generated_tokens;
llama_tokens cache_tokens;
server_tokens cache_tokens;
std::vector<completion_token_output> generated_token_probs;
@ -1476,7 +1480,7 @@ struct server_slot {
{"is_processing", is_processing()},
{"non_causal", is_non_causal()},
{"params", params.to_json()},
{"prompt", common_detokenize(ctx, prompt_tokens)},
{"prompt", prompt_tokens.detokenize(ctx, true)},
{"next_token",
{
{"has_next_token", has_next_token},
@ -1849,13 +1853,16 @@ struct server_context {
llama_model * model = nullptr;
llama_context * ctx = nullptr;
// multimodal
mtmd_context * mctx = nullptr;
const llama_vocab * vocab = nullptr;
llama_model * model_dft = nullptr;
llama_context_params cparams_dft;
llama_batch batch = {};
llama_batch batch {};
bool clean_kv_cache = true;
bool add_bos_token = true;
@ -1878,6 +1885,8 @@ struct server_context {
common_chat_templates_ptr chat_templates;
~server_context() {
mtmd_free(mctx);
// Clear any sampling context
for (server_slot & slot : slots) {
common_sampler_free(slot.smpl);
@ -1965,6 +1974,36 @@ struct server_context {
chat_templates = common_chat_templates_init(model, "chatml");
}
std::string & mmproj_path = params_base.mmproj.path;
if (!mmproj_path.empty()) {
mtmd_context_params mparams = mtmd_context_params_default();
mparams.use_gpu = params_base.mmproj_use_gpu;
mparams.print_timings = false;
mparams.n_threads = params_base.cpuparams.n_threads;
mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
if (mctx == nullptr) {
SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
return false;
}
SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
if (params_base.ctx_shift) {
params_base.ctx_shift = false;
SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
}
if (params_base.n_cache_reuse) {
params_base.n_cache_reuse = 0;
SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
}
if (!params_base.speculative.model.path.empty()) {
SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
return false;
}
}
return true;
}
@ -1980,6 +2019,8 @@ struct server_context {
slot.ctx = ctx;
slot.n_ctx = n_ctx_slot;
slot.n_predict = params_base.n_predict;
slot.mctx = mctx;
slot.cache_tokens.has_mtmd = mctx != nullptr;
if (model_dft) {
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
@ -2016,8 +2057,6 @@ struct server_context {
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
{
const int32_t n_batch = llama_n_batch(ctx);
// only a single seq_id per token is needed
batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
}
@ -2054,7 +2093,7 @@ struct server_context {
}
// length of the Longest Common Subsequence between the current slot's prompt and the input prompt
int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
// fraction of the common subsequence length compared to the current slot's prompt length
float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
@ -2096,18 +2135,6 @@ struct server_context {
return ret;
}
bool can_be_detokenized(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
for (const auto & token : tokens) {
if (token < 0 || token >= n_vocab) {
return false;
}
}
return true;
}
bool launch_slot_with_task(server_slot & slot, server_task && task) {
slot.reset();
slot.id_task = task.id;
@ -2122,8 +2149,7 @@ struct server_context {
slot.lora = slot.params.lora;
}
bool can_detokenize = can_be_detokenized(ctx, slot.prompt_tokens);
if (!can_detokenize) {
if (!slot.prompt_tokens.validate(ctx)) {
send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
return false;
}
@ -2385,6 +2411,15 @@ struct server_context {
queue_results.send(std::move(res));
}
// if multimodal is enabled, send an error and return false
bool ensure_no_mtmd(const int id_task) {
if (mctx) {
send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
return false;
}
return true;
}
void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
auto res = std::make_unique<server_task_result_cmpl_partial>();
@ -2424,7 +2459,7 @@ struct server_context {
res->content = std::move(slot.generated_text);
res->tokens = std::move(slot.generated_tokens);
res->timings = slot.get_timings();
res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
res->prompt = slot.prompt_tokens.detokenize(ctx, true);
res->response_fields = std::move(slot.params.response_fields);
res->truncated = slot.truncated;
@ -2734,6 +2769,10 @@ struct server_context {
} break;
case SERVER_TASK_TYPE_SLOT_SAVE:
{
if (!ensure_no_mtmd(task.id)) {
break;
}
int id_slot = task.slot_action.slot_id;
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
@ -2753,7 +2792,8 @@ struct server_context {
std::string filename = task.slot_action.filename;
std::string filepath = task.slot_action.filepath;
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
const int64_t t_end = ggml_time_us();
const double t_save_ms = (t_end - t_start) / 1000.0;
@ -2770,6 +2810,7 @@ struct server_context {
} break;
case SERVER_TASK_TYPE_SLOT_RESTORE:
{
if (!ensure_no_mtmd(task.id)) break;
int id_slot = task.slot_action.slot_id;
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
@ -2788,15 +2829,18 @@ struct server_context {
std::string filename = task.slot_action.filename;
std::string filepath = task.slot_action.filepath;
slot->cache_tokens.resize(slot->n_ctx);
llama_tokens tokens;
tokens.resize(slot->n_ctx);
size_t token_count = 0;
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
if (nread == 0) {
slot->cache_tokens.resize(0);
slot->cache_tokens.clear(); // KV may already been invalidated?
send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
break;
}
slot->cache_tokens.resize(token_count);
tokens.resize(token_count);
slot->cache_tokens.clear();
slot->cache_tokens.insert(tokens);
const int64_t t_end = ggml_time_us();
const double t_restore_ms = (t_end - t_start) / 1000.0;
@ -2813,6 +2857,7 @@ struct server_context {
} break;
case SERVER_TASK_TYPE_SLOT_ERASE:
{
if (!ensure_no_mtmd(task.id)) break;
int id_slot = task.slot_action.slot_id;
server_slot * slot = get_slot_by_id(id_slot);
if (slot == nullptr) {
@ -2844,6 +2889,7 @@ struct server_context {
res->id = task.id;
queue_results.send(std::move(res));
} break;
}
}
@ -2889,6 +2935,12 @@ struct server_context {
continue;
}
if (mctx) {
// we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
// we don't support ctx_shift because an image chunk may contains multiple tokens
GGML_ABORT("not supported by multimodal");
}
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = slot.n_past - n_keep;
@ -2900,11 +2952,14 @@ struct server_context {
llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
new_tokens[i - n_discard] = new_tokens[i];
}
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
new_tokens.resize(slot.cache_tokens.size() - n_discard);
slot.cache_tokens.clear();
slot.cache_tokens.insert(new_tokens);
}
slot.n_past -= n_discard;
@ -2982,7 +3037,7 @@ struct server_context {
SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
// print prompt tokens (for debugging)
if (1) {
/*if (1) {
// first 16 tokens (avoid flooding logs)
for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
@ -2992,7 +3047,7 @@ struct server_context {
for (int i = 0; i < (int) prompt_tokens.size(); i++) {
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
}
}
}*/
// empty prompt passed -> release the slot and send empty response
if (prompt_tokens.empty()) {
@ -3034,21 +3089,27 @@ struct server_context {
// if input prompt is too big, truncate it
if (slot.n_prompt_tokens >= slot.n_ctx) {
if (mctx) {
// we should never reach this
GGML_ABORT("not supported by multimodal");
}
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
llama_tokens new_tokens(
prompt_tokens.begin(),
prompt_tokens.begin() + slot.params.n_keep);
curr_tokens.begin(),
curr_tokens.begin() + slot.params.n_keep);
new_tokens.insert(
new_tokens.end(),
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
prompt_tokens.end());
curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
curr_tokens.end());
prompt_tokens = std::move(new_tokens);
prompt_tokens.clear();
prompt_tokens.insert(new_tokens);
slot.truncated = true;
slot.n_prompt_tokens = prompt_tokens.size();
@ -3060,13 +3121,18 @@ struct server_context {
if (slot.params.cache_prompt) {
// reuse any previously computed tokens that are common with the new prompt
slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
// reuse chunks from the cached prompt by shifting their KV cache in the new position
if (params_base.n_cache_reuse > 0) {
size_t head_c = slot.n_past; // cache
size_t head_p = slot.n_past; // current prompt
if (mctx) {
// we should never reach this
GGML_ABORT("not supported by multimodal");
}
SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
while (head_c < slot.cache_tokens.size() &&
@ -3092,7 +3158,7 @@ struct server_context {
llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
slot.n_past++;
}
@ -3140,21 +3206,52 @@ struct server_context {
// remove the non-common part from the cache
slot.cache_tokens.resize(slot.n_past);
// check if we should process the image
if (slot.n_past < slot.n_prompt_tokens
&& slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
// process the image
int32_t new_n_past;
int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
int32_t n_pos = new_n_past - slot.n_past;
if (res != 0) {
SLT_ERR(slot, "failed to process image, res = %d\n", res);
slot.release();
send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
continue;
}
if (slot.params.cache_prompt) {
const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
slot.cache_tokens.push_back(chunk.get()); // copy
}
slot.n_past += n_pos;
slot.n_prompt_tokens_processed += n_pos;
}
// add prompt tokens for processing in the current batch
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
// get next token to process
llama_token cur_tok = slot.prompt_tokens[slot.n_past];
if (cur_tok == LLAMA_TOKEN_NULL) {
break; // end of text chunk
}
// without pooling, we want to output the embeddings for all the tokens in the batch
const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
if (slot.params.cache_prompt) {
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
slot.cache_tokens.push_back(cur_tok);
}
slot.n_prompt_tokens_processed++;
slot.n_past++;
}
// SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
// entire prompt has been processed
@ -3162,12 +3259,16 @@ struct server_context {
slot.state = SLOT_STATE_DONE_PROMPT;
GGML_ASSERT(batch.n_tokens > 0);
GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
common_sampler_reset(slot.smpl);
// Process all prompt tokens through sampler system
for (int i = 0; i < slot.n_prompt_tokens; ++i) {
common_sampler_accept(slot.smpl, prompt_tokens[i], false);
llama_token id = slot.prompt_tokens[i];
if (id != LLAMA_TOKEN_NULL) {
common_sampler_accept(slot.smpl, id, false);
}
}
// extract the logits only for the last token
@ -3320,6 +3421,11 @@ struct server_context {
continue;
}
if (mctx) {
// we should never reach this, as speculative is automatically disabled if mmproj is loaded
GGML_ABORT("not supported by multimodal");
}
// determine the max draft that fits the current slot state
int n_draft_max = slot.params.speculative.n_max;
@ -3346,7 +3452,8 @@ struct server_context {
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
params_spec.p_min = slot.params.speculative.p_min;
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
// keep track of total number of tokens generated in the draft
slot.n_draft_total += draft.size();
@ -3380,7 +3487,7 @@ struct server_context {
slot.n_draft_accepted += ids.size() - 1;
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
@ -3903,6 +4010,7 @@ int main(int argc, char ** argv) {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model.path },
{ "modalities", json{{"vision", ctx_server.mctx != nullptr}} }, // TODO: add more in the future
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
@ -3950,9 +4058,10 @@ int main(int argc, char ** argv) {
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
server_task_type type,
json & data,
const std::vector<raw_buffer> & files,
const std::function<bool()> & is_connection_closed,
httplib::Response & res,
oaicompat_type oaicompat) {
oaicompat_type oaicompat) -> void {
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
if (ctx_server.params_base.embedding) {
@ -3969,15 +4078,69 @@ int main(int argc, char ** argv) {
// TODO: this log can become very long, put it behind a flag or think about a more compact format
//SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
tasks.reserve(tokenized_prompts.size());
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
// process files
mtmd::bitmaps bitmaps;
const bool has_mtmd = ctx_server.mctx != nullptr;
{
if (!has_mtmd && !files.empty()) {
throw std::runtime_error("This server does not support multimodal");
}
for (auto & file : files) {
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(file.data(), file.size()));
if (!bmp.ptr) {
throw std::runtime_error("Failed to load image");
}
// calculate bitmap hash (for KV caching)
std::string hash = fnv_hash(bmp.data(), bmp.nx()*bmp.ny()*3);
bmp.set_id(hash.c_str());
bitmaps.entries.push_back(std::move(bmp));
}
}
// process prompt
std::vector<server_tokens> inputs;
if (oaicompat && !prompt.is_string()) {
throw std::runtime_error("prompt must be a string");
}
if (oaicompat && has_mtmd) {
// multimodal
std::string prompt_str = prompt.get<std::string>();
mtmd_input_text inp_txt = {
prompt_str.c_str(),
/* add_special */ true,
/* parse_special */ true,
};
mtmd::input_chunks chunks(mtmd_input_chunks_init());
auto bitmaps_c_ptr = bitmaps.c_ptr();
int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
chunks.ptr.get(),
&inp_txt,
bitmaps_c_ptr.data(),
bitmaps_c_ptr.size());
if (tokenized != 0) {
throw std::runtime_error("Failed to tokenize prompt");
}
server_tokens tmp(chunks, true);
inputs.push_back(std::move(tmp));
} else {
// non-multimodal version
auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
for (auto & p : tokenized_prompts) {
auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
inputs.push_back(std::move(tmp));
}
}
tasks.reserve(inputs.size());
for (size_t i = 0; i < inputs.size(); i++) {
server_task task = server_task(type);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = std::move(tokenized_prompts[i]);
task.prompt_tokens = std::move(inputs[i]);
task.params = server_task::params_from_json_cmpl(
ctx_server.ctx,
ctx_server.params_base,
@ -4059,9 +4222,11 @@ int main(int argc, char ** argv) {
const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
json data = json::parse(req.body);
return handle_completions_impl(
std::vector<raw_buffer> files; // dummy
handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
files,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_NONE);
@ -4069,9 +4234,11 @@ int main(int argc, char ** argv) {
const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
json data = oaicompat_completion_params_parse(json::parse(req.body));
return handle_completions_impl(
std::vector<raw_buffer> files; // dummy
handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
files,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_COMPLETION);
@ -4146,9 +4313,11 @@ int main(int argc, char ** argv) {
tokenized_prompts[0]
);
return handle_completions_impl(
std::vector<raw_buffer> files; // dummy
handle_completions_impl(
SERVER_TASK_TYPE_INFILL,
data,
files,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
@ -4162,11 +4331,19 @@ int main(int argc, char ** argv) {
}
auto body = json::parse(req.body);
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
std::vector<raw_buffer> files;
json data = oaicompat_completion_params_parse(
body,
params.use_jinja,
params.reasoning_format,
ctx_server.chat_templates.get(),
ctx_server.mctx,
files);
return handle_completions_impl(
handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
files,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_CHAT);
@ -4175,7 +4352,14 @@ int main(int argc, char ** argv) {
// same with handle_chat_completions, but without inference part
const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
auto body = json::parse(req.body);
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
std::vector<raw_buffer> files; // dummy, unused
json data = oaicompat_completion_params_parse(
body,
params.use_jinja,
params.reasoning_format,
ctx_server.chat_templates.get(),
ctx_server.mctx,
files);
res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
};
@ -4280,7 +4464,7 @@ int main(int argc, char ** argv) {
}
}
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
for (const auto & tokens : tokenized_prompts) {
// this check is necessary for models that do not add BOS token to the input
if (tokens.empty()) {
@ -4300,7 +4484,7 @@ int main(int argc, char ** argv) {
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = std::move(tokenized_prompts[i]);
task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
// OAI-compat
task.params.oaicompat = oaicompat;
@ -4394,13 +4578,14 @@ int main(int argc, char ** argv) {
std::unordered_set<int> task_ids;
{
std::vector<server_task> tasks;
std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
tasks.reserve(tokenized_docs.size());
for (size_t i = 0; i < tokenized_docs.size(); i++) {
auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
tasks.push_back(std::move(task));
}

View file

@ -0,0 +1,59 @@
import pytest
from utils import *
import base64
import requests
server: ServerProcess
IMG_URL_0 = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/test/11_truck.png"
IMG_URL_1 = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/test/91_cat.png"
response = requests.get(IMG_URL_0)
response.raise_for_status() # Raise an exception for bad status codes
IMG_BASE64_0 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8")
@pytest.fixture(autouse=True)
def create_server():
global server
server = ServerPreset.tinygemma3()
@pytest.mark.parametrize(
"prompt, image_url, success, re_content",
[
# test model is trained on CIFAR-10, but it's quite dumb due to small size
("What is this:\n", IMG_URL_0, True, "(cat)+"),
("What is this:\n", "IMG_BASE64_0", True, "(cat)+"), # exceptional, so that we don't cog up the log
("What is this:\n", IMG_URL_1, True, "(frog)+"),
("Test test\n", IMG_URL_1, True, "(frog)+"), # test invalidate cache
("What is this:\n", "malformed", False, None),
("What is this:\n", "https://google.com/404", False, None), # non-existent image
("What is this:\n", "https://ggml.ai", False, None), # non-image data
]
)
def test_vision_chat_completion(prompt, image_url, success, re_content):
global server
server.start(timeout_seconds=60) # vision model may take longer to load due to download size
if image_url == "IMG_BASE64_0":
image_url = IMG_BASE64_0
res = server.make_request("POST", "/chat/completions", data={
"temperature": 0.0,
"top_k": 1,
"messages": [
{"role": "user", "content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {
"url": image_url,
}},
]},
],
})
if success:
assert res.status_code == 200
choice = res.body["choices"][0]
assert "assistant" == choice["message"]["role"]
assert match_regex(re_content, choice["message"]["content"])
else:
assert res.status_code != 200

View file

@ -88,6 +88,7 @@ class ServerProcess:
chat_template: str | None = None
chat_template_file: str | None = None
server_path: str | None = None
mmproj_url: str | None = None
# session variables
process: subprocess.Popen | None = None
@ -194,6 +195,8 @@ class ServerProcess:
server_args.extend(["--chat-template", self.chat_template])
if self.chat_template_file:
server_args.extend(["--chat-template-file", self.chat_template_file])
if self.mmproj_url:
server_args.extend(["--mmproj-url", self.mmproj_url])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"tests: starting server with: {' '.join(args)}")
@ -379,6 +382,21 @@ class ServerPreset:
server.server_reranking = True
return server
@staticmethod
def tinygemma3() -> ServerProcess:
server = ServerProcess()
# mmproj is already provided by HF registry API
server.model_hf_repo = "ggml-org/tinygemma3-GGUF"
server.model_hf_file = "tinygemma3-Q8_0.gguf"
server.mmproj_url = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/mmproj-tinygemma3.gguf"
server.model_alias = "tinygemma3"
server.n_ctx = 1024
server.n_batch = 32
server.n_slots = 2
server.n_predict = 4
server.seed = 42
return server
def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
"""

View file

@ -3,7 +3,9 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "arg.h" // common_remote_get_content
#include "base64.hpp"
#include "mtmd.h"
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
@ -21,6 +23,7 @@
#include <string>
#include <vector>
#include <memory>
#include <cinttypes>
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
@ -41,6 +44,8 @@ using json = nlohmann::ordered_json;
#define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
using raw_buffer = std::vector<uint8_t>;
template <typename T>
static T json_value(const json & body, const std::string & key, const T & default_value) {
// Fallback null to default value
@ -386,7 +391,7 @@ static inline bool is_base64(uint8_t c) {
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
static inline raw_buffer base64_decode(const std::string & encoded_string) {
int i = 0;
int j = 0;
int in_ = 0;
@ -396,7 +401,7 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
uint8_t char_array_4[4];
uint8_t char_array_3[3];
std::vector<uint8_t> ret;
raw_buffer ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
char_array_4[i++] = encoded_string[in_]; in_++;
@ -579,7 +584,9 @@ static json oaicompat_completion_params_parse(
const json & body, /* openai api json semantics */
bool use_jinja,
common_reasoning_format reasoning_format,
const struct common_chat_templates * tmpls)
const struct common_chat_templates * tmpls,
bool allow_non_text,
std::vector<raw_buffer> & out_files)
{
json llama_params;
@ -627,8 +634,77 @@ static json oaicompat_completion_params_parse(
}
}
// get input files
if (!body.contains("messages")) {
throw std::runtime_error("'messages' is required");
}
json messages = body.at("messages");
if (!messages.is_array()) {
throw std::runtime_error("Expected 'messages' to be an array");
}
for (auto & msg : messages) {
json & content = msg.at("content");
if (content.is_string() || content.is_null()) {
continue;
}
if (!content.is_array()) {
throw std::runtime_error("Expected 'content' to be a string or an array");
}
for (auto & p : content) {
std::string type = json_value(p, "type", std::string());
json image_url = json_value(p, "image_url", json::object());
if (type == "image_url") {
if (!allow_non_text) {
throw std::runtime_error("image input is not supported by this server");
}
std::string url = json_value(image_url, "url", std::string());
if (string_starts_with(url, "http")) {
// download remote image
// TODO @ngxson : maybe make these params configurable
common_remote_params params;
params.headers.push_back("User-Agent: llama.cpp/" + build_info);
params.max_size = 1024 * 1024 * 10; // 10MB
params.timeout = 10; // seconds
SRV_INF("downloading image from '%s'\n", url.c_str());
auto res = common_remote_get_content(url, params);
if (200 <= res.first && res.first < 300) {
SRV_INF("downloaded %ld bytes\n", res.second.size());
raw_buffer data;
data.insert(data.end(), res.second.begin(), res.second.end());
out_files.push_back(data);
} else {
throw std::runtime_error("Failed to download image");
}
} else {
// try to decode base64 image
std::vector<std::string> parts = string_split<std::string>(url, /*separator*/ ',');
if (parts.size() != 2) {
throw std::runtime_error("Invalid image_url.url value");
} else if (!string_starts_with(parts[0], "data:image/")) {
throw std::runtime_error("Invalid image_url.url format: " + parts[0]);
} else if (!string_ends_with(parts[0], "base64")) {
throw std::runtime_error("image_url.url must be base64 encoded");
} else {
auto base64_data = parts[1];
auto decoded_data = base64_decode(base64_data);
out_files.push_back(decoded_data);
}
}
// replace this chunk with a marker
p["type"] = "text";
p["text"] = MTMD_DEFAULT_IMAGE_MARKER;
p.erase("image_url");
}
}
}
common_chat_templates_inputs inputs;
inputs.messages = common_chat_msgs_parse_oaicompat(body.at("messages"));
inputs.messages = common_chat_msgs_parse_oaicompat(messages);
inputs.tools = common_chat_tools_parse_oaicompat(tools);
inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(json_value(body, "tool_choice", std::string("auto")));
inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
@ -935,3 +1011,286 @@ static std::vector<common_adapter_lora_info> parse_lora_request(
return lora;
}
//
// utils for interacting with libmtmd
// (may need to refactor in near future)
//
/**
* server_tokens is a helper to manage the input tokens and image for the server.
* it is made this way to simplify the logic of KV cache management.
*/
struct server_tokens {
bool has_mtmd = false;
private: // disallow accessing these members directly, risking out-of-sync
// map a **start** position in tokens to the image chunk
std::unordered_map<llama_pos, mtmd::input_chunk_ptr> map_pos_to_image;
// list of tokens
// it can include LLAMA_TOKEN_NULL, which is used to indicate a token that is not a text token
// a mtmd_input_chunk can occupy multiple tokens, one llama_token per **position**
// important: for models using mrope, an image can contain multiple tokens but will use only one **position**
llama_tokens tokens;
// for ex. with input of 5 text tokens and 2 images:
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
// pos 0 1 2 3 4 5 6 7 8 9
// map_pos_to_image will contain: {5, img0}, {8, img1}
public:
server_tokens() = default;
~server_tokens() = default;
// Prevent copying
server_tokens(const server_tokens&) = delete;
server_tokens& operator=(const server_tokens&) = delete;
// Allow moving (usually implicitly generated if members are movable)
server_tokens(server_tokens&&) = default;
server_tokens& operator=(server_tokens&&) = default;
// Allow accessing elements using [] operator
llama_token operator[](size_t index) { return tokens[index]; }
const llama_token& operator[](size_t index) const { return tokens[index]; }
server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) {
for (size_t i = 0; i < mtmd_chunks.size(); ++i) {
push_back(mtmd_chunks[i]);
}
}
server_tokens(llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {}
// for debugging
std::string str() const {
std::ostringstream oss;
oss << "tokens: ";
for (const auto & t : tokens) {
if (t == LLAMA_TOKEN_NULL) {
oss << "<embd> ";
} else {
oss << t << " ";
}
}
oss << "\n";
oss << "image pos: ";
for (const auto & it : map_pos_to_image) {
oss << it.first << ", ";
}
return oss.str();
}
const mtmd::input_chunk_ptr & find_chunk(llama_pos pos) const {
auto it = map_pos_to_image.find(pos);
if (it != map_pos_to_image.end()) {
return it->second;
} else {
throw std::runtime_error("Chunk not found");
}
}
void push_back(llama_token tok) {
if (tok == LLAMA_TOKEN_NULL) {
throw std::runtime_error("Invalid token");
}
tokens.emplace_back(tok);
}
// will create a copy of the chunk if it contains non-text data
void push_back(const mtmd_input_chunk * chunk) {
auto type = mtmd_input_chunk_get_type(chunk);
if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
GGML_ASSERT(has_mtmd);
auto img_tokens = mtmd_input_chunk_get_tokens_image(chunk);
const int n_pos = mtmd_image_tokens_get_n_pos(img_tokens);
llama_pos start_pos = tokens.size();
for (int i = 0; i < n_pos; ++i) {
tokens.emplace_back(LLAMA_TOKEN_NULL);
}
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
map_pos_to_image[start_pos] = std::move(new_chunk);
} else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
auto text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
for (size_t i = 0; i < n_tokens; ++i) {
push_back(text_tokens[i]);
}
} else {
GGML_ABORT("Invalid chunk type");
}
}
// for compatibility with context shift and prompt truncation
void insert(const llama_tokens & inp_tokens) {
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end());
}
// for compatibility with speculative decoding, ctx shift, slot save/load
const llama_tokens & get_text_tokens() const {
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
return tokens;
}
// for compatibility with speculative decoding
void set_token(llama_pos pos, llama_token id) {
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
tokens[pos] = id;
}
size_t size() const {
return tokens.size();
}
bool empty() const {
return tokens.empty();
}
void clear() {
tokens.clear();
}
void resize(size_t n) {
GGML_ASSERT(n <= tokens.size());
if (has_mtmd) {
// we throw an error if we try to remove a token in the middle of an image
// for ex. with input of 5 text tokens and 2 images:
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
// n 1 2 3 4 5 6 7 8 9 10
// allowed to resize ^ ^
// disallowed to resize ^ ^ ^
if (n > 0) {
llama_token last_token = tokens[n - 1];
// make sure we never remove tokens in the middle of an image
if (last_token == LLAMA_TOKEN_NULL) {
find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk
}
}
// remove all image chunks that are not used anymore
for (auto it = map_pos_to_image.begin(); it != map_pos_to_image.end(); ) {
llama_pos pos = it->first;
if (pos >= (llama_pos)n) {
it = map_pos_to_image.erase(it);
} else {
++it;
}
}
}
tokens.resize(n);
}
std::string detokenize(const llama_context * ctx, bool special) const {
llama_tokens text_tokens;
text_tokens.reserve(tokens.size());
for (const auto & t : tokens) {
if (t != LLAMA_TOKEN_NULL) {
text_tokens.push_back(t);
}
}
return common_detokenize(ctx, text_tokens, special);
}
size_t get_common_prefix(const server_tokens & b) const {
size_t max_idx = std::min(tokens.size(), b.tokens.size());
for (size_t i = 0; i < max_idx; ++i) {
auto & ai = tokens[i];
auto & bi = b.tokens[i];
if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
GGML_ASSERT(has_mtmd);
const auto & a_chunk = find_chunk(i);
const auto & b_chunk = b.find_chunk(i);
GGML_ASSERT(a_chunk && b_chunk);
const auto * a_img = mtmd_input_chunk_get_tokens_image(a_chunk.get());
const auto * b_img = mtmd_input_chunk_get_tokens_image(b_chunk.get());
std::string ai_id = mtmd_image_tokens_get_id(a_img);
std::string bi_id = mtmd_image_tokens_get_id(b_img);
size_t a_pos = mtmd_image_tokens_get_n_pos(a_img);
size_t b_pos = mtmd_image_tokens_get_n_pos(b_img);
if (ai_id == bi_id && a_pos == b_pos) {
GGML_ASSERT(a_pos > 0 && "Invalid image token"); // should never happen
i += a_pos - 1; // will be +1 by the for loop
continue;
} else {
return i;
}
} else if (ai == bi) {
continue;
} else {
return i;
}
}
return max_idx; // all tokens are equal
}
// make sure all text tokens are within the vocab range
bool validate(const struct llama_context * ctx) const {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
for (size_t i = 0; i < tokens.size(); ++i) {
auto & t = tokens[i];
if (t == LLAMA_TOKEN_NULL) {
try {
const auto & chunk = find_chunk(i);
const auto * img_tokens = mtmd_input_chunk_get_tokens_image(chunk.get());
size_t n_pos = mtmd_image_tokens_get_n_pos(img_tokens);
i += n_pos - 1; // will be +1 by the for loop
} catch (const std::exception & e) {
return false;
}
} else if (t < 0 || t >= n_vocab) {
return false;
}
}
return true;
}
// encode and decode the image chunk
int32_t process_chunk(
llama_context * ctx,
mtmd_context * mctx,
llama_pos n_past,
int32_t seq_id,
llama_pos & n_pos_out) {
auto it = map_pos_to_image.find(n_past);
if (it == map_pos_to_image.end()) {
throw std::runtime_error("Chunk not found");
}
SRV_INF("%s\n", "processing image...");
int32_t n_batch = llama_n_batch(ctx);
int64_t t0 = ggml_time_ms();
llama_pos new_n_past = n_past;
int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
it->second.get(), // chunk
n_past,
seq_id,
n_batch,
true, // logits last
&new_n_past);
SRV_INF("image processed in %" PRId64 " ms\n", ggml_time_ms() - t0);
if (result != 0) {
LOG_ERR("mtmd_helper_eval failed with status %d", result);
n_pos_out = n_past;
return result;
}
n_pos_out = new_n_past;
return 0;
}
};
// Computes FNV-1a hash of the data
static std::string fnv_hash(const uint8_t * data, size_t len) {
const uint64_t fnv_prime = 0x100000001b3ULL;
uint64_t hash = 0xcbf29ce484222325ULL;
for (size_t i = 0; i < len; ++i) {
hash ^= data[i];
hash *= fnv_prime;
}
return std::to_string(hash);
}