diff --git a/common/arg.cpp b/common/arg.cpp index 36b19538e..835f9f5a8 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -41,7 +41,7 @@ using json = nlohmann::ordered_json; std::initializer_list mmproj_examples = { LLAMA_EXAMPLE_LLAVA, - // TODO: add LLAMA_EXAMPLE_SERVER when it's ready + LLAMA_EXAMPLE_SERVER, }; static std::string read_file(const std::string & fname) { @@ -2205,32 +2205,33 @@ common_params_context common_params_parser_init(common_params & params, llama_ex ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING")); add_opt(common_arg( {"--mmproj"}, "FILE", - "path to a multimodal projector file. see tools/mtmd/README.md", + "path to a multimodal projector file. see tools/mtmd/README.md\n" + "note: if -hf is used, this argument can be omitted", [](common_params & params, const std::string & value) { params.mmproj.path = value; } - ).set_examples(mmproj_examples)); + ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ")); add_opt(common_arg( {"--mmproj-url"}, "URL", "URL to a multimodal projector file. see tools/mtmd/README.md", [](common_params & params, const std::string & value) { params.mmproj.url = value; } - ).set_examples(mmproj_examples)); + ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL")); add_opt(common_arg( {"--no-mmproj"}, "explicitly disable multimodal projector, useful when using -hf", [](common_params & params) { params.no_mmproj = true; } - ).set_examples(mmproj_examples)); + ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ")); add_opt(common_arg( {"--no-mmproj-offload"}, "do not offload multimodal projector to GPU", [](common_params & params) { params.mmproj_use_gpu = false; } - ).set_examples(mmproj_examples)); + ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD")); add_opt(common_arg( {"--image"}, "FILE", "path to an image file. use with multimodal models. Specify multiple times for batching", @@ -2437,6 +2438,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex } } )); + add_opt(common_arg( + {"--no-op-offload"}, + string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"), + [](common_params & params) { + params.no_op_offload = true; + } + )); add_opt(common_arg( {"--lora"}, "FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)", diff --git a/common/common.cpp b/common/common.cpp index 21ad0a8eb..3a7bc684c 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -15,6 +15,7 @@ #include "json-schema-to-grammar.cpp" #include "llama.h" #include "chat.cpp" +#include "ggml/src/ggml-opt.cpp" //dear god pls #include #include @@ -1120,6 +1121,7 @@ struct llama_context_params common_context_params_to_llama(const common_params & cparams.offload_kqv = !params.no_kv_offload; cparams.flash_attn = params.flash_attn; cparams.no_perf = params.no_perf; + cparams.op_offload = !params.no_op_offload; if (params.reranking) { cparams.embeddings = true; @@ -1571,3 +1573,20 @@ common_control_vector_data common_control_vector_load(const std::vector & tokens, int64_t stride) { + const int64_t ne_datapoint = llama_n_ctx(ctx); + const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride; + ggml_opt_dataset_t result = ggml_opt_dataset_init( + GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1); + + llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data; + llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data; + + for (int64_t idata = 0; idata < ndata; ++idata) { + memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token)); + memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token)); + } + + return result; +} diff --git a/common/common.h b/common/common.h index 3b7e74bbd..8115dd925 100644 --- a/common/common.h +++ b/common/common.h @@ -328,6 +328,7 @@ struct common_params { bool no_kv_offload = false; // disable KV offloading bool warmup = true; // warmup run bool check_tensors = false; // validate tensor data + bool no_op_offload = false; // globally disable offload host tensor operations to device bool single_turn = false; // single turn chat conversation @@ -661,3 +662,9 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count"; const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; } + +// +// training utils +// + +ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector & tokens, int64_t stride); diff --git a/common/llguidance.cpp b/common/llguidance.cpp index 8bff89ea4..adce620e4 100644 --- a/common/llguidance.cpp +++ b/common/llguidance.cpp @@ -189,6 +189,7 @@ static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab) /* .tokenize_fn = */ llama_sampler_llg_tokenize_fn, /* .use_approximate_greedy_tokenize_fn = */ false, /* .tokenize_user_data = */ vocab, + /* .slices = */ nullptr, }; char error_buffer[1024]; diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index bf6bc6838..a34ba2988 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -426,7 +426,11 @@ class ModelBase: logger.warning(f"Failed to load model config from {dir_model}: {e}") logger.warning("Trying to load config.json instead") with open(dir_model / "config.json", "r", encoding="utf-8") as f: - return json.load(f) + config = json.load(f) + if "llm_config" in config: + # rename for InternVL + config["text_config"] = config["llm_config"] + return config @classmethod def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: @@ -794,6 +798,9 @@ class TextModel(ModelBase): if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3": # ref: https://huggingface.co/mistral-community/pixtral-12b res = "pixtral" + if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec": + # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base + res = "seed-coder" if res is None: logger.warning("\n") @@ -2606,6 +2613,11 @@ class Qwen2Model(TextModel): def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: if self.hf_arch == "Qwen2Model": name = f"model.{name}" # map to Qwen2ForCausalLM tensors + if "language_model." in name: + name = name.replace("language_model.", "") # for InternVL + if name.startswith("mlp") or name.startswith("vision_model"): + # skip visual tensors + return [] yield from super().modify_tensors(data_torch, name, bid) @@ -2709,6 +2721,62 @@ class Qwen2VLVisionModel(VisionModel): return [] # skip other tensors +@ModelBase.register("InternVisionModel") +class InternVisionModel(VisionModel): + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.INTERNVL) + self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"]) + # hidden_act + if hparams["hidden_act"] == "silu": + self.gguf_writer.add_vision_use_silu(True) + elif hparams["hidden_act"] == "gelu": + self.gguf_writer.add_vision_use_gelu(True) + else: + raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}") + # downsample_ratio + downsample_ratio = self.global_config.get("downsample_ratio") + assert downsample_ratio is not None + self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio)) + + def tensor_force_quant(self, name, new_name, bid, n_dims): + del bid, name, n_dims # unused + if ".patch_embd." in new_name: + return gguf.GGMLQuantizationType.F16 + if ".position_embd." in new_name: + return gguf.GGMLQuantizationType.F32 + return False + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + if name.startswith("vision_model") or name.startswith("mlp"): + # process visual tensors + # correct name + if name.startswith("vision_model"): + name = "vision_tower." + name + if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"): + name += ".weight" + # split QKV tensors if needed + if ".qkv." in name: + if data_torch.ndim == 2: # weight + c3, _ = data_torch.shape + else: # bias + c3 = data_torch.shape[0] + assert c3 % 3 == 0 + c = c3 // 3 + wq = data_torch[:c] + wk = data_torch[c: c * 2] + wv = data_torch[c * 2:] + return [ + (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq), + (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk), + (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv), + ] + return [(self.map_tensor_name(name), data_torch)] + return [] # skip other tensors + + @ModelBase.register("WavTokenizerDec") class WavTokenizerDecModel(TextModel): model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC @@ -3360,6 +3428,11 @@ class InternLM2Model(TextModel): head_dim = n_embd // num_heads num_groups = num_heads // q_per_kv + name = name.replace("language_model.", "") # InternVL + if name.startswith("mlp") or name.startswith("vision_model"): + # skip visual tensors + return [] + if bid is not None and f"model.layers.{bid}.attention.wqkv" in name: qkv = data_torch @@ -3433,6 +3506,10 @@ class InternLM3Model(TextModel): def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams.get("num_key_value_heads") + name = name.replace("language_model.", "") # InternVL + if name.startswith("mlp") or name.startswith("vision_model"): + # skip visual tensors + return [] if name.endswith(("q_proj.weight", "q_proj.bias")): data_torch = LlamaModel.permute(data_torch, n_head, n_head) if name.endswith(("k_proj.weight", "k_proj.bias")): diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 03a1d8d8c..5993a4c98 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -116,6 +116,7 @@ models = [ {"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", }, {"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", }, {"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", }, + {"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", }, ] diff --git a/docs/multimodal.md b/docs/multimodal.md new file mode 100644 index 000000000..6a5d2b342 --- /dev/null +++ b/docs/multimodal.md @@ -0,0 +1,77 @@ +# Multimodal + +llama.cpp supports multimodal input via `libmtmd`. Currently, there are 2 tools support this feature: +- [llama-mtmd-cli](../tools/mtmd/README.md) +- [llama-server](../tools/server/README.md) via OpenAI-compatible `/chat/completions` API + +To enable it, can use use one of the 2 methods below: + +- Use `-hf` option with a supported model (see a list of pre-quantized model below) + - To load a model using `-hf` while disabling multimodal, use `--no-mmproj` + - To load a model using `-hf` while using a custom mmproj file, use `--mmproj local_file.gguf` +- Use `-m model.gguf` option with `--mmproj file.gguf` to specify text and multimodal projector respectively + +By default, multimodal projector will be offloaded to GPU. To disable this, add `--no-mmproj-offload` + +For example: + +```sh +# simple usage with CLI +llama-mtmd-cli -hf ggml-org/gemma-3-4b-it-GGUF + +# simple usage with server +llama-server -hf ggml-org/gemma-3-4b-it-GGUF + +# using local file +llama-server -m gemma-3-4b-it-Q4_K_M.gguf --mmproj mmproj-gemma-3-4b-it-Q4_K_M.gguf + +# no GPU offload +llama-server -hf ggml-org/gemma-3-4b-it-GGUF --no-mmproj-offload +``` + +## Pre-quantized models + +These are ready-to-use models, most of them come with `Q4_K_M` quantization by default. + +Replaces the `(tool_name)` with the name of binary you want to use. For example, `llama-mtmd-cli` or `llama-server` + +NOTE: some models may require large context window, for example: `-c 8192` + +```sh +# Gemma 3 +(tool_name) -hf ggml-org/gemma-3-4b-it-GGUF +(tool_name) -hf ggml-org/gemma-3-12b-it-GGUF +(tool_name) -hf ggml-org/gemma-3-27b-it-GGUF + +# SmolVLM +(tool_name) -hf ggml-org/SmolVLM-Instruct-GGUF +(tool_name) -hf ggml-org/SmolVLM-256M-Instruct-GGUF +(tool_name) -hf ggml-org/SmolVLM-500M-Instruct-GGUF +(tool_name) -hf ggml-org/SmolVLM2-2.2B-Instruct-GGUF +(tool_name) -hf ggml-org/SmolVLM2-256M-Video-Instruct-GGUF +(tool_name) -hf ggml-org/SmolVLM2-500M-Video-Instruct-GGUF + +# Pixtral 12B +(tool_name) -hf ggml-org/pixtral-12b-GGUF + +# Qwen 2 VL +(tool_name) -hf ggml-org/Qwen2-VL-2B-Instruct-GGUF +(tool_name) -hf ggml-org/Qwen2-VL-7B-Instruct-GGUF + +# Qwen 2.5 VL +(tool_name) -hf ggml-org/Qwen2.5-VL-3B-Instruct-GGUF +(tool_name) -hf ggml-org/Qwen2.5-VL-7B-Instruct-GGUF +(tool_name) -hf ggml-org/Qwen2.5-VL-32B-Instruct-GGUF +(tool_name) -hf ggml-org/Qwen2.5-VL-72B-Instruct-GGUF + +# Mistral Small 3.1 24B (IQ2_M quantization) +(tool_name) -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF + +# InternVL 2.5 and 3 +(tool_name) -hf ggml-org/InternVL2_5-1B-GGUF +(tool_name) -hf ggml-org/InternVL2_5-4B-GGUF +(tool_name) -hf ggml-org/InternVL3-1B-Instruct-GGUF +(tool_name) -hf ggml-org/InternVL3-2B-Instruct-GGUF +(tool_name) -hf ggml-org/InternVL3-8B-Instruct-GGUF +(tool_name) -hf ggml-org/InternVL3-14B-Instruct-GGUF +``` diff --git a/examples/training/CMakeLists.txt b/examples/training/CMakeLists.txt new file mode 100644 index 000000000..64afe6ddc --- /dev/null +++ b/examples/training/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET llama-finetune) +add_executable(${TARGET} finetune.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/training/README.md b/examples/training/README.md new file mode 100644 index 000000000..ecdf398f8 --- /dev/null +++ b/examples/training/README.md @@ -0,0 +1,17 @@ +# llama.cpp/examples/training + +This directory contains examples related to language model training using llama.cpp/GGML. +So far finetuning is technically functional (for FP32 models and limited hardware setups) but the code is very much WIP. +Finetuning of Stories 260K and LLaMA 3.2 1b seems to work with 24 GB of memory. +**For CPU training, compile llama.cpp without any additional backends such as CUDA.** +**For CUDA training, use the maximum number of GPU layers.** + +Proof of concept: + +``` sh +export model_name=llama_3.2-1b && export quantization=f32 +./build/bin/finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512 +./build/bin/perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf +``` + +The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs. diff --git a/examples/training/finetune.cpp b/examples/training/finetune.cpp new file mode 100644 index 000000000..23bede49b --- /dev/null +++ b/examples/training/finetune.cpp @@ -0,0 +1,96 @@ +#include "arg.h" +#include "common.h" +#include "log.h" +#include "llama.h" + +#include +#include +#include +#include +#include + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +int main(int argc, char ** argv) { + common_params params; + + params.escape = false; + + if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) { + return 1; + } + + if (params.use_mmap) { + LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__); + params.use_mmap = false; + } + if (params.cache_type_k != GGML_TYPE_F32) { + LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__); + params.cache_type_k = GGML_TYPE_F32; + } + if (params.cache_type_v != GGML_TYPE_F32) { + LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__); + params.cache_type_v = GGML_TYPE_F32; + } + + common_init(); + llama_backend_init(); + llama_numa_init(params.numa); + + // load the model and apply lora adapter, if any + common_init_result llama_init = common_init_from_params(params); + llama_model_ptr & model = llama_init.model; + llama_context_ptr & ctx = llama_init.context; + + if (model == NULL) { + LOG_ERR("%s: unable to load model\n", __func__); + return 1; + } + + // print system information + { + LOG_INF("\n"); + LOG_INF("%s\n", common_params_get_system_info(params).c_str()); + } + + constexpr float val_split = 0.05f; + + std::vector tokens = common_tokenize(ctx.get(), params.prompt, true); + ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2); + + struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr); + optimizer_params.adamw.alpha = 1e-7f; // learning rate + + struct llama_opt_params lopt_params { + /*n_ctx_train =*/ 0, + /*param_filter =*/ llama_opt_param_filter_all, + /*param_filter_ud =*/ nullptr, + /*get_opt_pars =*/ ggml_opt_get_constant_optimizer_params, + /*get_opt_pars_ud =*/ &optimizer_params, + }; + llama_opt_init(ctx.get(), model.get(), lopt_params); + + const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split); + + ggml_opt_result_t result_train = ggml_opt_result_init(); + ggml_opt_result_t result_eval = ggml_opt_result_init(); + + for (int epoch = 0; epoch < 2; ++epoch) { + llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split, + ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar); + fprintf(stderr, "\n"); + + ggml_opt_result_reset(result_train); + ggml_opt_result_reset(result_eval); + } + ggml_opt_result_free(result_train); + ggml_opt_result_free(result_eval); + + llama_model_save_to_file(model.get(), "finetuned-model.gguf"); + + llama_backend_free(); + + return 0; +} diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h index ea2c1a402..778927f68 100644 --- a/ggml/include/ggml-backend.h +++ b/ggml/include/ggml-backend.h @@ -248,7 +248,7 @@ extern "C" { // preferrably to run on the same backend as the buffer ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); - sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false); + sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false, true); // initialize buffers from a max size graph (optional) reserve_graph = build_graph(sched, max_batch_size); @@ -289,7 +289,7 @@ extern "C" { typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data); // Initialize a backend scheduler, backends with low index are given priority over backends with high index - GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel); + GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload); GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); // Initialize backend buffers from a measure graph diff --git a/ggml/include/ggml-opt.h b/ggml/include/ggml-opt.h index eb5eab9de..da0c24b46 100644 --- a/ggml/include/ggml-opt.h +++ b/ggml/include/ggml-opt.h @@ -37,13 +37,16 @@ extern "C" { // ====== Dataset ====== GGML_API ggml_opt_dataset_t ggml_opt_dataset_init( - int64_t ne_datapoint, // number of elements per datapoint - int64_t ne_label, // number of elements per label - int64_t ndata, // total number of datapoints/labels - int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied) + enum ggml_type type_data, // the type for the internal data tensor + enum ggml_type type_label, // the type for the internal labels tensor + int64_t ne_datapoint, // number of elements per datapoint + int64_t ne_label, // number of elements per label + int64_t ndata, // total number of datapoints/labels + int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied) GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset); // get underlying tensors that store the data + GGML_API int64_t ggml_opt_dataset_ndata (ggml_opt_dataset_t dataset); GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata] GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata] @@ -56,13 +59,19 @@ extern "C" { struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch] struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch] int64_t ibatch); + GGML_API void ggml_opt_dataset_get_batch_host( + ggml_opt_dataset_t dataset, + void * data_batch, + size_t nb_data_batch, + void * labels_batch, + int64_t ibatch); // ====== Model / Context ====== enum ggml_opt_build_type { - GGML_OPT_BUILD_TYPE_FORWARD, - GGML_OPT_BUILD_TYPE_GRAD, - GGML_OPT_BUILD_TYPE_OPT, + GGML_OPT_BUILD_TYPE_FORWARD = 10, + GGML_OPT_BUILD_TYPE_GRAD = 20, + GGML_OPT_BUILD_TYPE_OPT = 30, }; // parameters that control which optimizer is used and how said optimizer tries to find the minimal loss @@ -81,20 +90,22 @@ extern "C" { // userdata can be used to pass arbitrary data typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata); - // returns the default optimizer params (constant) + // returns the default optimizer params (constant, hard-coded values) // userdata is not used GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata); + // casts userdata to ggml_opt_optimizer_params and returns it + GGML_API struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata); + // parameters for initializing a new optimization context struct ggml_opt_params { ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs - struct ggml_context * ctx_compute; // created in user code, holds non-static tensors - - // the forward graph is defined by inputs and outputs - // those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts - struct ggml_tensor * inputs; - struct ggml_tensor * outputs; + // by default the forward graph needs to be reconstructed for each eval + // if ctx_compute, inputs, and outputs are set the graphs are instead allocated statically + struct ggml_context * ctx_compute; + struct ggml_tensor * inputs; + struct ggml_tensor * outputs; enum ggml_opt_loss_type loss_type; enum ggml_opt_build_type build_type; @@ -107,12 +118,9 @@ extern "C" { // get parameters for an optimization context with defaults set where possible // parameters for which no sensible defaults exist are supplied as arguments to this function - GGML_API ggml_opt_params ggml_opt_default_params( - ggml_backend_sched_t backend_sched, - struct ggml_context * ctx_compute, - struct ggml_tensor * inputs, - struct ggml_tensor * outputs, - enum ggml_opt_loss_type loss_type); + GGML_API struct ggml_opt_params ggml_opt_default_params( + ggml_backend_sched_t backend_sched, + enum ggml_opt_loss_type loss_type); GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params); GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx); @@ -121,6 +129,7 @@ extern "C" { GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer); // get underlying tensors that store data + // if not using static graphs these pointers become invalid with the next call to ggml_opt_alloc GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against @@ -128,11 +137,12 @@ extern "C" { GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels + // get the gradient accumulator for a node from the forward graph GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node); // ====== Optimization Result ====== - GGML_API ggml_opt_result_t ggml_opt_result_init(); + GGML_API ggml_opt_result_t ggml_opt_result_init(void); GGML_API void ggml_opt_result_free(ggml_opt_result_t result); GGML_API void ggml_opt_result_reset(ggml_opt_result_t result); @@ -144,11 +154,20 @@ extern "C" { // ====== Computation ====== - // do forward pass, increment result if not NULL - GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result); + // if not using static graphs, this function must be called prior to ggml_opt_alloc + GGML_API void ggml_opt_prepare_alloc( + ggml_opt_context_t opt_ctx, + struct ggml_context * ctx_compute, + struct ggml_cgraph * gf, + struct ggml_tensor * inputs, + struct ggml_tensor * outputs); - // do forward pass, increment result if not NULL, do backward pass - GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result); + // allocate the next graph for evaluation, either forward or forward + backward + // must be called exactly once prior to calling ggml_opt_eval + GGML_API void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward); + + // do forward pass, increment result if not NULL, do backward pass if allocated + GGML_API void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result); // ############################################################################ // ## The high-level functions start here. They do not depend on any private ## @@ -200,9 +219,9 @@ extern "C" { // fit model defined by inputs and outputs to dataset GGML_API void ggml_opt_fit( ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs - ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs - ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch] - ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used + struct ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs + struct ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch] + struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used ggml_opt_dataset_t dataset, // dataset with data and optionally also labels enum ggml_opt_loss_type loss_type, // loss to minimize ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t) diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 2ba2a188d..e4a6d946d 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -781,7 +781,7 @@ extern "C" { // Tensor flags GGML_API void ggml_set_input(struct ggml_tensor * tensor); GGML_API void ggml_set_output(struct ggml_tensor * tensor); - GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor); + GGML_API void ggml_set_param(struct ggml_tensor * tensor); GGML_API void ggml_set_loss(struct ggml_tensor * tensor); // @@ -951,7 +951,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_repeat_back( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride // concat a and b along dim // used in stable-diffusion @@ -2062,15 +2062,14 @@ extern "C" { GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); GGML_API void ggml_build_backward_expand( - struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation) - struct ggml_context * ctx_compute, // context for gradient computation - struct ggml_cgraph * cgraph, - bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static + struct ggml_context * ctx, // context for gradient computation + struct ggml_cgraph * cgraph, + struct ggml_tensor ** grad_accs); // graph allocation in a context GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads); - GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph); + GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads); GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst); GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1 GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph); diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp index bb4fc53fd..73a7975a8 100644 --- a/ggml/src/ggml-backend.cpp +++ b/ggml/src/ggml-backend.cpp @@ -674,6 +674,8 @@ struct ggml_backend_sched { char * context_buffer; size_t context_buffer_size; + bool op_offload; + int debug; }; @@ -772,7 +774,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor); // check if a backend with higher prio wants to offload the op - if (src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) { + if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) { for (int b = 0; b < src_backend_id; b++) { if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) { SET_CAUSE(tensor, "1.off"); @@ -1115,7 +1117,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg const int node_backend_id = tensor_backend_id(node); - assert(node_backend_id != -1); // all nodes should be assigned by now + assert(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback // check if we should start a new split based on the sources of the current node bool need_new_split = false; @@ -1458,7 +1460,8 @@ ggml_backend_sched_t ggml_backend_sched_new( ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, - bool parallel) { + bool parallel, + bool op_offload) { GGML_ASSERT(n_backends > 0); GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS); // GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU); @@ -1503,6 +1506,7 @@ ggml_backend_sched_t ggml_backend_sched_new( } sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends); + sched->op_offload = op_offload; ggml_backend_sched_reset(sched); diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.cpp b/ggml/src/ggml-cpu/kleidiai/kernels.cpp index aacc2bb5e..910fd0ee4 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kernels.cpp @@ -4,16 +4,22 @@ // KleidiAI micro-kernels #include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h" -#include "kai_lhs_quant_pack_qsi8d32p_f32.h" -#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h" -#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h" -#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h" #include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h" #include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h" #include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h" #include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h" #include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h" #include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h" +#include "kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.h" + +#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h" +#include "kai_lhs_quant_pack_qsi8d32p_f32.h" +#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h" + +#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h" +#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h" +#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h" + #include "kai_common.h" #include "kernels.h" @@ -61,6 +67,53 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon, }, /* .required_cpu = */ CPU_FEATURE_SME, + /* .lhs_type = */ GGML_TYPE_F32, + /* .rhs_type = */ GGML_TYPE_Q4_0, + /* .op_type = */ GGML_TYPE_F32, + }, + { + /* SME GEMM */ + /* .kern_info = */ { + /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + }, + /* SME GEMV */ + /* .kern_info = */ { + /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa, + }, + /* .lhs_info = */ { + /* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme, + /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme, + /* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme, + /* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme, + }, + /* .rhs_info = */ { + /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, + /* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme, + }, + /* .required_cpu = */ CPU_FEATURE_SME, + /* .lhs_type = */ GGML_TYPE_F32, + /* .rhs_type = */ GGML_TYPE_F16, + /* .op_type = */ GGML_TYPE_F32, }, #endif #if defined(__APPLE__) @@ -105,6 +158,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD, + /* .lhs_type = */ GGML_TYPE_F32, + /* .rhs_type = */ GGML_TYPE_Q4_0, + /* .op_type = */ GGML_TYPE_F32, }, #endif #if defined(__ARM_FEATURE_MATMUL_INT8) @@ -148,6 +204,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM, + /* .lhs_type = */ GGML_TYPE_F32, + /* .rhs_type = */ GGML_TYPE_Q4_0, + /* .op_type = */ GGML_TYPE_F32, }, #endif #else @@ -192,6 +251,9 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM, + /* .lhs_type = */ GGML_TYPE_F32, + /* .rhs_type = */ GGML_TYPE_Q4_0, + /* .op_type = */ GGML_TYPE_F32, }, #endif #if defined(__ARM_FEATURE_DOTPROD) @@ -235,12 +297,33 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = { /* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0, }, /* .required_cpu = */ CPU_FEATURE_DOTPROD, + /* .lhs_type = */ GGML_TYPE_F32, + /* .rhs_type = */ GGML_TYPE_Q4_0, + /* .op_type = */ GGML_TYPE_F32, }, #endif #endif }; -ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) { +ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) { + ggml_kleidiai_kernels * kernel = nullptr; + + if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) { + for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) { + if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu && + gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type && + gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type && + gemm_gemv_kernels[i].op_type == tensor->type) { + kernel = &gemm_gemv_kernels[i]; + break; + } + } + } + + return kernel; +} + +ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) { ggml_kleidiai_kernels * kernels = nullptr; for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) { diff --git a/ggml/src/ggml-cpu/kleidiai/kernels.h b/ggml/src/ggml-cpu/kleidiai/kernels.h index 2ffe97eb4..5ac02bda7 100644 --- a/ggml/src/ggml-cpu/kleidiai/kernels.h +++ b/ggml/src/ggml-cpu/kleidiai/kernels.h @@ -4,6 +4,9 @@ #pragma once +#include +#include "ggml.h" + enum cpu_feature { CPU_FEATURE_NONE = 0, CPU_FEATURE_DOTPROD = 1, @@ -26,26 +29,53 @@ struct kernel_info { size_t (*get_nr)(void); size_t (*get_kr)(void); size_t (*get_sr)(void); - size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl); - size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl); + std::variant< + std::function, + std::function + > get_lhs_offset; + std::variant< + std::function, + std::function + > get_rhs_packed_offset; size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride); size_t (*get_dst_size)(size_t m, size_t n); - void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed, - float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max); + std::variant< + std::function, + std::function + > run_kernel; }; struct lhs_packing_info { size_t (*get_offset)(size_t m_idx, size_t lhs_stride); - size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr); - size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr); - void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs, - size_t lhs_stride, void* lhs_packed); + std::variant< + std::function, + std::function + > get_packed_offset; + std::variant< + std::function, + std::function + > packed_size; + std::variant< + std::function, + std::function + > pack_func; }; struct rhs_packing_info { - size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl); - void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs, - const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params); + std::variant< + std::function, + std::function + > packed_size; + std::variant< + std::function, + std::function + > pack_func; }; struct ggml_kleidiai_kernels { @@ -55,6 +85,10 @@ struct ggml_kleidiai_kernels { rhs_packing_info rhs_info; cpu_feature required_cpu; + ggml_type lhs_type; + ggml_type rhs_type; + ggml_type op_type; }; -ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features); +ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor); +ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features); diff --git a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp index 4e89ca0fa..f3dffdd6b 100644 --- a/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +++ b/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp @@ -34,8 +34,9 @@ #include "ggml-common.h" struct ggml_kleidiai_context { + cpu_feature features; ggml_kleidiai_kernels * kernels; -} static ctx = { NULL }; +} static ctx = { CPU_FEATURE_NONE, NULL }; static void init_kleidiai_context(void) { @@ -47,18 +48,18 @@ static void init_kleidiai_context(void) { const char *env_var = getenv("GGML_KLEIDIAI_SME"); int sme_enabled = 0; - cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | - (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) | - (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE); + ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | + (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) | + (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE); if (env_var) { sme_enabled = atoi(env_var); } if (sme_enabled != 0) { - features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; + ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; } - ctx.kernels = ggml_kleidiai_select_kernels(features); + ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features); } ggml_critical_section_end(); } @@ -68,95 +69,275 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) { return tensor->ne[dim]; } +template +static Ret variant_call(const Variant & var, Args&&... args) { + return std::visit([&](auto&& func) -> Ret { + if constexpr (std::is_invocable_r_v) { + return func(std::forward(args)...); + } else { + throw std::runtime_error("Invalid function type in variant_call"); + } + }, var); +} + namespace ggml::cpu::kleidiai { + +static size_t round_down(size_t x, size_t y) { + return y == 0 ? x : x - (x % y); +} + +static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) { + size_t src_stride = rhs_stride / sizeof(uint16_t); + size_t dst_stride = n; + + for (size_t k_idx = 0; k_idx < k; ++k_idx) { + for (size_t n_idx = 0; n_idx < n; ++n_idx) { + uint16_t v = *(src + k_idx + n_idx * src_stride); + *(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v); + } + } +} + class tensor_traits : public ggml::cpu::tensor_traits { bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { - GGML_ASSERT(ctx.kernels); - kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; + ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op); + GGML_ASSERT(kernels); + kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; size_t k = op->src[0]->ne[0]; + size_t n = op->src[0]->ne[1]; size_t m = op->src[1]->ne[1]; size_t mr = kernel->get_mr(); size_t kr = kernel->get_kr(); size_t sr = kernel->get_sr(); - size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr); + if (kernels->rhs_type == GGML_TYPE_Q4_0) { + size = variant_call(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr); + } else if (kernels->rhs_type == GGML_TYPE_F16) { + size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr) + + variant_call(kernels->rhs_info.packed_size, n, k) + + k * n * sizeof(float) + n * sizeof(float); + } else { + GGML_ASSERT(false); + } return true; } + bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override { if (dst->op == GGML_OP_MUL_MAT) { - const ggml_tensor * src0 = dst->src[0]; - const ggml_tensor * src1 = dst->src[1]; + if (dst->src[0]->type == GGML_TYPE_Q4_0) { + return compute_forward_q4_0(params, dst); + } else if (dst->src[0]->type == GGML_TYPE_F16) { + return compute_forward_kv_cache(params, dst); + } + } + return false; + } - GGML_TENSOR_BINARY_OP_LOCALS + bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) { + static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT; - GGML_ASSERT(ctx.kernels); - kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; - lhs_packing_info * lhs_info = &ctx.kernels->lhs_info; + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; - GGML_ASSERT(kernel); + GGML_TENSOR_BINARY_OP_LOCALS - const int ith = params->ith; - const int nth = params->nth; + ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); + GGML_ASSERT(kernels); - const size_t k = ne00; - const size_t m = ne11; - const size_t n = ne01; + kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; + GGML_ASSERT(kernel); - const size_t n_step = kernel->get_n_step(); - const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step); - const size_t n_start = ith * num_n_per_thread; + const int nth = params->nth; + const int ith = params->ith; - size_t n_to_process = num_n_per_thread; - if ((n_start + n_to_process) > n) { - n_to_process = n - n_start; + const int64_t lhs_batch_size0 = ne12; + const int64_t rhs_batch_size0 = ne02; + const int64_t batch_size = rhs_batch_size0; + + const int64_t r = lhs_batch_size0 / rhs_batch_size0; + + const int64_t m = ne11 * r; + const int64_t n = ne01; + const int64_t k = ne00; + + const size_t lhs_stride = src1->nb[1]; + const size_t rhs_stride = src0->nb[1]; + const size_t dst_stride = dst->nb[1]; + + const int64_t mr = static_cast(kernel->get_mr()); + const int64_t nr = static_cast(kernel->get_nr()); + const int64_t kr = static_cast(kernel->get_kr()); + const int64_t sr = static_cast(kernel->get_sr()); + + const size_t lhs_packed_size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr); + const size_t rhs_packed_size = variant_call(kernels->rhs_info.packed_size, n, k); + const size_t kxn_size = k * n * sizeof(float); + const size_t bias_size = n * sizeof(float); + + const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size; + GGML_ASSERT(wsize_required <= params->wsize); + + uint8_t * lhs_packed = static_cast(params->wdata); + uint8_t * rhs_packed = lhs_packed + lhs_packed_size; + uint8_t * rhs_kxn = rhs_packed + rhs_packed_size; + uint8_t * bias = rhs_kxn + kxn_size; + + for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) { + const uint8_t * lhs_batch = static_cast(src1->data) + batch_idx * m * lhs_stride; + const uint8_t * rhs_batch = static_cast(src0->data) + batch_idx * n * rhs_stride; + uint8_t * dst_batch = static_cast(dst->data) + batch_idx * m * dst_stride; + + // LHS packing + { + const int64_t m_roundup_mr = kai_roundup(m, mr); + const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth); + + if (ith < num_threads) { + const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr); + const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0; + + const int64_t m_start = ith * num_m_per_thread0; + const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0; + + const size_t lhs_offset = variant_call(kernels->gemm.get_lhs_offset, m_start, lhs_stride); + const size_t lhs_packed_offset = variant_call(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr); + + const void * src_ptr = static_cast(lhs_batch) + lhs_offset; + void * dst_ptr = static_cast(lhs_packed) + lhs_packed_offset; + + variant_call(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr); + } } - const uint8_t * lhs = static_cast(src1->data); - uint8_t * lhs_packed = (uint8_t*)params->wdata; - const uint8_t * rhs_packed = static_cast(src0->data); + // RHS packing + if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) { + // First thread to reach this point handles RHS packing + memset(bias, 0, n * sizeof(float)); + transpose_f32kxn_f16nxk(n, k, reinterpret_cast(rhs_kxn), + reinterpret_cast(rhs_batch), rhs_stride); - size_t mr = kernel->get_mr(); - size_t kr = kernel->get_kr(); - size_t sr = kernel->get_sr(); - - // Calculate number of columns to be processed per thread - const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth; - const size_t m_start = ith * num_m_per_thread; - size_t m_to_process = num_m_per_thread; - if ((m_start + m_to_process) > m) { - m_to_process = m - m_start; - } - - if(m_start < m) { - // Transform LHS - const size_t src_stride = src1->nb[1]; - const float * src_ptr = reinterpret_cast(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1])); - const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr); - void * lhs_packed_ptr = static_cast(lhs_packed + lhs_packed_offset); - - lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr); + variant_call(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float), + rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr); } ggml_barrier(params->threadpool); - // Perform the operation - const size_t dst_stride = dst->nb[1]; - const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr); - const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0); - const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride); - const void * rhs_ptr = static_cast(rhs_packed + rhs_packed_offset); - const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset); - float *dst_ptr = reinterpret_cast(static_cast(dst->data) + dst_offset); + first_to_arrive.clear(std::memory_order_release); - kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, - dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); - return true; + // Perform the matmul + { + const int64_t m_to_process = m; + const int64_t m_start = 0; + + const int64_t n_step = static_cast(kernel->get_n_step()); + const int64_t num_threads = KAI_MIN(n / n_step, nth); + + if (ith < num_threads) { + const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step); + const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0; + + const int64_t n_start = ith * num_n_per_thread0; + const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0; + + const size_t lhs_packed_offset = variant_call(kernel->get_lhs_offset, m_start, k); + const size_t rhs_packed_offset = variant_call(kernel->get_rhs_packed_offset, n_start, k); + const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride); + + const void * lhs_ptr = lhs_packed + lhs_packed_offset; + const void * rhs_ptr = rhs_packed + rhs_packed_offset; + float * dst_ptr = reinterpret_cast(dst_batch + dst_offset); + + variant_call(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); + } + } + + if (batch_idx != batch_size - 1) { + // This barrier is necessary when the batch size is larger than 1. While processing a batch, + // the work data buffer (params->wdata) is used as temporary storage which means that only + // a single batch can be processed at any given time. No barrier is needed for the last + // batch since GGML inserts a barrier between the execution of every operator. + ggml_barrier(params->threadpool); + } } - return false; + + return true; + } + + bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + + GGML_TENSOR_BINARY_OP_LOCALS + + ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); + GGML_ASSERT(kernels); + + kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; + lhs_packing_info * lhs_info = &kernels->lhs_info; + + GGML_ASSERT(kernel); + + const int ith = params->ith; + const int nth = params->nth; + + const size_t k = ne00; + const size_t m = ne11; + const size_t n = ne01; + + size_t mr = kernel->get_mr(); + size_t kr = kernel->get_kr(); + size_t sr = kernel->get_sr(); + + const uint8_t * lhs = static_cast(src1->data); + uint8_t * lhs_packed = (uint8_t*)params->wdata; + const uint8_t * rhs_packed = static_cast(src0->data); + + const size_t n_step = kernel->get_n_step(); + const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step); + const size_t n_start = ith * num_n_per_thread; + + size_t n_to_process = num_n_per_thread; + if ((n_start + n_to_process) > n) { + n_to_process = n - n_start; + } + + // Calculate number of columns to be processed per thread + const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth; + const size_t m_start = ith * num_m_per_thread; + size_t m_to_process = num_m_per_thread; + if ((m_start + m_to_process) > m) { + m_to_process = m - m_start; + } + + if (m_start < m) { + // Transform LHS + const size_t src_stride = src1->nb[1]; + const float * src_ptr = reinterpret_cast(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1])); + const size_t lhs_packed_offset = variant_call(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr); + void * lhs_packed_ptr = static_cast(lhs_packed + lhs_packed_offset); + + variant_call(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr); + } + + ggml_barrier(params->threadpool); + + // Perform the operation + const size_t dst_stride = dst->nb[1]; + const size_t lhs_packed_offset = variant_call(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr); + const size_t rhs_packed_offset = variant_call(kernel->get_rhs_packed_offset, n_start, k, QK4_0); + const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride); + const void * rhs_ptr = static_cast(rhs_packed + rhs_packed_offset); + const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset); + float *dst_ptr = reinterpret_cast(static_cast(dst->data) + dst_offset); + + variant_call(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, + sizeof(float), -FLT_MAX, FLT_MAX); + + return true; } public: @@ -169,13 +350,13 @@ public: size_t sr = ctx.kernels->gemm.get_sr(); #ifndef NDEBUG - const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0); + const size_t repacked_size = variant_call(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0); GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!"); #endif struct kai_rhs_pack_qs4cxs1s0_param params; params.lhs_zero_point = 1; params.rhs_zero_point = 8; - ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms); + variant_call(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms); return 0; @@ -189,7 +370,7 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc } } // namespace ggml::cpu::kleidiai -GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { +static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor); GGML_UNUSED(buffer); @@ -238,12 +419,11 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b namespace ggml::cpu::kleidiai { class extra_buffer_type : ggml::cpu::extra_buffer_type { bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { - if ( op->op == GGML_OP_MUL_MAT && - op->src[0]->type == GGML_TYPE_Q4_0 && - op->src[0]->buffer && - (ggml_n_dims(op->src[0]) == 2) && - op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels - ) { + if (op->op == GGML_OP_MUL_MAT && + op->src[0]->type == GGML_TYPE_Q4_0 && + op->src[0]->buffer && + (ggml_n_dims(op->src[0]) == 2) && + op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) { if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { return false; } @@ -260,6 +440,19 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type { if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) { return (ggml::cpu::tensor_traits *) op->src[0]->extra; } + else if (ggml_kleidiai_select_kernels(ctx.features, op) && + op->src[0]->op == GGML_OP_VIEW && + (op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) && + op->src[1]->ne[1] > 1) { + if ((op->src[0]->nb[0] != 2) || + (op->src[1]->nb[0] != 4) || + (op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) || + (op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) { + return nullptr; + } + + return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL); + } } return nullptr; } diff --git a/ggml/src/ggml-cuda/acc.cu b/ggml/src/ggml-cuda/acc.cu index 96bfe1c9d..e084607c0 100644 --- a/ggml/src/ggml-cuda/acc.cu +++ b/ggml/src/ggml-cuda/acc.cu @@ -1,47 +1,61 @@ #include "acc.cuh" -static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne, - const int ne10, const int ne11, const int ne12, - const int nb1, const int nb2, int offset) { - const int i = blockDim.x * blockIdx.x + threadIdx.x; +static __global__ void acc_f32(const float * x, const float * y, float * dst, const int64_t ne, + const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13, + const int64_t s11, const int64_t s12, const int64_t s13, const int64_t offset) { + const int64_t i = blockDim.x * blockIdx.x + threadIdx.x; + if (i >= ne) { return; } - int src1_idx = i - offset; - int oz = src1_idx / nb2; - int oy = (src1_idx - (oz * nb2)) / nb1; - int ox = src1_idx % nb1; - if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) { - dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11]; - } else { - dst[i] = x[i]; + + int64_t src1_idx = i - offset; + + int64_t tmp = src1_idx; + const int64_t i13 = tmp / s13; + tmp -= i13 * s13; + const int64_t i12 = tmp / s12; + tmp -= i12 * s12; + const int64_t i11 = tmp / s11; + tmp -= i11 * s11; + const int64_t i10 = tmp; + + float val = x[i]; + if (src1_idx >= 0 && i10 < ne10 && i11 < ne11 && i12 < ne12 && i13 < ne13) { + val += y[((i13*ne12 + i12) * ne11 + i11) * ne10 + i10]; } + dst[i] = val; } -static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements, - const int ne10, const int ne11, const int ne12, - const int nb1, const int nb2, const int offset, cudaStream_t stream) { - int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE; - acc_f32<<>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset); +static void acc_f32_cuda(const float * x, const float * y, float * dst, const int64_t n_elements, + const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13, + const int64_t s1, const int64_t s2, const int64_t s3, const int64_t offset, cudaStream_t stream) { + const int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE; + acc_f32<<>>(x, y, dst, n_elements, ne10, ne11, ne12, ne13, s1, s2, s3, offset); } void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; - const float * src0_d = (const float *)src0->data; - const float * src1_d = (const float *)src1->data; - float * dst_d = (float *)dst->data; + + const float * src0_d = (const float *) src0->data; + const float * src1_d = (const float *) src1->data; + float * dst_d = (float *) dst->data; + cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported - int nb1 = dst->op_params[0] / 4; // 4 bytes of float32 - int nb2 = dst->op_params[1] / 4; // 4 bytes of float32 - // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused - int offset = dst->op_params[3] / 4; // offset in bytes + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(dst->nb[0] == ggml_element_size(dst)); + GGML_ASSERT(ggml_is_contiguously_allocated(dst)); - acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream); + const int64_t s1 = dst->op_params[0] / sizeof(float); + const int64_t s2 = dst->op_params[1] / sizeof(float); + const int64_t s3 = dst->op_params[2] / sizeof(float); + const int64_t offset = dst->op_params[3] / sizeof(float); + + acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], s1, s2, s3, offset, stream); } diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index 11f6bb4d2..ca66137fd 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -296,6 +296,25 @@ static __device__ void no_device_code( #define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.") #endif // __CUDA_ARCH__ +// The compiler is always able to unroll loops if they contain continue expressions. +// In such cases loop unrolling can still be achieved via recursion: +template +struct ggml_cuda_unroll { + template + __device__ void operator()(const Func & f, Args... args) const { + f(n - 1, args...); + ggml_cuda_unroll{}(f, args...); + } +}; + +template <> +struct ggml_cuda_unroll<1> { + template + __device__ void operator()(const Func & f, Args... args) const { + f(0, args...); + } +}; + template static __device__ __forceinline__ int warp_reduce_sum(int x) { #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE diff --git a/ggml/src/ggml-cuda/cp-async.cuh b/ggml/src/ggml-cuda/cp-async.cuh index ecb659997..63d0c482f 100644 --- a/ggml/src/ggml-cuda/cp-async.cuh +++ b/ggml/src/ggml-cuda/cp-async.cuh @@ -2,6 +2,17 @@ #include "common.cuh" + +static __device__ __forceinline__ unsigned int ggml_cuda_cvta_generic_to_shared(void * generic_ptr) { +#ifdef CP_ASYNC_AVAILABLE + return __cvta_generic_to_shared(generic_ptr); +#else + GGML_UNUSED(generic_ptr); + NO_DEVICE_CODE; + return 0; +#endif // CP_ASYNC_AVAILABLE +} + // Copies data from global to shared memory, cg == cache global. // Both the src and dst pointers must be aligned to 16 bit. // Shared memory uses 32 bit addressing, the pointer is passed as unsigned int. diff --git a/ggml/src/ggml-cuda/fattn-common.cuh b/ggml/src/ggml-cuda/fattn-common.cuh index c7dc72882..b7180d595 100644 --- a/ggml/src/ggml-cuda/fattn-common.cuh +++ b/ggml/src/ggml-cuda/fattn-common.cuh @@ -516,7 +516,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) { nullptr; } -template // D == head size +template // D == head size __launch_bounds__(D, 1) static __global__ void flash_attn_stream_k_fixup( float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) { @@ -665,13 +665,13 @@ static void on_no_fattn_vec_case(const int D) { fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n"); GGML_ABORT("fatal error"); } else { - fprintf(stderr, "Unsupported KV type combination for head_size 256.\n"); + fprintf(stderr, "Unsupported KV type combination for head_size %d.\n", D); fprintf(stderr, "Only f16 is supported.\n"); GGML_ABORT("fatal error"); } } -template +template void launch_fattn( ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared, const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE @@ -691,7 +691,7 @@ void launch_fattn( GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16); GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) && - "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big"); + "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big"); GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding."); @@ -754,10 +754,13 @@ void launch_fattn( const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3]; const dim3 block_dim(warp_size, nwarps, 1); + int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy. + CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared)); + dim3 blocks_num; if (stream_k) { // For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup. - const int max_blocks = 2*nsm; + const int max_blocks = max_blocks_per_sm*nsm; const int tiles_nwaves = (ntiles_total + max_blocks - 1) / max_blocks; const int tiles_efficiency_percent = 100 * ntiles_total / (max_blocks*tiles_nwaves); @@ -769,14 +772,11 @@ void launch_fattn( blocks_num.y = 1; blocks_num.z = 1; - dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + D) * sizeof(float)); + dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float)); } else { GGML_ASSERT(K->ne[1] % KQ_row_granularity == 0); const int ntiles_KQ = K->ne[1] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size. - int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy. - CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared)); - // parallel_blocks should be at least large enough to achieve max. occupancy for a single wave: parallel_blocks = std::max((nsm * max_blocks_per_sm) / ntiles_total, 1); @@ -853,19 +853,19 @@ void launch_fattn( if (stream_k) { if (ntiles_total % blocks_num.x != 0) { // Fixup is only needed if the SMs work on fractional tiles. - const dim3 block_dim_combine(D, 1, 1); + const dim3 block_dim_combine(DV, 1, 1); const dim3 blocks_num_combine = {blocks_num.x, ncols1, ncols2}; - flash_attn_stream_k_fixup + flash_attn_stream_k_fixup <<>> ((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]); } } else if (parallel_blocks > 1) { - const dim3 block_dim_combine(D, 1, 1); + const dim3 block_dim_combine(DV, 1, 1); const dim3 blocks_num_combine(Q->ne[1], 1, blocks_num.z); const size_t nbytes_shared_combine = parallel_blocks*sizeof(float2); - flash_attn_combine_results + flash_attn_combine_results <<>> (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data, parallel_blocks); } diff --git a/ggml/src/ggml-cuda/fattn-mma-f16.cuh b/ggml/src/ggml-cuda/fattn-mma-f16.cuh index 04804a15c..491780abd 100644 --- a/ggml/src/ggml-cuda/fattn-mma-f16.cuh +++ b/ggml/src/ggml-cuda/fattn-mma-f16.cuh @@ -13,104 +13,217 @@ typedef tile<16, 16, float> tile_C_KQ_16; typedef tile<16, 4, half2> tile_C_VKQ; typedef tile<16, 8, half2> tile_C_VKQ_16; -template +// Config options for specific head sizes. +// Should not affect results, only speed/register pressure/shared memory use. +// +// nbatch_fa: number of KV rows per softmax rescaling of KQ rowsums and VKQ accumulators. +// nwarps_max: maximum number of warps per CUDA block, up to 8 warps in total can run per SM (given enough shared memory). +// Q_in_reg: whether the Q values should be kept permanently in registers. +// nstages_target: targeted number of pipeline stages for cp_async (if available), 0 means synchronous data loading. +// nbatch_K2: number of K half2 values in direction of DKQ to load in parallel. +// nbatch_V2: number of V half2 values in direction of DV to load in parallel. +// nbatch_combine: number of VKQ half2 values in direction of DV to combine in parallel. + +template +struct fattn_mma_f16_config; + +template <> +struct fattn_mma_f16_config< 64, 64> { + static constexpr int nbatch_fa = 64; + static constexpr int nwarps_max = 4; + static constexpr bool Q_in_reg = true; + static constexpr int nstages_target = 2; + static constexpr int nbatch_K2 = 32; + static constexpr int nbatch_V2 = 32; + static constexpr int nbatch_combine = 32; +}; + +template <> +struct fattn_mma_f16_config< 80, 80> { + static constexpr int nbatch_fa = 64; + static constexpr int nwarps_max = 4; + static constexpr bool Q_in_reg = true; + static constexpr int nstages_target = 2; + static constexpr int nbatch_K2 = 40; + static constexpr int nbatch_V2 = 40; + static constexpr int nbatch_combine = 40; +}; + +template <> +struct fattn_mma_f16_config< 96, 96> { + static constexpr int nbatch_fa = 64; + static constexpr int nwarps_max = 4; + static constexpr bool Q_in_reg = true; + static constexpr int nstages_target = 2; + static constexpr int nbatch_K2 = 48; + static constexpr int nbatch_V2 = 48; + static constexpr int nbatch_combine = 48; +}; + +template <> +struct fattn_mma_f16_config<112, 112> { + static constexpr int nbatch_fa = 64; + static constexpr int nwarps_max = 4; + static constexpr bool Q_in_reg = true; + static constexpr int nstages_target = 2; + static constexpr int nbatch_K2 = 56; + static constexpr int nbatch_V2 = 56; + static constexpr int nbatch_combine = 56; +}; + +template <> +struct fattn_mma_f16_config<128, 128> { + static constexpr int nbatch_fa = 64; + static constexpr int nwarps_max = 4; + static constexpr bool Q_in_reg = true; + static constexpr int nstages_target = 2; + static constexpr int nbatch_K2 = 64; + static constexpr int nbatch_V2 = 64; + static constexpr int nbatch_combine = 64; +}; + +template <> +struct fattn_mma_f16_config<256, 256> { + static constexpr int nbatch_fa = 32; + static constexpr int nwarps_max = 4; + static constexpr bool Q_in_reg = true; + static constexpr int nstages_target = 2; + static constexpr int nbatch_K2 = 128; + static constexpr int nbatch_V2 = 128; + static constexpr int nbatch_combine = 128; +}; + +template <> +struct fattn_mma_f16_config<576, 512> { + static constexpr int nbatch_fa = 32; + static constexpr int nwarps_max = 8; + static constexpr bool Q_in_reg = false; + static constexpr int nstages_target = 1; + static constexpr int nbatch_K2 = 160; + static constexpr int nbatch_V2 = 128; + static constexpr int nbatch_combine = 128; +}; + +// ------------------------------------------------------------------------------------------------------------------ + +template static __device__ __forceinline__ void flash_attn_ext_f16_load_tile( - const half2 * const __restrict__ KV, half2 * const __restrict__ tile_KV, const int stride_KV) { - constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts. + const half2 * const __restrict__ KV, half2 * const __restrict__ tile_KV, const int D2, const int stride_KV) { - // If cp.async is available, load up to the highest power of 2 in D asynchronously: -#ifdef CP_ASYNC_AVAILABLE - static_assert(D >= 64 && D < 512, "bad D"); - constexpr int k0_sync_start = D/2 < 64 ? 32 : (D/2 < 128 ? 64 : 128); - - const unsigned int tile_KV_32 = __cvta_generic_to_shared(tile_KV); - - constexpr int preload = 64; - constexpr int h2_per_chunk = 16/sizeof(half2); - constexpr int chunks_per_row = k0_sync_start / h2_per_chunk; - constexpr int stride_i = WARP_SIZE / chunks_per_row; -#pragma unroll - for (int i0 = 0; i0 < KQ_per_iter; i0 += nwarps*stride_i) { - const int i = i0 + threadIdx.y*stride_i + (chunks_per_row == WARP_SIZE ? 0 : threadIdx.x / chunks_per_row); - const int k = (chunks_per_row == WARP_SIZE ? threadIdx.x : threadIdx.x % chunks_per_row)*h2_per_chunk; - - cp_async_cg_16(tile_KV_32 + (i*D2_padded + k)*sizeof(half2), KV + i*stride_KV + k); - } -#else - constexpr int k0_sync_start = 0; -#endif // CP_ASYNC_AVAILABLE - static_assert(k0_sync_start % WARP_SIZE == 0, "bad k0_sync_start"); - - // If D is not a power of 2, the rest is loaded synchronously. // K/V data is loaded with decreasing granularity for D for better memory bandwidth. - static_assert(KQ_per_iter % (4*nwarps) == 0, "out of bounds"); -#pragma unroll - for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) { - const int k0_start = stride_k == WARP_SIZE ? k0_sync_start : D/2 - (D/2) % (2*stride_k); - const int k0_stop = D/2 - (D/2) % (1*stride_k); - const int stride_i = WARP_SIZE / stride_k; + // The minimum granularity with cp.async is 16 bytes, with synchronous data loading it's 4 bytes. - if (k0_start == k0_stop || k0_stop <= k0_sync_start) { - continue; - } + if (use_cp_async) { + constexpr int preload = 64; + constexpr int h2_per_chunk = 16/sizeof(half2); + const int chunks_per_row = D2 / h2_per_chunk; -#pragma unroll - for (int i0 = 0; i0 < KQ_per_iter; i0 += nwarps*stride_i) { - const int i = i0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k); + const unsigned int tile_KV_32 = ggml_cuda_cvta_generic_to_shared(tile_KV); -#pragma unroll - for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) { - const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k); + auto load = [&] __device__ (const int n) { + const int stride_k = WARP_SIZE >> n; + const int k0_start = stride_k == WARP_SIZE ? 0 : chunks_per_row - chunks_per_row % (2*stride_k); + const int k0_stop = chunks_per_row - chunks_per_row % (1*stride_k); + const int stride_i = WARP_SIZE / stride_k; - tile_KV[i*D2_padded + k] = KV[i*stride_KV + k]; + if (k0_start == k0_stop) { + return; } - } + +#pragma unroll + for (int i0 = 0; i0 < nbatch_fa; i0 += nwarps*stride_i) { + const int i = i0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k); + + if (i0 + nwarps*stride_i > nbatch_fa && i >= nbatch_fa) { + break; + } + +#pragma unroll + for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) { + const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k); + + cp_async_cg_16(tile_KV_32 + i*(stride_tile*sizeof(half2)) + k*16, KV + i*stride_KV + k*h2_per_chunk); + } + } + }; + ggml_cuda_unroll<5>{}(load); + } else { + static_assert(nbatch_fa % (4*nwarps) == 0, "out of bounds"); + auto load = [&] __device__ (const int n) { + const int stride_k = WARP_SIZE >> n; + const int k0_start = stride_k == WARP_SIZE ? 0 : D2 - D2 % (2*stride_k); + const int k0_stop = D2 - D2 % (1*stride_k); + const int stride_i = WARP_SIZE / stride_k; + + if (k0_start == k0_stop) { + return; + } + +#pragma unroll + for (int i0 = 0; i0 < nbatch_fa; i0 += nwarps*stride_i) { + const int i = i0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k); + + if (i0 + nwarps*stride_i > nbatch_fa && i >= nbatch_fa) { + break; + } + +#pragma unroll + for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) { + const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k); + + tile_KV[i*stride_tile + k] = KV[i*stride_KV + k]; + } + } + }; + ggml_cuda_unroll<3>{}(load); } } -template +template static __device__ __forceinline__ void flash_attn_ext_f16_load_mask( const half2 * const __restrict__ mask_h2, half2 * const __restrict__ tile_mask, const int stride_mask) { - static_assert(KQ_per_iter == 2*WARP_SIZE || KQ_per_iter == WARP_SIZE, "bad KQ_per_iter"); -#ifdef CP_ASYNC_AVAILABLE - constexpr int preload = KQ_per_iter * sizeof(half); - constexpr int cols_per_warp = 8*WARP_SIZE/KQ_per_iter; - constexpr int stride_j = nwarps * cols_per_warp; + static_assert(nbatch_fa == 2*WARP_SIZE || WARP_SIZE % nbatch_fa == 0, "bad KQ_per_iter"); - const unsigned int tile_mask_32 = __cvta_generic_to_shared(tile_mask); + if (use_cp_async) { + constexpr int preload = nbatch_fa >= 32 ? nbatch_fa * sizeof(half) : 64; + constexpr int cols_per_warp = 8*WARP_SIZE/nbatch_fa; + constexpr int stride_j = nwarps * cols_per_warp; + + const unsigned int tile_mask_32 = ggml_cuda_cvta_generic_to_shared(tile_mask); +#pragma unroll + for (int j0 = 0; j0 < ncols1; j0 += stride_j) { + const int j = j0 + threadIdx.y*cols_per_warp + + (nbatch_fa == 2*WARP_SIZE ? threadIdx.x / (WARP_SIZE/4) : threadIdx.x / (WARP_SIZE/cols_per_warp)); + + if (j0 + stride_j > ncols1 && j >= ncols1) { + break; + } + + const int i = 4 * (threadIdx.x % (nbatch_fa/8)); + + cp_async_cg_16(tile_mask_32 + j*(nbatch_fa*sizeof(half) + 16) + i*sizeof(half2), mask_h2 + j*stride_mask + i); + } + return; + } + + constexpr int cols_per_warp = 2*WARP_SIZE/nbatch_fa; + constexpr int stride_j = nwarps * cols_per_warp; #pragma unroll for (int j0 = 0; j0 < ncols1; j0 += stride_j) { - const int j = j0 + threadIdx.y*cols_per_warp + - (KQ_per_iter == 2*WARP_SIZE ? threadIdx.x / (WARP_SIZE/4) : threadIdx.x / (WARP_SIZE/8)); + const int j = j0 + threadIdx.y*cols_per_warp + (nbatch_fa == 2*WARP_SIZE ? 0 : threadIdx.x / (WARP_SIZE/cols_per_warp)); if (j0 + stride_j > ncols1 && j >= ncols1) { break; } - const int i = 4 * (KQ_per_iter == 2*WARP_SIZE ? threadIdx.x % (WARP_SIZE/4) : threadIdx.x % (WARP_SIZE/8)); + const int i = nbatch_fa == 2*WARP_SIZE ? threadIdx.x : threadIdx.x % (WARP_SIZE/cols_per_warp); - cp_async_cg_16(tile_mask_32 + j*(KQ_per_iter*sizeof(half) + 16) + i*sizeof(half2), mask_h2 + j*stride_mask + i); + tile_mask[j*(nbatch_fa/2 + 4) + i] = mask_h2[j*stride_mask + i]; } -#else - constexpr int cols_per_warp = 2*WARP_SIZE/KQ_per_iter; - constexpr int stride_j = nwarps * cols_per_warp; -#pragma unroll - for (int j0 = 0; j0 < ncols1; j0 += stride_j) { - const int j = j0 + threadIdx.y*cols_per_warp + (KQ_per_iter == 2*WARP_SIZE ? 0 : threadIdx.x / (WARP_SIZE/2)); - - if (j0 + stride_j > ncols1 && j >= ncols1) { - break; - } - - const int i = KQ_per_iter == 2*WARP_SIZE ? threadIdx.x : threadIdx.x % (WARP_SIZE/2); - - tile_mask[j*(KQ_per_iter/2 + 4) + i] = mask_h2[j*stride_mask + i]; - } -#endif // CP_ASYNC_AVAILABLE } -template +template static __device__ __forceinline__ void flash_attn_ext_f16_iter( const float2 * const __restrict__ Q_f2, const half2 * const __restrict__ K_h2, @@ -123,9 +236,11 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( const float logit_softcap, const int ne01, const int ne02, - const int stride_KV, + const int stride_K, + const int stride_V, const int stride_mask, const int jt, + half2 * const __restrict__ tile_Q, half2 * const __restrict__ tile_K, half2 * const __restrict__ tile_V, half2 * const __restrict__ tile_mask, @@ -135,59 +250,107 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( float * const __restrict__ KQ_rowsum, const int kb0) { #ifdef NEW_MMA_AVAILABLE + typedef fattn_mma_f16_config c; + +#ifdef CP_ASYNC_AVAILABLE + constexpr int nstages = c::nstages_target; +#else + constexpr int nstages = 0; +#endif // CP_ASYNC_AVAILABLE + constexpr int cols_per_warp = ntiles * tile_B::I; constexpr int cols_per_thread = ntiles == 1 ? 2 : ntiles; constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column. - constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts. - const int k_VKQ_0 = kb0 * KQ_per_iter; - tile_C_KQ KQ_C[KQ_per_iter/(np*tile_C_KQ::I) * ntiles]; + constexpr int stride_tile_Q = DKQ/2 + 4; + constexpr int stride_tile_K = c::nbatch_K2 + 4; + constexpr int stride_tile_V = c::nbatch_V2 + 4; + + const int k_VKQ_0 = kb0 * c::nbatch_fa; + tile_C_KQ KQ_C[c::nbatch_fa/(np*tile_C_KQ::I) * ntiles]; // Use wide variants of tiles if ntiles >= 2. tile_B_16 * Q_B_16 = (tile_B_16 *) Q_B; tile_C_VKQ_16 * VKQ_C_16 = (tile_C_VKQ_16 *) VKQ_C; tile_C_KQ_16 * KQ_C_16 = (tile_C_KQ_16 *) KQ_C; -#ifdef CP_ASYNC_AVAILABLE - cp_async_wait_all(); - __syncthreads(); - flash_attn_ext_f16_load_tile(V_h2 + k_VKQ_0*stride_KV, tile_V, stride_KV); -#else - if (ncols2 > 1 || mask_h2) { - flash_attn_ext_f16_load_mask(mask_h2 + k_VKQ_0/2, tile_mask, stride_mask); - } - flash_attn_ext_f16_load_tile(K_h2 + k_VKQ_0*stride_KV, tile_K, stride_KV); - __syncthreads(); -#endif // CP_ASYNC_AVAILABLE - - // Calculate tile of KQ: -#pragma unroll - for (int i_KQ_00 = 0; i_KQ_00 < KQ_per_iter; i_KQ_00 += np*tile_A::I) { - const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*tile_A::I; -#pragma unroll - for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += tile_A::J) { - tile_A K_A; - load_ldmatrix(K_A, tile_K + i_KQ_0*D2_padded + k_KQ_0, D2_padded); - if (ntiles == 1) { - mma(KQ_C[i_KQ_00/(np*tile_A::I)], K_A, Q_B[k_KQ_0/tile_A::J]); - } else { -#pragma unroll - for (int t = 0; t < ntiles/2; ++t) { - // Wide version of KQ_C is column-major => swap A and B. - mma(KQ_C_16[i_KQ_00/(np*tile_A::I) * ntiles/2 + t], Q_B_16[k_KQ_0/tile_A::J * ntiles/2 + t], K_A); - } - } + if constexpr (nstages > 1) { + static_assert(c::nbatch_K2 == DKQ/2, "batching not implemented for multi stage loading"); + constexpr bool use_cp_async = true; + cp_async_wait_all(); + __syncthreads(); + flash_attn_ext_f16_load_tile + (V_h2 + k_VKQ_0*stride_V, tile_V, c::nbatch_V2, stride_V); + } else { + constexpr bool use_cp_async = nstages == 1; + if (ncols2 > 1 || mask_h2) { + flash_attn_ext_f16_load_mask(mask_h2 + k_VKQ_0/2, tile_mask, stride_mask); } } -#ifndef CP_ASYNC_AVAILABLE - __syncthreads(); // Only needed if tile_K == tile_V. -#endif // CP_ASYNC_AVAILABLE +#pragma unroll + for (int k0_start = 0; k0_start < DKQ/2; k0_start += c::nbatch_K2) { + const int k0_stop = k0_start + c::nbatch_K2 < DKQ/2 ? k0_start + c::nbatch_K2 : DKQ/2; + const int k0_diff = k0_stop - k0_start; + + if (nstages <= 1) { + constexpr bool use_cp_async = nstages == 1; + flash_attn_ext_f16_load_tile + (K_h2 + k_VKQ_0*stride_K + k0_start, tile_K, k0_diff, stride_K); + if (use_cp_async) { + cp_async_wait_all(); + } + __syncthreads(); + } + + // Calculate tile of KQ: + if constexpr (c::Q_in_reg) { +#pragma unroll + for (int i_KQ_00 = 0; i_KQ_00 < c::nbatch_fa; i_KQ_00 += np*tile_A::I) { + const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*tile_A::I; +#pragma unroll + for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += tile_A::J) { + tile_A K_A; + load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K); + if (ntiles == 1) { + mma(KQ_C[i_KQ_00/(np*tile_A::I)], K_A, Q_B[k_KQ_0/tile_A::J]); + } else { +#pragma unroll + for (int t = 0; t < ntiles/2; ++t) { + // Wide version of KQ_C is column-major => swap A and B. + mma(KQ_C_16[i_KQ_00/(np*tile_A::I) * ntiles/2 + t], Q_B_16[k_KQ_0/tile_A::J * ntiles/2 + t], K_A); + } + } + } + } + } else { + static_assert(ntiles == 2, "ntiles != 2 not implemented"); +#pragma unroll + for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += tile_A::J) { + load_ldmatrix(Q_B_16[0], tile_Q + (threadIdx.y / np)*(tile_B_16::I*stride_tile_Q) + k_KQ_0, stride_tile_Q); + +#pragma unroll + for (int i_KQ_00 = 0; i_KQ_00 < c::nbatch_fa; i_KQ_00 += np*tile_A::I) { + const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*tile_A::I; + + tile_A K_A; + load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K); + + // Wide version of KQ_C is column-major => swap A and B. + mma(KQ_C_16[i_KQ_00/(np*tile_A::I)], Q_B_16[0], K_A); + } + } + } + + if (nstages <= 1) { + __syncthreads(); // Only needed if tile_K == tile_V. + } + } if (use_logit_softcap) { - static_assert(KQ_per_iter % (np*tile_C_KQ::I) == 0, "bad loop size"); + static_assert(c::nbatch_fa % (np*tile_C_KQ::I) == 0, "bad loop size"); #pragma unroll - for (int i = 0; i < KQ_per_iter/(np*tile_C_KQ::I) * ntiles; ++i) { + for (int i = 0; i < c::nbatch_fa/(np*tile_C_KQ::I) * ntiles; ++i) { #pragma unroll for (int l = 0; l < tile_C_KQ::ne; ++l) { KQ_C[i].x[l] = logit_softcap*tanhf(KQ_C[i].x[l]); @@ -205,7 +368,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( if (ntiles == 1) { if (ncols2 > 1 || mask_h2) { #pragma unroll - for (int i00 = 0; i00 < KQ_per_iter; i00 += np*tile_C_KQ::I) { + for (int i00 = 0; i00 < c::nbatch_fa; i00 += np*tile_C_KQ::I) { const int i0 = i00 + (threadIdx.y % np)*tile_C_KQ::I; #pragma unroll for (int l = 0; l < tile_C_KQ::ne; ++l) { @@ -213,16 +376,16 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( const int j = ((threadIdx.y / np)*tile_C_KQ::J + tile_C_KQ::get_j(l)) / ncols2; KQ_C[i00/(np*tile_C_KQ::I)].x[l] += slope * - __half2float(((const half *) tile_mask)[j*(KQ_per_iter + 8) + i]); + __half2float(((const half *) tile_mask)[j*(c::nbatch_fa + 8) + i]); } } } // Calculate softmax for each KQ column using the current max. value. // The divisor is stored in KQ_rowsum and will be applied at the end. - static_assert(KQ_per_iter % (np*tile_C_KQ::I) == 0, "bad loop size"); + static_assert(c::nbatch_fa % (np*tile_C_KQ::I) == 0, "bad loop size"); #pragma unroll - for (int k = 0; k < KQ_per_iter/(np*tile_C_KQ::I); ++k) { + for (int k = 0; k < c::nbatch_fa/(np*tile_C_KQ::I); ++k) { #pragma unroll for (int l = 0; l < tile_C_KQ::ne; ++l) { KQ_max_new[l % 2] = fmaxf(KQ_max_new[l % 2], KQ_C[k].x[l]); @@ -238,10 +401,9 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( } } - static_assert(KQ_per_iter % (np*tile_C_KQ::I) == 0, "bad loop size"); - + static_assert(c::nbatch_fa % (np*tile_C_KQ::I) == 0, "bad loop size"); #pragma unroll - for (int k = 0; k < KQ_per_iter/(np*tile_C_KQ::I); ++k) { + for (int k = 0; k < c::nbatch_fa/(np*tile_C_KQ::I); ++k) { #pragma unroll for (int l = 0; l < tile_C_KQ::ne; ++l) { KQ_C[k].x[l] = expf(KQ_C[k].x[l] - KQ_max_new[l % 2]); @@ -252,7 +414,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( } else { // ntiles > 1 if (ncols2 > 1 || mask_h2) { #pragma unroll - for (int i00 = 0; i00 < KQ_per_iter; i00 += np*tile_C_KQ_16::J) { + for (int i00 = 0; i00 < c::nbatch_fa; i00 += np*tile_C_KQ_16::J) { const int i0 = i00 + (threadIdx.y % np)*tile_C_KQ_16::J; #pragma unroll for (int t = 0; t < ntiles/2; ++t) { @@ -261,7 +423,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( const int i = (i0 + tile_C_KQ_16::get_j(l0)) / 2; const int j = ((threadIdx.y / np)*cols_per_warp + t*tile_C_KQ_16::I + tile_C_KQ_16::get_i(l0)) / ncols2; - const float2 tmp = __half22float2(tile_mask[j*(KQ_per_iter/2 + 4) + i]); + const float2 tmp = __half22float2(tile_mask[j*(c::nbatch_fa/2 + 4) + i]); const int KQ_index = i00/(np*tile_C_KQ_16::J) * ntiles/2 + t; KQ_C_16[KQ_index].x[l0 + 0] += slope*tmp.x; KQ_C_16[KQ_index].x[l0 + 1] += slope*tmp.y; @@ -272,9 +434,9 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( // Calculate softmax for each KQ column using the current max. value. // The divisor is stored in KQ_rowsum and will be applied at the end. - static_assert(KQ_per_iter % (np*tile_C_KQ::I) == 0, "bad loop size"); + static_assert(c::nbatch_fa % (np*tile_C_KQ::I) == 0, "bad loop size"); #pragma unroll - for (int k = 0; k < KQ_per_iter/(np*tile_C_KQ_16::J); ++k) { + for (int k = 0; k < c::nbatch_fa/(np*tile_C_KQ_16::J); ++k) { #pragma unroll for (int t = 0; t < ntiles/2; ++t) { #pragma unroll @@ -294,9 +456,9 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( } } - static_assert(KQ_per_iter % (np*tile_C_KQ_16::J) == 0, "bad loop size"); + static_assert(c::nbatch_fa % (np*tile_C_KQ_16::J) == 0, "bad loop size"); #pragma unroll - for (int k = 0; k < KQ_per_iter/(np*tile_C_KQ_16::J); ++k) { + for (int k = 0; k < c::nbatch_fa/(np*tile_C_KQ_16::J); ++k) { #pragma unroll for (int t = 0; t < ntiles/2; ++t) { #pragma unroll @@ -325,7 +487,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( if (ntiles == 1) { const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale[0], KQ_max_scale[1]); #pragma unroll - for (int i = 0; i < D/tile_C_VKQ::I; ++i) { + for (int i = 0; i < DV/tile_C_VKQ::I; ++i) { #pragma unroll for (int l = 0; l < tile_C_VKQ::ne; ++l) { VKQ_C[i].x[l] *= KQ_max_scale_h2; @@ -336,7 +498,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( for (int col = 0; col < cols_per_thread; ++col) { const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale[col], KQ_max_scale[col]); #pragma unroll - for (int i = 0; i < D/tile_C_VKQ_16::J; ++i) { + for (int i = 0; i < DV/tile_C_VKQ_16::J; ++i) { #pragma unroll for (int l0 = 0; l0 < tile_C_VKQ_16::ne; l0 += 2) { VKQ_C_16[i*ntiles/2 + col/2].x[l0 + col % 2] *= KQ_max_scale_h2; @@ -347,16 +509,16 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( } // Convert KQ C tiles into B tiles for VKQ calculation: - tile_B B[KQ_per_iter/(np*2*tile_B::J) * ntiles]; + tile_B B[c::nbatch_fa/(np*2*tile_B::J) * ntiles]; tile_B_16 * B_16 = (tile_B_16 *) B; - static_assert(KQ_per_iter % (np*2*tile_B::J) == 0, "bad loop size"); + static_assert(c::nbatch_fa % (np*2*tile_B::J) == 0, "bad loop size"); if (ntiles == 1) { #pragma unroll - for (int k = 0; k < KQ_per_iter/(np*2*tile_B::J); ++k) { + for (int k = 0; k < c::nbatch_fa/(np*2*tile_B::J); ++k) { B[k] = get_transposed(get_half2(KQ_C[k])); } } else { - for (int k = 0; k < KQ_per_iter/(np*2*tile_B_16::J); ++k) { + for (int k = 0; k < c::nbatch_fa/(np*2*tile_B_16::J); ++k) { #pragma unroll for (int t = 0; t < ntiles/2; ++t) { B_16[k*ntiles/2 + t] = get_half2(KQ_C_16[k*ntiles/2 + t]); @@ -364,52 +526,67 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( } } -#ifdef CP_ASYNC_AVAILABLE - // Preload K tile for next iteration: - cp_async_wait_all(); - __syncthreads(); - if (!last_iter) { - if (ncols2 > 1 || mask_h2) { - flash_attn_ext_f16_load_mask(mask_h2 + (k_VKQ_0 + KQ_per_iter)/2, tile_mask, stride_mask); + if (nstages > 1) { + // Preload K tile for next iteration: + constexpr bool use_cp_async = true; + cp_async_wait_all(); + __syncthreads(); + if (!last_iter) { + if (ncols2 > 1 || mask_h2) { + flash_attn_ext_f16_load_mask + (mask_h2 + (k_VKQ_0 + c::nbatch_fa)/2, tile_mask, stride_mask); + } + flash_attn_ext_f16_load_tile + (K_h2 + (k_VKQ_0 + c::nbatch_fa)*stride_K, tile_K, c::nbatch_K2, stride_K); } - flash_attn_ext_f16_load_tile(K_h2 + (k_VKQ_0 + KQ_per_iter)*stride_KV, tile_K, stride_KV); } -#else - flash_attn_ext_f16_load_tile(V_h2 + k_VKQ_0*stride_KV, tile_V, stride_KV); - __syncthreads(); -#endif // CP_ASYNC_AVAILABLE - // Calculate VKQ tile: #pragma unroll - for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += tile_C_VKQ::I) { - static_assert((KQ_per_iter/2) % (np*tile_A::J) == 0, "bad loop size"); -#pragma unroll - for (int k00 = 0; k00 < KQ_per_iter/2; k00 += np*tile_A::J) { - const int k0 = k00 + (threadIdx.y % np)*tile_A::J; + for (int i0_start = 0; i0_start < DV; i0_start += 2*c::nbatch_V2) { + const int i0_stop = i0_start + 2*c::nbatch_V2 < DV ? i0_start + 2*c::nbatch_V2 : DV; + const int i0_diff = i0_stop - i0_start; - tile_A A; - load_ldmatrix_trans(A, tile_V + 2*k0*D2_padded + i_VKQ_0/2, D2_padded); - if (ntiles == 1) { - mma(VKQ_C[i_VKQ_0/tile_C_VKQ::I], A, B[k00/(np*tile_A::J)]); - } else { + if (nstages <= 1) { + constexpr bool use_cp_async = nstages == 1; + flash_attn_ext_f16_load_tile + (V_h2 + k_VKQ_0*stride_V + i0_start/2, tile_V, i0_diff/2, stride_V); + if (use_cp_async) { + cp_async_wait_all(); + } + __syncthreads(); + } + + // Calculate VKQ tile: #pragma unroll - for (int t = 0; t < ntiles/2; ++t) { - // Wide version of VKQ_C is column-major => swap A and B. - mma(VKQ_C_16[i_VKQ_0/tile_C_VKQ::I * ntiles/2 + t], B_16[k00/(np*tile_A::J) * ntiles/2 + t], A); + for (int i_VKQ_0 = i0_start; i_VKQ_0 < i0_stop; i_VKQ_0 += tile_C_VKQ::I) { + static_assert((c::nbatch_fa/2) % (np*tile_A::J) == 0, "bad loop size"); +#pragma unroll + for (int k00 = 0; k00 < c::nbatch_fa/2; k00 += np*tile_A::J) { + const int k0 = k00 + (threadIdx.y % np)*tile_A::J; + + tile_A A; + load_ldmatrix_trans(A, tile_V + 2*k0*stride_tile_V + (i_VKQ_0 - i0_start)/2, stride_tile_V); + if (ntiles == 1) { + mma(VKQ_C[i_VKQ_0/tile_C_VKQ::I], A, B[k00/(np*tile_A::J)]); + } else { +#pragma unroll + for (int t = 0; t < ntiles/2; ++t) { + // Wide version of VKQ_C is column-major => swap A and B. + mma(VKQ_C_16[i_VKQ_0/tile_C_VKQ::I * ntiles/2 + t], B_16[k00/(np*tile_A::J) * ntiles/2 + t], A); + } } } } + + if (nstages <= 1) { + __syncthreads(); // Only needed if tile_K == tile_V. + } } - -#ifndef CP_ASYNC_AVAILABLE - __syncthreads(); // Only needed if tile_K == tile_V. -#endif // CP_ASYNC_AVAILABLE - #else GGML_UNUSED(Q_f2); GGML_UNUSED(K_h2); GGML_UNUSED(V_h2); GGML_UNUSED(mask_h2); GGML_UNUSED(dstk); GGML_UNUSED(dstk_fixup); GGML_UNUSED(scale); GGML_UNUSED(slope); GGML_UNUSED(logit_softcap); - GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_KV); + GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_K); GGML_UNUSED(stride_V); GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K); GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K); GGML_UNUSED(tile_V); GGML_UNUSED(tile_mask); GGML_UNUSED(Q_B); @@ -419,7 +596,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( #endif // NEW_MMA_AVAILABLE } -template +template static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( const float2 * const __restrict__ Q_f2, const half2 * const __restrict__ K_h2, @@ -434,7 +611,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( const int ne02, const int stride_Q1, const int stride_Q2, - const int stride_KV, + const int stride_K, + const int stride_V, const int stride_mask, const int jt, const int kb0_start, @@ -442,6 +620,14 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( #ifdef NEW_MMA_AVAILABLE //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + typedef fattn_mma_f16_config c; + +#ifdef CP_ASYNC_AVAILABLE + constexpr int nstages = c::nstages_target; +#else + constexpr int nstages = 0; +#endif // CP_ASYNC_AVAILABLE + constexpr int ncols = ncols1 * ncols2; constexpr int cols_per_warp = ntiles * tile_B::I; constexpr int cols_per_thread = ntiles == 1 ? 2 : ntiles; @@ -449,22 +635,19 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( static_assert(nwarps * (cols_per_warp/ncols2) % ncols1 == 0, "bad nwarps"); - static_assert(D % nwarps == 0, "bad D"); - static_assert(KQ_per_iter % nwarps == 0, "bad KQ_per_iter"); + constexpr int stride_tile_Q = DKQ/2 + 4; + constexpr int stride_tile_K = c::nbatch_K2 + 4; + constexpr int stride_tile_V = c::nbatch_V2 + 4; - constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts. + constexpr int stride_tile_KV_max = stride_tile_K > stride_tile_V ? stride_tile_K : stride_tile_V; - // Temporary shared buffer for loading K/V data with KQ_per_iter*D logical elements: - extern __shared__ half2 tile_K[]; -#ifdef CP_ASYNC_AVAILABLE - half2 * tile_V = tile_K + KQ_per_iter*D2_padded; -#else - half2 * tile_V = tile_K; -#endif // CP_ASYNC_AVAILABLE - half2 * tile_mask = tile_V + KQ_per_iter*D2_padded; + extern __shared__ half2 tile_Q[]; + half2 * tile_K = c::Q_in_reg ? tile_Q : tile_Q + ncols * stride_tile_Q; + half2 * tile_V = nstages > 1 ? tile_K + c::nbatch_fa * stride_tile_K : tile_K; + half2 * tile_mask = nstages > 1 ? tile_V + c::nbatch_fa * stride_tile_V : tile_V + c::nbatch_fa * stride_tile_KV_max; - tile_B Q_B[D/(2*tile_B::J) * ntiles]; - tile_C_VKQ VKQ_C[D/tile_C_VKQ::I * ntiles]; + tile_B Q_B[(c::Q_in_reg ? DKQ/(2*tile_B::J) : 1) * ntiles]; + tile_C_VKQ VKQ_C[DV/tile_C_VKQ::I * ntiles]; tile_B_16 * Q_B_16 = (tile_B_16 *) Q_B; tile_C_VKQ_16 * VKQ_C_16 = (tile_C_VKQ_16 *) VKQ_C; @@ -476,13 +659,14 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( KQ_max[col] = -FLT_MAX/2.0f; } - // Temporarily load Q data into tile_K, will be loaded into registers afterwards. + // Load Q data into tile_Q, either temporarily or permanently. + // Q in registers is faster, but register pressure is the biggest bottleneck. // The loading is done with decreasing granularity for D for better memory bandwidth. const half2 scale_h2 = make_half2(scale, scale); #pragma unroll for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) { - const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k); - const int k0_stop = D/2 - (D/2) % (1*stride_k); + const int k0_start = stride_k == WARP_SIZE ? 0 : DKQ/2 - (DKQ/2) % (2*stride_k); + const int k0_stop = DKQ/2 - (DKQ/2) % (1*stride_k); const int stride_jc = WARP_SIZE / stride_k; if (k0_start == k0_stop) { @@ -506,14 +690,14 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k); const float2 tmp = Q_f2[(jt*ncols1 + j)*stride_Q1 + c*stride_Q2 + k]; - tile_K[jc*D2_padded + k] = scale_h2 * make_half2(tmp.x, tmp.y); + tile_Q[jc*stride_tile_Q + k] = scale_h2 * make_half2(tmp.x, tmp.y); } } else { #pragma unroll for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) { const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k); - tile_K[jc*D2_padded + k] = make_half2(0.0f, 0.0f); + tile_Q[jc*stride_tile_Q + k] = make_half2(0.0f, 0.0f); } } } @@ -521,18 +705,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( __syncthreads(); - { + if (c::Q_in_reg) { const int j0 = (threadIdx.y / np) * cols_per_warp; #pragma unroll - for (int k0 = 0; k0 < D/2; k0 += tile_B::J) { + for (int k0 = 0; k0 < DKQ/2; k0 += tile_B::J) { if (ntiles == 1) { - load_ldmatrix(Q_B[k0/tile_B::J], tile_K + j0*D2_padded + k0, D2_padded); + load_ldmatrix(Q_B[k0/tile_B::J], tile_Q + j0*stride_tile_Q + k0, stride_tile_Q); } else { #pragma unroll for (int t = 0; t < ntiles/2; ++t) { load_ldmatrix(Q_B_16[k0/tile_B_16::J * ntiles/2 + t], - tile_K + (j0 + t*tile_B_16::I)*D2_padded + k0, D2_padded); + tile_Q + (j0 + t*tile_B_16::I)*stride_tile_Q + k0, stride_tile_Q); } } } @@ -540,35 +724,37 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( __syncthreads(); - // Preload mask and K data for first iteration when using cp_async: -#ifdef CP_ASYNC_AVAILABLE - if (ncols2 > 1 || mask_h2) { - flash_attn_ext_f16_load_mask(mask_h2 + kb0_start*KQ_per_iter/2, tile_mask, stride_mask); + // Preload mask and K data for first iteration when using cp_async with multiple stages: + if constexpr (nstages > 1) { + static_assert(c::nbatch_K2 == DKQ/2, "batching not implemented for multi-stage pipeline"); + constexpr bool use_cp_async = true; + if (ncols2 > 1 || mask_h2) { + flash_attn_ext_f16_load_mask + (mask_h2 + kb0_start*c::nbatch_fa/2, tile_mask, stride_mask); + } + flash_attn_ext_f16_load_tile + (K_h2 + kb0_start*c::nbatch_fa*stride_K, tile_K, c::nbatch_K2, stride_K); } - flash_attn_ext_f16_load_tile(K_h2 + kb0_start*KQ_per_iter*stride_KV, tile_K, stride_KV); -#endif // CP_ASYNC_AVAILABLE // Iterate over ne11 == previous tokens: for (int kb0 = kb0_start; kb0 < kb0_stop-1; ++kb0) { constexpr bool last_iter = false; - flash_attn_ext_f16_iter + flash_attn_ext_f16_iter (Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap, - ne01, ne02, stride_KV, stride_mask, jt, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0); + ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0); } { // kb0_start is always < kb0_stop so the last iter can be executed unconditionally. constexpr bool last_iter = true; - flash_attn_ext_f16_iter + flash_attn_ext_f16_iter (Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap, - ne01, ne02, stride_KV, stride_mask, jt, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1); + ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1); } - // With cp_async there is no __syncthreads at the end of the iter, + // With multi-stage loading there is no __syncthreads at the end of the iter, // there can be a race condition on shared memory access for combining/writing back results. -#ifdef CP_ASYNC_AVAILABLE - if (nwarps*cols_per_warp > KQ_per_iter) { + if (nstages > 1 && nwarps*cols_per_warp > c::nbatch_fa) { __syncthreads(); } -#endif // CP_ASYNC_AVAILABLE // Finally, sum up partial KQ rowsums. // The partial sums are spread across 8/4 threads each, does not need full reduce. @@ -584,38 +770,13 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( } } - // Write VKQ accumulators to shared memory in column-major format. - // It's faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM. - // Also for np > 1 the combination is done via these values in shared memory. - if (ntiles == 1) { - const int jc_cwd = threadIdx.y*tile_B::I + tile_B::get_i(-1); // jc combine write data -#pragma unroll - for (int k0 = 0; k0 < D/2; k0 += tile_B::J) { - const tile_B B = get_transposed(VKQ_C[k0/tile_B::J]); // Conversion of C to B matrix puts it in column-major format. + // Combine VKQ accumulator values if np > 1. + // It's also faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM. + // So also write VKQ accumulators to shared memory in column-major format if np == 1. -#pragma unroll - for (int l = 0; l < tile_B::ne; ++l) { - const int k = k0 + tile_B::get_j(l); - - tile_K[jc_cwd*D2_padded + k] = B.x[l]; - } - } - } else { -#pragma unroll - for (int t = 0; t < ntiles/2; ++t) { - const int j0 = threadIdx.y*cols_per_warp + t*tile_C_VKQ_16::I; -#pragma unroll - for (int k0 = 0; k0 < D/2; k0 += tile_C_VKQ_16::J) { -#pragma unroll - for (int l = 0; l < tile_C_VKQ_16::ne; ++l) { - const int j = j0 + tile_C_VKQ_16::get_i(l); - const int k = k0 + tile_C_VKQ_16::get_j(l); - - tile_K[j*D2_padded + k] = VKQ_C_16[k0/tile_C_VKQ_16::J * ntiles/2 + t].x[l]; - } - } - } - } + constexpr int nbatch_combine = c::Q_in_reg ? DV/2 : DV/4; + constexpr int tile_stride = nbatch_combine + 4; + static_assert((DV/2) % nbatch_combine == 0, "bad nbatch_combine"); if constexpr (ntiles == 1) { const int jc_cwmo = (threadIdx.x % (2*tile_C_VKQ::J)) / tile_C_VKQ::J; // jc combine write meta offset @@ -624,7 +785,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( if (((!needs_fixup && !is_fixup) || np > 1) && threadIdx.x < 2*tile_C_VKQ::J) { // Use the 16 bytes of padding in each row to store the meta data: KQ max, KQ rowsum, KQ max scale. - ((float2 *) tile_K)[jc_cwm*(D2_padded/2) + D/4] = KQ_cmr; + ((float2 *) tile_Q)[jc_cwm*(tile_stride/2) + nbatch_combine/2] = KQ_cmr; } __syncthreads(); @@ -649,7 +810,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( if (((!needs_fixup && !is_fixup) || np > 1) && (ntiles == 4 || threadIdx.x % 4 < cols_per_thread)) { // Use the 16 bytes of padding in each row to store the meta data: KQ max, KQ rowsum, KQ max scale. - ((float2 *) tile_K)[jc_cwm*(D2_padded/2) + D/4] = KQ_cmr; + ((float2 *) tile_Q)[jc_cwm*(tile_stride/2) + nbatch_combine/2] = KQ_cmr; } __syncthreads(); @@ -676,11 +837,11 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( constexpr int nmeta = np*cols_per_warp >= WARP_SIZE ? np*cols_per_warp/WARP_SIZE : 1; const int jc_meta = threadIdx.y*cols_per_warp + (np*cols_per_warp < WARP_SIZE ? threadIdx.x % (np*cols_per_warp) : threadIdx.x); - float2 * const meta_ptr = ((float2 *) tile_K) + jc_meta*(D2_padded/2) + D/4; + float2 * const meta_ptr = ((float2 *) tile_Q) + jc_meta*(tile_stride/2) + nbatch_combine/2; float2 meta[nmeta]; #pragma unroll for (int imeta = 0; imeta < nmeta; ++imeta) { - meta[imeta] = meta_ptr[imeta * WARP_SIZE * D2_padded/2]; + meta[imeta] = meta_ptr[imeta * WARP_SIZE * tile_stride/2]; } float KQ_cmn = meta[0].x; // KQ combine max new, max between all parallel warps. @@ -690,10 +851,9 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( } #pragma unroll for (int offset = np*cols_per_warp/2; offset >= cols_per_warp; offset >>= 1) { - if (offset >= WARP_SIZE) { - continue; + if (offset < WARP_SIZE) { + KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE)); } - KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE)); } float KQ_cms[nmeta]; // KQ combine max scale per warp. @@ -709,18 +869,19 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( } #pragma unroll for (int offset = np*cols_per_warp/2; offset >= cols_per_warp; offset >>= 1) { - if (offset >= WARP_SIZE) { - continue; + if (offset < WARP_SIZE) { + KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE); } - KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE); } + __syncthreads(); + // Write back combined meta data: #pragma unroll for (int imeta = 0; imeta < nmeta; ++imeta) { if (np*cols_per_warp >= WARP_SIZE || threadIdx.x < np*cols_per_warp) { // Combined KQ max scale + rowsum. - meta_ptr[imeta * WARP_SIZE * D2_padded/2] = make_float2(KQ_cms[imeta], KQ_crs); + meta_ptr[imeta * WARP_SIZE * tile_stride/2] = make_float2(KQ_cms[imeta], KQ_crs); } } @@ -734,90 +895,125 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile( float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols; dstk_fixup_meta[(threadIdx.y/np)*cols_per_warp + threadIdx.x] = make_float2(KQ_cmn, KQ_crs); } - } - - if (np > 1) { + } else if (np > 1) { + // Warps with threadIdx.y % np == 0 execute a __syncthreads() in the if branch. + // Therefore, all other warps also need to execute a __syncthreads(). + // Otherwise the points at which warps synchronize with each other would become misaligned. __syncthreads(); } - if (np == 1 || threadIdx.y % np == 0) { - // The first 2*2*gridDim.x*ncols floats in dstk_fixup are for storing max. values and row sums. - // The values after that are for the partial results of the individual blocks. - float2 * dstk_fixup_data = dstk_fixup + gridDim.x*(2*ncols) + blockIdx.x*(ncols*(D/2)); +#pragma unroll + for (int k00 = 0; k00 < DV/2; k00 += nbatch_combine) { + if (ntiles == 1) { + const int jc_cwd = threadIdx.y*tile_B::I + tile_B::get_i(-1); // jc combine write data +#pragma unroll + for (int k0 = 0; k0 < nbatch_combine; k0 += tile_B::J) { + const tile_B B = get_transposed(VKQ_C[(k00 + k0)/tile_B::J]); // Conversion of C to B matrix puts it in column-major format. #pragma unroll - for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) { - const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k); - const int k0_stop = D/2 - (D/2) % (1*stride_k); - const int stride_jc = WARP_SIZE / stride_k; + for (int l = 0; l < tile_B::ne; ++l) { + const int k = k0 + tile_B::get_j(l); - if (k0_start == k0_stop) { - continue; + tile_Q[jc_cwd*tile_stride + k] = B.x[l]; + } } - + } else { #pragma unroll - for (int jc0_dst = 0; jc0_dst < ncols; jc0_dst += (nwarps/np)*stride_jc) { - const int jc_dst = jc0_dst + (threadIdx.y/np)*stride_jc + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k); - - if (jc0_dst + (nwarps/np)*stride_jc > ncols && jc_dst >= ncols) { - break; - } - - const int jc_tile_K = (jc_dst/cols_per_warp)*(np*cols_per_warp) + jc_dst % cols_per_warp; - - const int j_dst = jc_dst / ncols2; - const int c_dst = jc_dst % ncols2; - - if (!is_fixup && jt*ncols1 + j_dst >= ne01) { - continue; - } - - const float * meta_j = (const float *) tile_K + jc_tile_K*D2_padded + D/2; + for (int t = 0; t < ntiles/2; ++t) { + const int j0 = threadIdx.y*cols_per_warp + t*tile_C_VKQ_16::I; #pragma unroll - for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) { - const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k); - - float2 dstk_val = make_float2(0.0f, 0.0f); + for (int k0 = 0; k0 < nbatch_combine; k0 += tile_C_VKQ_16::J) { #pragma unroll - for (int ip = 0; ip < np; ++ip) { - const float KQ_crs = np == 1 ? 1.0f : meta_j[ip*cols_per_warp * D2_padded + 0]; - const float2 dstk_val_add = __half22float2(tile_K[(jc_tile_K + ip*cols_per_warp) * D2_padded + k]); - dstk_val.x += dstk_val_add.x*KQ_crs; - dstk_val.y += dstk_val_add.y*KQ_crs; - } + for (int l = 0; l < tile_C_VKQ_16::ne; ++l) { + const int j = j0 + tile_C_VKQ_16::get_i(l); + const int k = k0 + tile_C_VKQ_16::get_j(l); - if (!needs_fixup && !is_fixup) { - const float KQ_rowsum_j = meta_j[1]; - dstk_val.x /= KQ_rowsum_j; - dstk_val.y /= KQ_rowsum_j; - } - - if (is_fixup) { - dstk_fixup_data[jc_dst*(D/2) + k] = dstk_val; - } else { - dstk[((jt*ncols1 + j_dst)*ne02 + c_dst)*(D/2) + k] = dstk_val; + tile_Q[j*tile_stride + k] = VKQ_C_16[(k00 + k0)/tile_C_VKQ_16::J * ntiles/2 + t].x[l]; } } } } - } - if (np > 1) { __syncthreads(); + + if (np == 1 || threadIdx.y % np == 0) { + // The first 2*2*gridDim.x*ncols floats in dstk_fixup are for storing max. values and row sums. + // The values after that are for the partial results of the individual blocks. + float2 * dstk_fixup_data = dstk_fixup + gridDim.x*(2*ncols) + blockIdx.x*(ncols*(DV/2)); + +#pragma unroll + for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) { + const int k0_start = stride_k == WARP_SIZE ? 0 : nbatch_combine - nbatch_combine % (2*stride_k); + const int k0_stop = nbatch_combine - nbatch_combine % (1*stride_k); + const int stride_jc = WARP_SIZE / stride_k; + + if (k0_start == k0_stop) { + continue; + } + +#pragma unroll + for (int jc0_dst = 0; jc0_dst < ncols; jc0_dst += (nwarps/np)*stride_jc) { + const int jc_dst = jc0_dst + (threadIdx.y/np)*stride_jc + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k); + + if (jc0_dst + (nwarps/np)*stride_jc > ncols && jc_dst >= ncols) { + break; + } + + const int jc_tile_K = (jc_dst/cols_per_warp)*(np*cols_per_warp) + jc_dst % cols_per_warp; + + const int j_dst = jc_dst / ncols2; + const int c_dst = jc_dst % ncols2; + + if (!is_fixup && jt*ncols1 + j_dst >= ne01) { + continue; + } + + const float * meta_j = (const float *) tile_Q + jc_tile_K*tile_stride + nbatch_combine; +#pragma unroll + for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) { + const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k); + + float2 dstk_val = make_float2(0.0f, 0.0f); +#pragma unroll + for (int ip = 0; ip < np; ++ip) { + const float KQ_crs = np == 1 ? 1.0f : meta_j[ip*cols_per_warp * tile_stride + 0]; + const float2 dstk_val_add = __half22float2(tile_Q[(jc_tile_K + ip*cols_per_warp) * tile_stride + k]); + dstk_val.x += dstk_val_add.x*KQ_crs; + dstk_val.y += dstk_val_add.y*KQ_crs; + } + + if (!needs_fixup && !is_fixup) { + const float KQ_rowsum_j = meta_j[1]; + dstk_val.x /= KQ_rowsum_j; + dstk_val.y /= KQ_rowsum_j; + } + + if (is_fixup) { + dstk_fixup_data[jc_dst*(DV/2) + k00 + k] = dstk_val; + } else { + dstk[((jt*ncols1 + j_dst)*ne02 + c_dst)*(DV/2) + k00 + k] = dstk_val; + } + } + } + } + } + if (np > 1) { + __syncthreads(); + } } #else GGML_UNUSED(Q_f2); GGML_UNUSED(K_h2); GGML_UNUSED(V_h2); GGML_UNUSED(mask_h2); GGML_UNUSED(dstk); GGML_UNUSED(dstk_fixup); GGML_UNUSED(scale); GGML_UNUSED(slope); GGML_UNUSED(logit_softcap); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_Q1); - GGML_UNUSED(stride_Q2); GGML_UNUSED(stride_KV); GGML_UNUSED(stride_mask); + GGML_UNUSED(stride_Q2); GGML_UNUSED(stride_K); GGML_UNUSED(stride_V); GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(kb0_start); GGML_UNUSED(kb0_stop); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } -template -__launch_bounds__(nwarps*WARP_SIZE, 2) +template +__launch_bounds__(nwarps*WARP_SIZE, 1) static __global__ void flash_attn_ext_f16( const char * __restrict__ Q, const char * __restrict__ K, @@ -857,24 +1053,27 @@ static __global__ void flash_attn_ext_f16( #if defined(FLASH_ATTN_AVAILABLE) && defined(NEW_MMA_AVAILABLE) // Skip unused kernel variants for faster compilation: - if (use_logit_softcap && !(D == 128 || D == 256)) { + if (use_logit_softcap && !(DKQ == 128 || DKQ == 256)) { NO_DEVICE_CODE; return; } - static_assert(FATTN_KQ_STRIDE % KQ_per_iter == 0, "bad KQ_per_iter"); + typedef fattn_mma_f16_config c; + + static_assert(FATTN_KQ_STRIDE % fattn_mma_f16_config::nbatch_fa == 0, "bad nbatch_fa"); const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. const int stride_Q1 = nb01 / sizeof(float2); const int stride_Q2 = nb02 / sizeof(float2); - const int stride_KV = nb11 / sizeof(half2); + const int stride_K = nb11 / sizeof(half2); + const int stride_V = nb21 / sizeof(half2); const int stride_mask = nb31 / sizeof(half2); const int iter_k = ne11 / FATTN_KQ_STRIDE; const int iter_j = (ne01 + (ncols1 - 1)) / ncols1; - constexpr int kb_niter = FATTN_KQ_STRIDE / KQ_per_iter; // Number of kernel iterations per assigned KQ slice. + constexpr int kb_niter = FATTN_KQ_STRIDE / c::nbatch_fa; // Number of kernel iterations per assigned KQ slice. // kbc == k block continuous, current index in continuous ijk space. int kbc = (blockIdx.x + 0)*iter_k*iter_j*(ne02/ncols2) / gridDim.x; @@ -893,9 +1092,9 @@ static __global__ void flash_attn_ext_f16( const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2); const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio)); - const half2 * V_h2 = (const half2 *) (V + nb12*(channel*ncols2 / gqa_ratio)); // K and V have same shape + const half2 * V_h2 = (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio)); const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr; - float2 * dstk = ((float2 *) dst) + channel*(ncols2 * D/2); + float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2); const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f; @@ -905,14 +1104,14 @@ static __global__ void flash_attn_ext_f16( constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer. if (kb0_start == 0) { constexpr bool needs_fixup = false; // CUDA block is working on an entire tile. - flash_attn_ext_f16_process_tile + flash_attn_ext_f16_process_tile (Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap, - ne01, ne02, stride_Q1, stride_Q2, stride_KV, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel); + ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel); } else { constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile. - flash_attn_ext_f16_process_tile + flash_attn_ext_f16_process_tile (Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap, - ne01, ne02, stride_Q1, stride_Q2, stride_KV, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel); + ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel); } kbc += iter_k; @@ -931,9 +1130,9 @@ static __global__ void flash_attn_ext_f16( const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2); const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio)); - const half2 * V_h2 = (const half2 *) (V + nb12*(channel*ncols2 / gqa_ratio)); // K and V have same shape + const half2 * V_h2 = (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio)); // K and V have same shape const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr; - float2 * dstk = ((float2 *) dst) + channel*(ncols2 * D/2); + float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2); const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f; @@ -942,9 +1141,9 @@ static __global__ void flash_attn_ext_f16( constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks. constexpr bool needs_fixup = false; - flash_attn_ext_f16_process_tile + flash_attn_ext_f16_process_tile (Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap, - ne01, ne02, stride_Q1, stride_Q2, stride_KV, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel); + ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel); #else GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale); @@ -960,28 +1159,42 @@ static __global__ void flash_attn_ext_f16( #endif // defined(FLASH_ATTN_AVAILABLE) && defined(NEW_MMA_AVAILABLE) } -template +template void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - constexpr int ncols = ncols1 * ncols2; - constexpr int KQ_per_iter = D <= 128 && ncols1 <= 64 ? 64 : 32; - constexpr int nwarps = (KQ_per_iter == 32 && ncols <= 16) ? 2 : 4; - constexpr int ntiles = ncols <= 8 ? 1 : (ncols <= 64 ? 2 : 4); - constexpr int cols_per_warp = ntiles * tile_B::I; + const ggml_tensor * KQV = dst; + const int id = ggml_cuda_get_device(); + const int cc = ggml_cuda_info().devices[id].cc; - static_assert(D % tile_B::J == 0, "bad D"); + typedef fattn_mma_f16_config c; + + constexpr int nbatch_K2 = c::nbatch_K2 < 1 ? DKQ/2 : c::nbatch_K2; + constexpr int nbatch_V2 = c::nbatch_V2 < 1 ? DV /2 : c::nbatch_V2; + constexpr int nbatch_combine = c::nbatch_combine < 1 ? DV /2 : c::nbatch_combine; + + const int nstages = cp_async_available(cc) ? c::nstages_target : 0; + + constexpr int ncols = ncols1 * ncols2; + constexpr int ntiles = ncols <= 8 ? 1 : 2; // Number of tiles per warp. + constexpr int cols_per_warp = ntiles * tile_B::I; + constexpr int nwarps_max_x = ncols / cols_per_warp; + constexpr int nwarps_max_y = c::nbatch_fa / tile_A::I; + constexpr int nwarps = nwarps_max_x*nwarps_max_y <= c::nwarps_max ? nwarps_max_x*nwarps_max_y : c::nwarps_max; + + static_assert(DKQ % tile_B::J == 0, "bad DKQ"); + static_assert(DV % tile_A::J == 0, "bad DV"); static_assert(ncols % cols_per_warp == 0, "bad ncols"); - const ggml_tensor * KQV = dst; - const int id = ggml_cuda_get_device(); - const int cc = ggml_cuda_info().devices[id].cc; + const size_t nbytes_shared_KV_1stage = c::nbatch_fa * std::max(c::nbatch_K2 + 4, c::nbatch_V2 + 4) * sizeof(half2); + const size_t nbytes_shared_KV_2stage = c::nbatch_fa * (c::nbatch_K2 + 4 + c::nbatch_V2 + 4) * sizeof(half2); + const size_t nbytes_shared_Q = ncols * (DKQ/2 + 4) * sizeof(half2); + const size_t nbytes_shared_mask = ncols1 * (c::nbatch_fa/2 + 4) * sizeof(half2); + const size_t nbytes_shared_combine = nwarps*cols_per_warp * (nbatch_combine + 4) * sizeof(half2); - const int KQ_shared_rows = cp_async_available(cc) ? 2*KQ_per_iter : KQ_per_iter; + const size_t nbytes_shared_KV = nstages <= 1 ? nbytes_shared_KV_1stage : nbytes_shared_KV_2stage; - const size_t nbytes_shared_KV = KQ_shared_rows * (D + 8) * sizeof(half); - const size_t nbytes_shared_mask = ncols1 * (KQ_per_iter + 8) * sizeof(half); - const size_t nbytes_shared_combine = nwarps*cols_per_warp * (D + 8) * sizeof(half); - - const size_t nbytes_shared_total = std::max(nbytes_shared_KV + nbytes_shared_mask, nbytes_shared_combine); + const size_t nbytes_shared_total = std::max(nbytes_shared_combine, c::Q_in_reg ? + std::max(nbytes_shared_Q, nbytes_shared_KV + nbytes_shared_mask) : + nbytes_shared_Q + nbytes_shared_KV + nbytes_shared_mask); float logit_softcap; memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float)); @@ -989,59 +1202,73 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml fattn_kernel_t fattn_kernel; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; - fattn_kernel = flash_attn_ext_f16; + fattn_kernel = flash_attn_ext_f16; + +#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA) + static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; + if (!shared_memory_limit_raised[id]) { + CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total)); + shared_memory_limit_raised[id] = true; + } +#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA) } else { constexpr bool use_logit_softcap = true; - fattn_kernel = flash_attn_ext_f16; + fattn_kernel = flash_attn_ext_f16; + +#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA) + static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; + if (!shared_memory_limit_raised[id]) { + CUDA_CHECK(cudaFuncSetAttribute(fattn_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes_shared_total)); + shared_memory_limit_raised[id] = true; + } +#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA) } - launch_fattn + launch_fattn (ctx, dst, fattn_kernel, nwarps, nbytes_shared_total, FATTN_KQ_STRIDE, true, true, true); } -#define DECL_FATTN_MMA_F16_CASE(D, ncols1, ncols2) \ - template void ggml_cuda_flash_attn_ext_mma_f16_case \ - (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \ +#define DECL_FATTN_MMA_F16_CASE(DKQ, DV, ncols1, ncols2) \ + template void ggml_cuda_flash_attn_ext_mma_f16_case \ + (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \ -#define DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(D, ncols) \ - extern DECL_FATTN_MMA_F16_CASE(D, (ncols)/1, 1); \ - extern DECL_FATTN_MMA_F16_CASE(D, (ncols)/2, 2); \ - extern DECL_FATTN_MMA_F16_CASE(D, (ncols)/4, 4); \ - extern DECL_FATTN_MMA_F16_CASE(D, (ncols)/8, 8); \ +#define DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(DKQ, DV, ncols) \ + extern DECL_FATTN_MMA_F16_CASE(DKQ, DV, (ncols)/ 1, 1); \ + extern DECL_FATTN_MMA_F16_CASE(DKQ, DV, (ncols)/ 2, 2); \ + extern DECL_FATTN_MMA_F16_CASE(DKQ, DV, (ncols)/ 4, 4); \ + extern DECL_FATTN_MMA_F16_CASE(DKQ, DV, (ncols)/ 8, 8); \ + extern DECL_FATTN_MMA_F16_CASE(DKQ, DV, (ncols)/16, 16); \ -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 8) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 8) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 8) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 8) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 8) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 8) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 64, 8) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 80, 8) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 96, 8) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 112, 8) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 128, 8) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 8) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 16) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 16) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 16) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 16) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 16) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 16) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 64, 16) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 80, 16) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 96, 16) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 112, 16) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 128, 16) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 16) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 32) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 32) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 32) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 32) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 32) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 32) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 64, 32) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 80, 32) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 96, 32) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 112, 32) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 128, 32) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 32) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 64) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 64) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 64) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 64) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 64) -DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 64) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 64, 64) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 80, 64) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 96, 64) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 112, 64) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 128, 64) +DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 256, 64) -// Kernels with ncols == 128 are only 4% faster due to register pressure. -// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 64, 128) -// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 80, 128) -// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2( 96, 128) -// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(112, 128) -// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(128, 128) -// DECL_FATTN_MMA_F16_CASE_ALL_NCOLS2(256, 128) // Needs too much shared memory. +// The number of viable configurations for Deepseek is very limited: +extern DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16); +extern DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16); +extern DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16); diff --git a/ggml/src/ggml-cuda/fattn-tile-f16.cu b/ggml/src/ggml-cuda/fattn-tile-f16.cu index 5ffd979cc..5032c4f71 100644 --- a/ggml/src/ggml-cuda/fattn-tile-f16.cu +++ b/ggml/src/ggml-cuda/fattn-tile-f16.cu @@ -307,7 +307,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * constexpr int nwarps = 8; constexpr size_t nbytes_shared = 0; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16; - launch_fattn + launch_fattn (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false); } break; case 128: { @@ -315,7 +315,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * constexpr int nwarps = 8; constexpr size_t nbytes_shared = 0; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16; - launch_fattn + launch_fattn (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false); } break; default: { diff --git a/ggml/src/ggml-cuda/fattn-tile-f32.cu b/ggml/src/ggml-cuda/fattn-tile-f32.cu index fcb6f848f..32673adb5 100644 --- a/ggml/src/ggml-cuda/fattn-tile-f32.cu +++ b/ggml/src/ggml-cuda/fattn-tile-f32.cu @@ -318,7 +318,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * constexpr int nwarps = 8; constexpr size_t nbytes_shared = 0; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32; - launch_fattn + launch_fattn (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false); } break; case 128: { @@ -326,7 +326,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * constexpr int nwarps = 8; constexpr size_t nbytes_shared = 0; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32; - launch_fattn + launch_fattn (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false); } break; default: { diff --git a/ggml/src/ggml-cuda/fattn-vec-f16.cuh b/ggml/src/ggml-cuda/fattn-vec-f16.cuh index 245bb60a9..921c52da6 100644 --- a/ggml/src/ggml-cuda/fattn-vec-f16.cuh +++ b/ggml/src/ggml-cuda/fattn-vec-f16.cuh @@ -168,6 +168,7 @@ static __global__ void flash_attn_vec_ext_f16( for (int j = 0; j < ncols; ++j) { KQ[j*D + tid] = -HALF_MAX_HALF; } + __syncthreads(); half2 VKQ[ncols] = {{0.0f, 0.0f}}; @@ -315,7 +316,7 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, constexpr bool need_f16_K = D != 128; constexpr bool need_f16_V = D != 128 && D != 64; constexpr size_t nbytes_shared = 0; - launch_fattn(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false); + launch_fattn(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false); } template diff --git a/ggml/src/ggml-cuda/fattn-vec-f32.cuh b/ggml/src/ggml-cuda/fattn-vec-f32.cuh index d42ddca49..7064675d5 100644 --- a/ggml/src/ggml-cuda/fattn-vec-f32.cuh +++ b/ggml/src/ggml-cuda/fattn-vec-f32.cuh @@ -310,7 +310,7 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, constexpr bool need_f16_K = D != 128; constexpr bool need_f16_V = D != 128 && D != 64; constexpr size_t nbytes_shared = 0; - launch_fattn(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false); + launch_fattn(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false); } template diff --git a/ggml/src/ggml-cuda/fattn-wmma-f16.cu b/ggml/src/ggml-cuda/fattn-wmma-f16.cu index bc21b27a0..c5668adb1 100644 --- a/ggml/src/ggml-cuda/fattn-wmma-f16.cu +++ b/ggml/src/ggml-cuda/fattn-wmma-f16.cu @@ -490,7 +490,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm fattn_kernel = flash_attn_ext_f16< D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), KQ_acc_t, use_logit_softcap>; } - launch_fattn(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size); + launch_fattn(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size); } void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { diff --git a/ggml/src/ggml-cuda/fattn.cu b/ggml/src/ggml-cuda/fattn.cu index 7a2d1e453..9c5c803d0 100644 --- a/ggml/src/ggml-cuda/fattn.cu +++ b/ggml/src/ggml-cuda/fattn.cu @@ -8,58 +8,32 @@ #include "fattn-wmma-f16.cuh" #include "fattn.cuh" -template +template static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * Q = dst->src[0]; - if (Q->ne[1] <= 8/ncols2) { - ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); - return; + if constexpr (ncols2 <= 8) { + if (Q->ne[1] <= 8/ncols2) { + ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); + return; + } } if (Q->ne[1] <= 16/ncols2) { - ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); + ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); return; } if (Q->ne[1] <= 32/ncols2) { - ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); + ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); return; } - ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); + ggml_cuda_flash_attn_ext_mma_f16_case(ctx, dst); } -template -static void ggml_cuda_flash_attn_ext_mma_f16_switch_hs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * Q = dst->src[0]; - - switch (Q->ne[0]) { - case 64: - ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 64, ncols2>(ctx, dst); - break; - case 80: - ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 80, ncols2>(ctx, dst); - break; - case 96: - ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1< 96, ncols2>(ctx, dst); - break; - case 112: - ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<112, ncols2>(ctx, dst); - break; - case 128: - ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<128, ncols2>(ctx, dst); - break; - case 256: - ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<256, ncols2>(ctx, dst); - break; - default: - GGML_ABORT("fatal error"); - break; - } -} - -static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { +template +static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * KQV = dst; const ggml_tensor * Q = dst->src[0]; const ggml_tensor * K = dst->src[1]; @@ -68,27 +42,79 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg float max_bias = 0.0f; memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float)); - const float use_gqa_opt = mask && max_bias == 0.0f; + const bool use_gqa_opt = mask && max_bias == 0.0f; GGML_ASSERT(Q->ne[2] % K->ne[2] == 0); const int gqa_ratio = Q->ne[2] / K->ne[2]; if (use_gqa_opt && gqa_ratio % 8 == 0) { - ggml_cuda_flash_attn_ext_mma_f16_switch_hs<8>(ctx, dst); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ctx, dst); return; } - if (use_gqa_opt && gqa_ratio == 4) { - ggml_cuda_flash_attn_ext_mma_f16_switch_hs<4>(ctx, dst); + if (use_gqa_opt && gqa_ratio % 4 == 0) { + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ctx, dst); return; } - if (use_gqa_opt && gqa_ratio == 2) { - ggml_cuda_flash_attn_ext_mma_f16_switch_hs<2>(ctx, dst); + if (use_gqa_opt && gqa_ratio % 2 == 0) { + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ctx, dst); return; } - ggml_cuda_flash_attn_ext_mma_f16_switch_hs<1>(ctx, dst); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ctx, dst); +} + +static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * KQV = dst; + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + const ggml_tensor * mask = dst->src[3]; + + switch (Q->ne[0]) { + case 64: + GGML_ASSERT(V->ne[0] == 64); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 64, 64>(ctx, dst); + break; + case 80: + GGML_ASSERT(V->ne[0] == 80); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 80, 80>(ctx, dst); + break; + case 96: + GGML_ASSERT(V->ne[0] == 96); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2< 96, 96>(ctx, dst); + break; + case 112: + GGML_ASSERT(V->ne[0] == 112); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<112, 112>(ctx, dst); + break; + case 128: + GGML_ASSERT(V->ne[0] == 128); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<128, 128>(ctx, dst); + break; + case 256: + GGML_ASSERT(V->ne[0] == 256); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2<256, 256>(ctx, dst); + break; + case 576: { + // For Deepseek, go straight to the ncols1 switch to avoid compiling unnecessary kernels. + GGML_ASSERT(V->ne[0] == 512); + float max_bias = 0.0f; + memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float)); + + const bool use_gqa_opt = mask && max_bias == 0.0f; + GGML_ASSERT(use_gqa_opt); + + GGML_ASSERT(Q->ne[2] % K->ne[2] == 0); + const int gqa_ratio = Q->ne[2] / K->ne[2]; + GGML_ASSERT(gqa_ratio % 16 == 0); + ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1<576, 512, 16>(ctx, dst); + } break; + default: + GGML_ABORT("fatal error"); + break; + } } #define FATTN_VEC_F16_CASE(D, type_K, type_V) \ @@ -299,7 +325,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16; const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion; - const bool can_use_vector_kernel = Q->ne[0] % (2*warp_size) == 0; + const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0; if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) { if (prec == GGML_PREC_DEFAULT) { ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 581a725d5..296cd8c7c 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -1910,13 +1910,19 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft); + // If src0 is a temporary compute buffer it may have some padding that needs to be cleared for mul_mat_vec_q or mul_mat_q. + // But if src0 is also a view of another tensor then this cannot be done safely because it may overwrite valid tensor data. + // Therefore, in such cases use cuBLAS. + const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE + && ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src; + bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && src0->ne[0] % 2 == 0 && src1->ne[1] == 1; - bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) + bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; - bool use_mul_mat_q = ggml_is_quantized(src0->type) + bool use_mul_mat_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; bool any_gpus_with_slow_fp16 = false; @@ -3220,16 +3226,16 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g return false; #endif // FLASH_ATTN_AVAILABLE if (op->src[1]->ne[0] != op->src[2]->ne[0]) { - // different head sizes of K and V are not supported yet - return false; + const int cc = ggml_cuda_info().devices[dev_ctx->device].cc; + if (!new_mma_available(cc) || cc < GGML_CUDA_CC_AMPERE) { + return false; + } + const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2]; + return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0; } if (op->src[0]->ne[0] == 192) { return false; } - if (op->src[0]->ne[0] == 576) { - // DeepSeek MLA - return false; - } if (op->src[0]->ne[3] != 1) { return false; } diff --git a/ggml/src/ggml-cuda/mmq.cu b/ggml/src/ggml-cuda/mmq.cu index dfebaa2e5..a56d63b74 100644 --- a/ggml/src/ggml-cuda/mmq.cu +++ b/ggml/src/ggml-cuda/mmq.cu @@ -91,11 +91,11 @@ void ggml_cuda_mul_mat_q( // If src0 is a temporary compute buffer, clear any potential padding. if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) { - GGML_ASSERT(ggml_is_contiguously_allocated(src0)); - GGML_ASSERT(!src0->view_src); const size_t size_data = ggml_nbytes(src0); const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0); if (size_alloc > size_data) { + GGML_ASSERT(ggml_is_contiguously_allocated(src0)); + GGML_ASSERT(!src0->view_src); CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream)); } } diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu index 3b313ea29..dc7adf509 100644 --- a/ggml/src/ggml-cuda/mmvq.cu +++ b/ggml/src/ggml-cuda/mmvq.cu @@ -515,11 +515,11 @@ void ggml_cuda_mul_mat_vec_q( // If src0 is a temporary compute buffer, clear any potential padding. if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) { - GGML_ASSERT(ggml_is_contiguously_allocated(src0)); - GGML_ASSERT(!src0->view_src); const size_t size_data = ggml_nbytes(src0); const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0); if (size_alloc > size_data) { + GGML_ASSERT(ggml_is_contiguously_allocated(src0)); + GGML_ASSERT(!src0->view_src); CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream)); } } diff --git a/ggml/src/ggml-cuda/sum.cu b/ggml/src/ggml-cuda/sum.cu index f9589080a..eb3d7cdba 100644 --- a/ggml/src/ggml-cuda/sum.cu +++ b/ggml/src/ggml-cuda/sum.cu @@ -31,7 +31,7 @@ void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguously_allocated(src0)); const float * src0_d = (const float *) src0->data; float * dst_d = (float *) dst->data; diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_16.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_16.cu new file mode 100644 index 000000000..fb26abeb0 --- /dev/null +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate_cu_files.py, do not edit manually. + +#include "../fattn-mma-f16.cuh" + +DECL_FATTN_MMA_F16_CASE(576, 512, 1, 16); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_8.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_8.cu index 80108615a..dc1682902 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_8.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_8.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 1, 8); -DECL_FATTN_MMA_F16_CASE(80, 1, 8); -DECL_FATTN_MMA_F16_CASE(96, 1, 8); -DECL_FATTN_MMA_F16_CASE(112, 1, 8); -DECL_FATTN_MMA_F16_CASE(128, 1, 8); -DECL_FATTN_MMA_F16_CASE(256, 1, 8); +DECL_FATTN_MMA_F16_CASE(64, 64, 1, 8); +DECL_FATTN_MMA_F16_CASE(80, 80, 1, 8); +DECL_FATTN_MMA_F16_CASE(96, 96, 1, 8); +DECL_FATTN_MMA_F16_CASE(112, 112, 1, 8); +DECL_FATTN_MMA_F16_CASE(128, 128, 1, 8); +DECL_FATTN_MMA_F16_CASE(256, 256, 1, 8); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_1.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_1.cu index 66161c0ab..9d3cfd8ed 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_1.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_1.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 16, 1); -DECL_FATTN_MMA_F16_CASE(80, 16, 1); -DECL_FATTN_MMA_F16_CASE(96, 16, 1); -DECL_FATTN_MMA_F16_CASE(112, 16, 1); -DECL_FATTN_MMA_F16_CASE(128, 16, 1); -DECL_FATTN_MMA_F16_CASE(256, 16, 1); +DECL_FATTN_MMA_F16_CASE(64, 64, 16, 1); +DECL_FATTN_MMA_F16_CASE(80, 80, 16, 1); +DECL_FATTN_MMA_F16_CASE(96, 96, 16, 1); +DECL_FATTN_MMA_F16_CASE(112, 112, 16, 1); +DECL_FATTN_MMA_F16_CASE(128, 128, 16, 1); +DECL_FATTN_MMA_F16_CASE(256, 256, 16, 1); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_2.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_2.cu index ee88c72aa..2e1883af4 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_2.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_2.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 16, 2); -DECL_FATTN_MMA_F16_CASE(80, 16, 2); -DECL_FATTN_MMA_F16_CASE(96, 16, 2); -DECL_FATTN_MMA_F16_CASE(112, 16, 2); -DECL_FATTN_MMA_F16_CASE(128, 16, 2); -DECL_FATTN_MMA_F16_CASE(256, 16, 2); +DECL_FATTN_MMA_F16_CASE(64, 64, 16, 2); +DECL_FATTN_MMA_F16_CASE(80, 80, 16, 2); +DECL_FATTN_MMA_F16_CASE(96, 96, 16, 2); +DECL_FATTN_MMA_F16_CASE(112, 112, 16, 2); +DECL_FATTN_MMA_F16_CASE(128, 128, 16, 2); +DECL_FATTN_MMA_F16_CASE(256, 256, 16, 2); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu index d888a5a42..2074e954a 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 16, 4); -DECL_FATTN_MMA_F16_CASE(80, 16, 4); -DECL_FATTN_MMA_F16_CASE(96, 16, 4); -DECL_FATTN_MMA_F16_CASE(112, 16, 4); -DECL_FATTN_MMA_F16_CASE(128, 16, 4); -DECL_FATTN_MMA_F16_CASE(256, 16, 4); +DECL_FATTN_MMA_F16_CASE(64, 64, 16, 4); +DECL_FATTN_MMA_F16_CASE(80, 80, 16, 4); +DECL_FATTN_MMA_F16_CASE(96, 96, 16, 4); +DECL_FATTN_MMA_F16_CASE(112, 112, 16, 4); +DECL_FATTN_MMA_F16_CASE(128, 128, 16, 4); +DECL_FATTN_MMA_F16_CASE(256, 256, 16, 4); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_16.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_16.cu new file mode 100644 index 000000000..f011a208c --- /dev/null +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate_cu_files.py, do not edit manually. + +#include "../fattn-mma-f16.cuh" + +DECL_FATTN_MMA_F16_CASE(576, 512, 2, 16); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu index d93a2d08e..24c64cf00 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 2, 4); -DECL_FATTN_MMA_F16_CASE(80, 2, 4); -DECL_FATTN_MMA_F16_CASE(96, 2, 4); -DECL_FATTN_MMA_F16_CASE(112, 2, 4); -DECL_FATTN_MMA_F16_CASE(128, 2, 4); -DECL_FATTN_MMA_F16_CASE(256, 2, 4); +DECL_FATTN_MMA_F16_CASE(64, 64, 2, 4); +DECL_FATTN_MMA_F16_CASE(80, 80, 2, 4); +DECL_FATTN_MMA_F16_CASE(96, 96, 2, 4); +DECL_FATTN_MMA_F16_CASE(112, 112, 2, 4); +DECL_FATTN_MMA_F16_CASE(128, 128, 2, 4); +DECL_FATTN_MMA_F16_CASE(256, 256, 2, 4); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_8.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_8.cu index 617464c94..163b1d939 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_8.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_8.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 2, 8); -DECL_FATTN_MMA_F16_CASE(80, 2, 8); -DECL_FATTN_MMA_F16_CASE(96, 2, 8); -DECL_FATTN_MMA_F16_CASE(112, 2, 8); -DECL_FATTN_MMA_F16_CASE(128, 2, 8); -DECL_FATTN_MMA_F16_CASE(256, 2, 8); +DECL_FATTN_MMA_F16_CASE(64, 64, 2, 8); +DECL_FATTN_MMA_F16_CASE(80, 80, 2, 8); +DECL_FATTN_MMA_F16_CASE(96, 96, 2, 8); +DECL_FATTN_MMA_F16_CASE(112, 112, 2, 8); +DECL_FATTN_MMA_F16_CASE(128, 128, 2, 8); +DECL_FATTN_MMA_F16_CASE(256, 256, 2, 8); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_1.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_1.cu index 970d2b686..0543532ea 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_1.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_1.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 32, 1); -DECL_FATTN_MMA_F16_CASE(80, 32, 1); -DECL_FATTN_MMA_F16_CASE(96, 32, 1); -DECL_FATTN_MMA_F16_CASE(112, 32, 1); -DECL_FATTN_MMA_F16_CASE(128, 32, 1); -DECL_FATTN_MMA_F16_CASE(256, 32, 1); +DECL_FATTN_MMA_F16_CASE(64, 64, 32, 1); +DECL_FATTN_MMA_F16_CASE(80, 80, 32, 1); +DECL_FATTN_MMA_F16_CASE(96, 96, 32, 1); +DECL_FATTN_MMA_F16_CASE(112, 112, 32, 1); +DECL_FATTN_MMA_F16_CASE(128, 128, 32, 1); +DECL_FATTN_MMA_F16_CASE(256, 256, 32, 1); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_2.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_2.cu index 65cd377c3..407b6cf4c 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_2.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_2.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 32, 2); -DECL_FATTN_MMA_F16_CASE(80, 32, 2); -DECL_FATTN_MMA_F16_CASE(96, 32, 2); -DECL_FATTN_MMA_F16_CASE(112, 32, 2); -DECL_FATTN_MMA_F16_CASE(128, 32, 2); -DECL_FATTN_MMA_F16_CASE(256, 32, 2); +DECL_FATTN_MMA_F16_CASE(64, 64, 32, 2); +DECL_FATTN_MMA_F16_CASE(80, 80, 32, 2); +DECL_FATTN_MMA_F16_CASE(96, 96, 32, 2); +DECL_FATTN_MMA_F16_CASE(112, 112, 32, 2); +DECL_FATTN_MMA_F16_CASE(128, 128, 32, 2); +DECL_FATTN_MMA_F16_CASE(256, 256, 32, 2); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_16.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_16.cu new file mode 100644 index 000000000..f5fd0e236 --- /dev/null +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate_cu_files.py, do not edit manually. + +#include "../fattn-mma-f16.cuh" + +DECL_FATTN_MMA_F16_CASE(576, 512, 4, 16); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_2.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_2.cu index f4a8bf348..5e4668502 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_2.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_2.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 4, 2); -DECL_FATTN_MMA_F16_CASE(80, 4, 2); -DECL_FATTN_MMA_F16_CASE(96, 4, 2); -DECL_FATTN_MMA_F16_CASE(112, 4, 2); -DECL_FATTN_MMA_F16_CASE(128, 4, 2); -DECL_FATTN_MMA_F16_CASE(256, 4, 2); +DECL_FATTN_MMA_F16_CASE(64, 64, 4, 2); +DECL_FATTN_MMA_F16_CASE(80, 80, 4, 2); +DECL_FATTN_MMA_F16_CASE(96, 96, 4, 2); +DECL_FATTN_MMA_F16_CASE(112, 112, 4, 2); +DECL_FATTN_MMA_F16_CASE(128, 128, 4, 2); +DECL_FATTN_MMA_F16_CASE(256, 256, 4, 2); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu index de191a8ab..1ada657f1 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 4, 4); -DECL_FATTN_MMA_F16_CASE(80, 4, 4); -DECL_FATTN_MMA_F16_CASE(96, 4, 4); -DECL_FATTN_MMA_F16_CASE(112, 4, 4); -DECL_FATTN_MMA_F16_CASE(128, 4, 4); -DECL_FATTN_MMA_F16_CASE(256, 4, 4); +DECL_FATTN_MMA_F16_CASE(64, 64, 4, 4); +DECL_FATTN_MMA_F16_CASE(80, 80, 4, 4); +DECL_FATTN_MMA_F16_CASE(96, 96, 4, 4); +DECL_FATTN_MMA_F16_CASE(112, 112, 4, 4); +DECL_FATTN_MMA_F16_CASE(128, 128, 4, 4); +DECL_FATTN_MMA_F16_CASE(256, 256, 4, 4); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_8.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_8.cu index e8cb0e1b3..bad296b41 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_8.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_8.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 4, 8); -DECL_FATTN_MMA_F16_CASE(80, 4, 8); -DECL_FATTN_MMA_F16_CASE(96, 4, 8); -DECL_FATTN_MMA_F16_CASE(112, 4, 8); -DECL_FATTN_MMA_F16_CASE(128, 4, 8); -DECL_FATTN_MMA_F16_CASE(256, 4, 8); +DECL_FATTN_MMA_F16_CASE(64, 64, 4, 8); +DECL_FATTN_MMA_F16_CASE(80, 80, 4, 8); +DECL_FATTN_MMA_F16_CASE(96, 96, 4, 8); +DECL_FATTN_MMA_F16_CASE(112, 112, 4, 8); +DECL_FATTN_MMA_F16_CASE(128, 128, 4, 8); +DECL_FATTN_MMA_F16_CASE(256, 256, 4, 8); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_64-ncols2_1.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_64-ncols2_1.cu index a532e9629..0d7a9c728 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_64-ncols2_1.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_64-ncols2_1.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 64, 1); -DECL_FATTN_MMA_F16_CASE(80, 64, 1); -DECL_FATTN_MMA_F16_CASE(96, 64, 1); -DECL_FATTN_MMA_F16_CASE(112, 64, 1); -DECL_FATTN_MMA_F16_CASE(128, 64, 1); -DECL_FATTN_MMA_F16_CASE(256, 64, 1); +DECL_FATTN_MMA_F16_CASE(64, 64, 64, 1); +DECL_FATTN_MMA_F16_CASE(80, 80, 64, 1); +DECL_FATTN_MMA_F16_CASE(96, 96, 64, 1); +DECL_FATTN_MMA_F16_CASE(112, 112, 64, 1); +DECL_FATTN_MMA_F16_CASE(128, 128, 64, 1); +DECL_FATTN_MMA_F16_CASE(256, 256, 64, 1); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_1.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_1.cu index bf25181aa..9d5a9976f 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_1.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_1.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 8, 1); -DECL_FATTN_MMA_F16_CASE(80, 8, 1); -DECL_FATTN_MMA_F16_CASE(96, 8, 1); -DECL_FATTN_MMA_F16_CASE(112, 8, 1); -DECL_FATTN_MMA_F16_CASE(128, 8, 1); -DECL_FATTN_MMA_F16_CASE(256, 8, 1); +DECL_FATTN_MMA_F16_CASE(64, 64, 8, 1); +DECL_FATTN_MMA_F16_CASE(80, 80, 8, 1); +DECL_FATTN_MMA_F16_CASE(96, 96, 8, 1); +DECL_FATTN_MMA_F16_CASE(112, 112, 8, 1); +DECL_FATTN_MMA_F16_CASE(128, 128, 8, 1); +DECL_FATTN_MMA_F16_CASE(256, 256, 8, 1); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_2.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_2.cu index 378c132e6..a6e6f093d 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_2.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_2.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 8, 2); -DECL_FATTN_MMA_F16_CASE(80, 8, 2); -DECL_FATTN_MMA_F16_CASE(96, 8, 2); -DECL_FATTN_MMA_F16_CASE(112, 8, 2); -DECL_FATTN_MMA_F16_CASE(128, 8, 2); -DECL_FATTN_MMA_F16_CASE(256, 8, 2); +DECL_FATTN_MMA_F16_CASE(64, 64, 8, 2); +DECL_FATTN_MMA_F16_CASE(80, 80, 8, 2); +DECL_FATTN_MMA_F16_CASE(96, 96, 8, 2); +DECL_FATTN_MMA_F16_CASE(112, 112, 8, 2); +DECL_FATTN_MMA_F16_CASE(128, 128, 8, 2); +DECL_FATTN_MMA_F16_CASE(256, 256, 8, 2); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu index 372641be9..86d4ffae2 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 8, 4); -DECL_FATTN_MMA_F16_CASE(80, 8, 4); -DECL_FATTN_MMA_F16_CASE(96, 8, 4); -DECL_FATTN_MMA_F16_CASE(112, 8, 4); -DECL_FATTN_MMA_F16_CASE(128, 8, 4); -DECL_FATTN_MMA_F16_CASE(256, 8, 4); +DECL_FATTN_MMA_F16_CASE(64, 64, 8, 4); +DECL_FATTN_MMA_F16_CASE(80, 80, 8, 4); +DECL_FATTN_MMA_F16_CASE(96, 96, 8, 4); +DECL_FATTN_MMA_F16_CASE(112, 112, 8, 4); +DECL_FATTN_MMA_F16_CASE(128, 128, 8, 4); +DECL_FATTN_MMA_F16_CASE(256, 256, 8, 4); diff --git a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_8.cu b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_8.cu index 9ff5968b6..680a13ca6 100644 --- a/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_8.cu +++ b/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_8.cu @@ -2,9 +2,9 @@ #include "../fattn-mma-f16.cuh" -DECL_FATTN_MMA_F16_CASE(64, 8, 8); -DECL_FATTN_MMA_F16_CASE(80, 8, 8); -DECL_FATTN_MMA_F16_CASE(96, 8, 8); -DECL_FATTN_MMA_F16_CASE(112, 8, 8); -DECL_FATTN_MMA_F16_CASE(128, 8, 8); -DECL_FATTN_MMA_F16_CASE(256, 8, 8); +DECL_FATTN_MMA_F16_CASE(64, 64, 8, 8); +DECL_FATTN_MMA_F16_CASE(80, 80, 8, 8); +DECL_FATTN_MMA_F16_CASE(96, 96, 8, 8); +DECL_FATTN_MMA_F16_CASE(112, 112, 8, 8); +DECL_FATTN_MMA_F16_CASE(128, 128, 8, 8); +DECL_FATTN_MMA_F16_CASE(256, 256, 8, 8); diff --git a/ggml/src/ggml-cuda/template-instances/generate_cu_files.py b/ggml/src/ggml-cuda/template-instances/generate_cu_files.py index dd373a09d..3428113dc 100755 --- a/ggml/src/ggml-cuda/template-instances/generate_cu_files.py +++ b/ggml/src/ggml-cuda/template-instances/generate_cu_files.py @@ -18,7 +18,7 @@ SOURCE_FATTN_MMA_START = """// This file has been autogenerated by generate_cu_f """ -SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size}, {ncols1}, {ncols2});\n" +SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size_kq}, {head_size_v}, {ncols1}, {ncols2});\n" TYPES_MMQ = [ "GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", @@ -57,18 +57,21 @@ for vkq_size in [16, 32]: with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f: f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v)) -for ncols in [8, 16, 32, 64, 128]: - for ncols2 in [1, 2, 4, 8]: +for ncols in [8, 16, 32, 64]: + for ncols2 in [1, 2, 4, 8, 16]: + if ncols2 > ncols: + continue ncols1 = ncols // ncols2 - if ncols == 128: - continue # Too much register pressure. with open(f"fattn-mma-f16-instance-ncols1_{ncols1}-ncols2_{ncols2}.cu", "w") as f: f.write(SOURCE_FATTN_MMA_START) - for head_size in [64, 80, 96, 112, 128, 256]: - if ncols == 128 and head_size == 256: - continue # Needs too much shared memory. - f.write(SOURCE_FATTN_MMA_CASE.format(ncols1=ncols1, ncols2=ncols2, head_size=head_size)) + for head_size_kq in [64, 80, 96, 112, 128, 256, 576]: + if head_size_kq != 576 and ncols2 == 16: + continue + if head_size_kq == 576 and ncols2 != 16: + continue + head_size_v = head_size_kq if head_size_kq != 576 else 512 + f.write(SOURCE_FATTN_MMA_CASE.format(ncols1=ncols1, ncols2=ncols2, head_size_kq=head_size_kq, head_size_v=head_size_v)) for type in TYPES_MMQ: with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f: diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h index ea8cf4586..17eab976f 100644 --- a/ggml/src/ggml-metal/ggml-metal-impl.h +++ b/ggml/src/ggml-metal/ggml-metal-impl.h @@ -207,6 +207,10 @@ typedef struct { float attn_factor; float beta_fast; float beta_slow; + int32_t sect_0; + int32_t sect_1; + int32_t sect_2; + int32_t sect_3; } ggml_metal_kargs_rope; typedef struct { diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m index 6ab426816..460a62748 100644 --- a/ggml/src/ggml-metal/ggml-metal.m +++ b/ggml/src/ggml-metal/ggml-metal.m @@ -332,6 +332,10 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, + GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32, + GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16, + GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32, + GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16, GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, GGML_METAL_KERNEL_TYPE_IM2COL_F16, @@ -1275,6 +1279,10 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, mul_mm_id_iq4_xs_f16, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32, rope_multi_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16, rope_multi_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32, rope_vision_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16, rope_vision_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); @@ -1637,16 +1645,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex case GGML_OP_NORM: return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0])); case GGML_OP_ROPE: - { - const int mode = ((const int32_t *) op->op_params)[2]; - if (mode & GGML_ROPE_TYPE_MROPE) { - return false; - } - if (mode & GGML_ROPE_TYPE_VISION) { - return false; - } - return true; - } + return true; case GGML_OP_IM2COL: return op->src[0]->type == GGML_TYPE_F16; case GGML_OP_POOL_1D: @@ -3826,6 +3825,7 @@ static bool ggml_metal_encode_node( } break; case GGML_OP_ROPE: { + // make sure we have one or more position id(ne10) per token(ne02) GGML_ASSERT(ne10 % ne02 == 0); GGML_ASSERT(ne10 >= ne02); @@ -3852,20 +3852,42 @@ static bool ggml_metal_encode_node( memcpy(&beta_fast, (const int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (const int32_t *) dst->op_params + 10, sizeof(float)); - const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; + const bool is_vision = mode == GGML_ROPE_TYPE_VISION; + + // mrope + const int sect_0 = ((const int32_t *) dst->op_params)[11]; + const int sect_1 = ((const int32_t *) dst->op_params)[12]; + const int sect_2 = ((const int32_t *) dst->op_params)[13]; + const int sect_3 = ((const int32_t *) dst->op_params)[14]; id pipeline = nil; - if (!is_neox) { + if (is_neox) { switch (src0->type) { - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break; + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break; + default: GGML_ABORT("fatal error"); + }; + } else if (is_mrope && !is_vision) { + GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16].pipeline; break; + default: GGML_ABORT("fatal error"); + }; + } else if (is_vision) { + GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16].pipeline; break; default: GGML_ABORT("fatal error"); }; } else { switch (src0->type) { - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break; + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break; default: GGML_ABORT("fatal error"); }; } @@ -3896,6 +3918,10 @@ static bool ggml_metal_encode_node( /*.attn_factor =*/ attn_factor, /*.beta_fast =*/ beta_fast, /*.beta_slow =*/ beta_slow, + /* sect_0 =*/ sect_0, + /* sect_1 =*/ sect_1, + /* sect_2 =*/ sect_2, + /* sect_3 =*/ sect_3, }; [encoder setComputePipelineState:pipeline]; diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index a808e79c2..9cfddf450 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -2713,8 +2713,148 @@ kernel void kernel_rope_neox( } } +template +kernel void kernel_rope_multi( + constant ggml_metal_kargs_rope & args, + device const char * src0, + device const char * src1, + device const char * src2, + device char * dst, + ushort tiitg[[thread_index_in_threadgroup]], + ushort3 tptg [[threads_per_threadgroup]], + uint3 tgpig[[threadgroup_position_in_grid]]) { + const int i3 = tgpig[2]; + const int i2 = tgpig[1]; + const int i1 = tgpig[0]; + + float corr_dims[2]; + rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims); + + device const int32_t * pos = (device const int32_t *) src1; + + const float inv_ndims = -1.f/args.n_dims; + + float cos_theta; + float sin_theta; + + for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) { + if (i0 < args.n_dims) { + const int ic = i0/2; + + // mrope theta calculations + // note: the rest is the same as kernel_rope_neox + const int sect_dims = args.sect_0 + args.sect_1 + args.sect_2 + args.sect_3; + const int sec_w01 = args.sect_0 + args.sect_1; // end of section 1 + const int sec_w012 = args.sect_0 + args.sect_1 + args.sect_2; // end of section 2 + const int sector = ic % sect_dims; + + float theta_base; + if (sector < args.sect_0) { + theta_base = (float) pos[i2]; + } else if (sector < sec_w01) { + theta_base = (float) pos[i2 + args.ne02]; + } else if (sector < sec_w012) { + theta_base = (float) pos[i2 + args.ne02 * 2]; + } else { + theta_base = (float) pos[i2 + args.ne02 * 3]; + } + // end of mrope + + const float theta = theta_base * pow(args.freq_base, inv_ndims*i0); + + const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f; + + rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta); + + device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00); + device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0); + + const float x0 = src[0]; + const float x1 = src[args.n_dims/2]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[args.n_dims/2] = x0*sin_theta + x1*cos_theta; + } else { + device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00); + device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } +} + +template +kernel void kernel_rope_vision( + constant ggml_metal_kargs_rope & args, + device const char * src0, + device const char * src1, + device const char * src2, + device char * dst, + ushort tiitg[[thread_index_in_threadgroup]], + ushort3 tptg [[threads_per_threadgroup]], + uint3 tgpig[[threadgroup_position_in_grid]]) { + const int i3 = tgpig[2]; + const int i2 = tgpig[1]; + const int i1 = tgpig[0]; + + float corr_dims[2]; + rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims); + + device const int32_t * pos = (device const int32_t *) src1; + + const float inv_ndims = -1.f/args.n_dims; + + float cos_theta; + float sin_theta; + + for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) { + if (i0 < 2*args.n_dims) { // different from kernel_rope_multi + const int ic = i0/2; + + // mrope theta calculations (only support 2 dimensions) + const int sect_dims = args.sect_0 + args.sect_1; + const int sector = ic % sect_dims; + + float p; + float theta_base; + if (sector < args.sect_1) { + p = (float) sector; + theta_base = (float) pos[i2]; + } else { + p = (float) sector - args.sect_0; + theta_base = (float) pos[i2 + args.ne02]; + } + + const float theta = theta_base * pow(args.freq_base, 2.0f * inv_ndims * p); + // end of mrope + + const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f; + + rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta); + + device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00); + device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0); + + const float x0 = src[0]; + const float x1 = src[args.n_dims]; // different from kernel_rope_multi + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[args.n_dims] = x0*sin_theta + x1*cos_theta; // different from kernel_rope_multi + } else { + device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00); + device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } +} + typedef decltype(kernel_rope_norm) kernel_rope_norm_t; typedef decltype(kernel_rope_neox) kernel_rope_neox_t; +typedef decltype(kernel_rope_multi) kernel_rope_multi_t; +typedef decltype(kernel_rope_vision) kernel_rope_vision_t; template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm; template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm; @@ -2722,6 +2862,12 @@ template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_ template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox; template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox; +template [[host_name("kernel_rope_multi_f32")]] kernel kernel_rope_multi_t kernel_rope_multi; +template [[host_name("kernel_rope_multi_f16")]] kernel kernel_rope_multi_t kernel_rope_multi; + +template [[host_name("kernel_rope_vision_f32")]] kernel kernel_rope_vision_t kernel_rope_vision; +template [[host_name("kernel_rope_vision_f16")]] kernel kernel_rope_vision_t kernel_rope_vision; + typedef void (im2col_t)( device const float * x, device char * dst, diff --git a/ggml/src/ggml-opt.cpp b/ggml/src/ggml-opt.cpp index 7c3e24103..58d77578f 100644 --- a/ggml/src/ggml-opt.cpp +++ b/ggml/src/ggml-opt.cpp @@ -28,16 +28,19 @@ struct ggml_opt_dataset { }; struct ggml_opt_context { - ggml_backend_sched_t backend_sched = nullptr; - ggml_cgraph * allocated_graph = nullptr; - ggml_cgraph * allocated_graph_copy = nullptr; - struct ggml_context * ctx_static = nullptr; - struct ggml_context * ctx_static_cpu = nullptr; - struct ggml_context * ctx_compute = nullptr; - struct ggml_context * ctx_copy = nullptr; - ggml_backend_buffer_t buf_static = nullptr; - ggml_backend_buffer_t buf_static_cpu = nullptr; - std::mt19937 rng; + ggml_backend_sched_t backend_sched = nullptr; + ggml_cgraph * allocated_graph = nullptr; + ggml_cgraph * allocated_graph_copy = nullptr; + struct ggml_context * ctx_static = nullptr; + struct ggml_context * ctx_cpu = nullptr; + struct ggml_context * ctx_compute = nullptr; + struct ggml_context * ctx_copy = nullptr; + ggml_backend_buffer_t buf_static = nullptr; + ggml_backend_buffer_t buf_cpu = nullptr; + std::mt19937 rng; + enum ggml_opt_loss_type loss_type; + enum ggml_opt_build_type build_type; + enum ggml_opt_build_type build_type_alloc; struct ggml_tensor * inputs = nullptr; struct ggml_tensor * outputs = nullptr; @@ -50,6 +53,11 @@ struct ggml_opt_context { struct ggml_cgraph * gf = nullptr; struct ggml_cgraph * gb_grad = nullptr; struct ggml_cgraph * gb_opt = nullptr; + bool static_graphs = false; + bool eval_ready = false; + std::vector grad_accs; + std::vector grad_m; + std::vector grad_v; int64_t iter = 1; int32_t opt_period = 1; @@ -73,7 +81,13 @@ struct ggml_opt_result { // ====== Dataset ====== -ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, int64_t ndata, int64_t ndata_shard) { +ggml_opt_dataset_t ggml_opt_dataset_init( + enum ggml_type type_data, + enum ggml_type type_label, + int64_t ne_datapoint, + int64_t ne_label, + int64_t ndata, + int64_t ndata_shard) { GGML_ASSERT(ne_datapoint > 0); GGML_ASSERT(ne_label >= 0); GGML_ASSERT(ndata > 0); @@ -92,11 +106,11 @@ ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, result->ctx = ggml_init(params); } - result->data = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_datapoint, ndata); + result->data = ggml_new_tensor_2d(result->ctx, type_data, ne_datapoint, ndata); result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata; if (ne_label > 0) { - result->labels = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_label, ndata); + result->labels = ggml_new_tensor_2d(result->ctx, type_label, ne_label, ndata); result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata; } else { result->labels = nullptr; @@ -119,6 +133,10 @@ void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) { delete dataset; } +int64_t ggml_opt_dataset_ndata(ggml_opt_dataset_t dataset) { + return dataset->ndata; +} + struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) { return dataset->data; } @@ -144,6 +162,8 @@ void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * GGML_ASSERT( data_batch && ggml_is_contiguous(data_batch)); GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch)); GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr)); + GGML_ASSERT( data_batch->type == dataset->data->type); + GGML_ASSERT(!labels_batch || labels_batch->type == dataset->labels->type); const size_t nb_data_batch = ggml_nbytes(data_batch); GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0); @@ -171,6 +191,31 @@ void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * } } +void ggml_opt_dataset_get_batch_host(ggml_opt_dataset_t dataset, void * data_batch, size_t nb_data_batch, void * labels_batch, int64_t ibatch) { + GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr)); + GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0); + + const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data; + + GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size())); + + for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) { + const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch]; + + const char * ptr_data = (const char *) dataset->data->data + ishard *dataset->nbs_data; + char * ptr_data_batch = (char *) data_batch + ishard_batch*dataset->nbs_data; + memcpy(ptr_data_batch, ptr_data, dataset->nbs_data); + + if (!labels_batch) { + continue; + } + + const char * ptr_labels = (const char *) dataset->labels->data + ishard *dataset->nbs_labels; + char * ptr_labels_batch = (char *) labels_batch + ishard_batch*dataset->nbs_labels; + memcpy(ptr_labels_batch, ptr_labels, dataset->nbs_labels); + } +} + // ====== Model / Context ====== struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) { @@ -187,17 +232,18 @@ struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * us return result; } +struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata) { + return *((struct ggml_opt_optimizer_params *) userdata); +} + struct ggml_opt_params ggml_opt_default_params( ggml_backend_sched_t backend_sched, - struct ggml_context * ctx_compute, - struct ggml_tensor * inputs, - struct ggml_tensor * outputs, enum ggml_opt_loss_type loss_type) { return { /*backend_sched =*/ backend_sched, - /*ctx_compute =*/ ctx_compute, - /*inputs =*/ inputs, - /*logits =*/ outputs, + /*ctx_compute =*/ nullptr, + /*inputs =*/ nullptr, + /*logits =*/ nullptr, /*loss_type =*/ loss_type, /*build_type =*/ GGML_OPT_BUILD_TYPE_OPT, /*opt_period =*/ 1, @@ -266,195 +312,246 @@ static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) { return dst; } -static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) { - GGML_ASSERT(graph); - if (opt_ctx->allocated_graph == graph) { - return; - } +static void ggml_opt_build(ggml_opt_context_t opt_ctx) { + GGML_ASSERT(opt_ctx->ctx_compute && "no compute context set, either use static graphs or set one with ggml_opt_prepare_alloc"); + GGML_ASSERT((!opt_ctx->static_graphs || opt_ctx->inputs->data) && "when using static graphs the inputs must be allocated statically"); - ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph + const bool accumulate = opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD && + !(opt_ctx->static_graphs && opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period == 1); - { - ggml_init_params params = { - /*.mem_size =*/ ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE, - /*.mem_buffer =*/ nullptr, - /*.no_alloc =*/ true, - }; - ggml_free(opt_ctx->ctx_copy); - opt_ctx->ctx_copy = ggml_init(params); - } - - opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph); - - ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy); - opt_ctx->allocated_graph = graph; -} - -ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) { - ggml_opt_context_t result = new struct ggml_opt_context; - result->backend_sched = params.backend_sched; - result->ctx_compute = params.ctx_compute; - result->inputs = params.inputs; - result->outputs = params.outputs; - result->opt_period = params.opt_period; - result->get_opt_pars = params.get_opt_pars; - result->get_opt_pars_ud = params.get_opt_pars_ud; - - GGML_ASSERT(result->inputs->data && "the inputs must be allocated statically"); - GGML_ASSERT(result->opt_period >= 1); - - const bool accumulate = params.build_type == GGML_OPT_BUILD_TYPE_GRAD || - (params.build_type == GGML_OPT_BUILD_TYPE_OPT && result->opt_period > 1); - - ggml_set_input(result->inputs); - ggml_set_output(result->outputs); - - result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass. - ggml_build_forward_expand(result->gf, result->outputs); + ggml_set_input(opt_ctx->inputs); + ggml_set_output(opt_ctx->outputs); int n_param = 0; - for (int i = 0; i < result->gf->n_nodes; ++i) { - if (result->gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) { + for (int i = 0; i < opt_ctx->gf->n_nodes; ++i) { + const struct ggml_tensor * node = opt_ctx->gf->nodes[i]; + if (node->flags & GGML_TENSOR_FLAG_PARAM) { n_param++; } + GGML_ASSERT(!(node->flags & GGML_TENSOR_FLAG_LOSS) && "support for extra loss terms not implemented"); } - { + if (!opt_ctx->ctx_static) { // The static context is used for: - // - gradients (1 tensor per param if using gradient accumulation) + // - gradients (1 per loss, 1 tensor per param if using gradient accumulation) // - optimizer momenta (2 tensors per param) - // - labels - // - loss + its gradient (up to 5 tensors) - // - pred - // - ncorrect (2 tensors). - const size_t tensors_per_param = (accumulate ? 1 : 0) + (params.build_type == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0); - const size_t size_meta = (tensors_per_param*n_param + 9) * ggml_tensor_overhead(); + // - labels (if using static graphs) + // - loss (if using static graphs, up to 5 tensors) + // - pred (if using static graphs) + // - ncorrect (if using static graphs, 2 tensors). + constexpr size_t n_loss = 1; + const size_t tensors_per_param = (accumulate ? 1 : 0) + + (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0); + const size_t tensors_const = opt_ctx->static_graphs ? 9 : 0; + const size_t size_meta = (n_loss + tensors_per_param*n_param + tensors_const) * ggml_tensor_overhead(); struct ggml_init_params params = { /*.mem_size =*/ size_meta, /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; - result->ctx_static = ggml_init(params); + opt_ctx->ctx_static = ggml_init(params); } + GGML_ASSERT(opt_ctx->build_type <= opt_ctx->build_type_alloc); + { - // The static cpu context is used for: - // - optimizer parameters (1 for the entire context) + // The cpu context is allocated statically if using static graphs, dynamically otherwise. + // It is used for: + // - optimizer parameters (1 shared for all optimizer invocations) const size_t size_meta = 1 * ggml_tensor_overhead(); struct ggml_init_params params = { /*.mem_size =*/ size_meta, /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; - result->ctx_static_cpu = ggml_init(params); + ggml_free(opt_ctx->ctx_cpu); + opt_ctx->ctx_cpu = ggml_init(params); + + ggml_backend_buffer_free(opt_ctx->buf_cpu); + opt_ctx->buf_cpu = nullptr; } + struct ggml_context * ctx_results = opt_ctx->static_graphs ? opt_ctx->ctx_static : opt_ctx->ctx_compute; - switch (params.loss_type) { + switch (opt_ctx->loss_type) { case GGML_OPT_LOSS_TYPE_MEAN: { - result->loss = ggml_sum(result->ctx_static, result->outputs); - ggml_set_name(result->loss, "loss_sum"); - const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs)); - result->loss = ggml_scale(result->ctx_static, result->loss, scale); - ggml_set_name(result->loss, "loss_mean"); - result->loss_per_datapoint = true; + opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs); + ggml_set_name(opt_ctx->loss, "loss_sum"); + const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs)); + opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale); + ggml_set_name(opt_ctx->loss, "loss_mean"); + opt_ctx->loss_per_datapoint = true; break; } case GGML_OPT_LOSS_TYPE_SUM: { - result->loss = ggml_sum(result->ctx_static, result->outputs); - ggml_set_name(result->loss, "loss_sum"); - result->loss_per_datapoint = false; + opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs); + ggml_set_name(opt_ctx->loss, "loss_sum"); + opt_ctx->loss_per_datapoint = false; break; } case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: { - result->labels = ggml_dup_tensor(result->ctx_static, result->outputs); - ggml_set_input(result->labels); - ggml_set_name(result->labels, "labels"); - result->loss = ggml_cross_entropy_loss(result->ctx_static, result->outputs, result->labels); - ggml_set_name(result->loss, "loss_cross_entropy"); - if (result->opt_period > 1) { - result->loss = ggml_scale(result->ctx_static, result->loss, 1.0f / result->opt_period); - ggml_set_name(result->loss, "loss_cross_entropy_scaled"); + opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs); + ggml_set_input(opt_ctx->labels); + ggml_set_name(opt_ctx->labels, "labels"); + opt_ctx->loss = ggml_cross_entropy_loss(ctx_results, opt_ctx->outputs, opt_ctx->labels); + ggml_set_name(opt_ctx->loss, "loss_cross_entropy"); + if (opt_ctx->opt_period > 1) { + opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, 1.0f / opt_ctx->opt_period); + ggml_set_name(opt_ctx->loss, "loss_cross_entropy_scaled"); } - result->loss_per_datapoint = true; + opt_ctx->loss_per_datapoint = true; break; } case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: { - result->labels = ggml_dup_tensor(result->ctx_static, result->outputs); - ggml_set_input(result->labels); - ggml_set_name(result->labels, "labels"); - result->loss = ggml_sub(result->ctx_static, result->outputs, result->labels); - ggml_set_name(result->loss, "loss_error"); - result->loss = ggml_sqr(result->ctx_static, result->loss); - ggml_set_name(result->loss, "loss_squared_error"); - result->loss = ggml_sum(result->ctx_static, result->loss); - ggml_set_name(result->loss, "loss_sum_squared_error"); - const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs)); - result->loss = ggml_scale(result->ctx_static, result->loss, scale); - ggml_set_name(result->loss, "loss_mean_squared_error"); - result->loss_per_datapoint = true; + opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs); + ggml_set_input(opt_ctx->labels); + ggml_set_name(opt_ctx->labels, "labels"); + opt_ctx->loss = ggml_sub(ctx_results, opt_ctx->outputs, opt_ctx->labels); + ggml_set_name(opt_ctx->loss, "loss_error"); + opt_ctx->loss = ggml_sqr(ctx_results, opt_ctx->loss); + ggml_set_name(opt_ctx->loss, "loss_squared_error"); + opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->loss); + ggml_set_name(opt_ctx->loss, "loss_sum_squared_error"); + const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs)); + opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale); + ggml_set_name(opt_ctx->loss, "loss_mean_squared_error"); + opt_ctx->loss_per_datapoint = true; break; } } - ggml_set_output(result->loss); - ggml_set_loss(result->loss); - ggml_build_forward_expand(result->gf, result->loss); + ggml_set_output(opt_ctx->loss); + ggml_set_loss(opt_ctx->loss); + ggml_build_forward_expand(opt_ctx->gf, opt_ctx->loss); - result->pred = ggml_argmax(result->ctx_static, result->outputs); - ggml_set_name(result->pred, "pred"); - ggml_set_output(result->pred); - ggml_build_forward_expand(result->gf, result->pred); + if (opt_ctx->loss_type == GGML_OPT_LOSS_TYPE_CROSS_ENTROPY) { + opt_ctx->pred = ggml_argmax(ctx_results, opt_ctx->outputs); + ggml_set_name(opt_ctx->pred, "pred"); + ggml_set_output(opt_ctx->pred); + ggml_build_forward_expand(opt_ctx->gf, opt_ctx->pred); - if (result->labels) { - result->ncorrect = ggml_count_equal(result->ctx_static, result->pred, ggml_argmax(result->ctx_static, result->labels)); - ggml_set_name(result->ncorrect, "ncorrect"); - ggml_set_output(result->ncorrect); - ggml_build_forward_expand(result->gf, result->ncorrect); - } else { - result->ncorrect = nullptr; + opt_ctx->ncorrect = ggml_count_equal(ctx_results, opt_ctx->pred, ggml_argmax(ctx_results, opt_ctx->labels)); + ggml_set_name(opt_ctx->ncorrect, "ncorrect"); + ggml_set_output(opt_ctx->ncorrect); + ggml_build_forward_expand(opt_ctx->gf, opt_ctx->ncorrect); } - if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) { - result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); - return result; + if (opt_ctx->buf_static) { + if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_FORWARD) { + return; + } + } else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_FORWARD) { + opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors( + opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0)); + return; } - // gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients. - result->gb_grad = ggml_graph_dup(result->ctx_compute, result->gf); - ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate); + if (opt_ctx->grad_accs.empty()) { + GGML_ASSERT(opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD); - if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) { - result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); - ggml_graph_reset(result->gb_grad); - return result; - } + const int n_nodes = opt_ctx->gf->n_nodes; + opt_ctx->grad_accs.resize(n_nodes); + for (int i = 0; i < n_nodes; ++i) { + ggml_tensor * node = opt_ctx->gf->nodes[i]; + if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) { + opt_ctx->grad_accs[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne); + } else { + opt_ctx->grad_accs[i] = nullptr; + } + } - GGML_ASSERT(params.build_type == GGML_OPT_BUILD_TYPE_OPT); - - // gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step. - result->gb_opt = ggml_graph_dup(result->ctx_compute, result->gb_grad); - - result->adamw_params = ggml_new_tensor_1d(result->ctx_static_cpu, GGML_TYPE_F32, 7); - ggml_set_input(result->adamw_params); - ggml_set_name(result->adamw_params, "adamw_params"); - - for (int i = result->gf->n_nodes-1; i >= 0; --i) { - struct ggml_tensor * node = result->gb_opt->nodes[i]; - struct ggml_tensor * grad = ggml_graph_get_grad(result->gb_opt, node); - - if (node->flags & GGML_TENSOR_FLAG_PARAM) { - struct ggml_tensor * m = ggml_dup_tensor(result->ctx_static, node); - struct ggml_tensor * v = ggml_dup_tensor(result->ctx_static, node); - struct ggml_tensor * opt_step = ggml_opt_step_adamw(result->ctx_compute, node, grad, m, v, result->adamw_params); - ggml_build_forward_expand(result->gb_opt, opt_step); + if (opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_OPT) { + opt_ctx->grad_m.resize(n_nodes); + opt_ctx->grad_v.resize(n_nodes); + for (int i = 0; i < n_nodes; ++i) { + ggml_tensor * node = opt_ctx->gf->nodes[i]; + if (node->flags & GGML_TENSOR_FLAG_PARAM) { + opt_ctx->grad_m[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne); + opt_ctx->grad_v[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne); + } else { + opt_ctx->grad_m[i] = nullptr; + opt_ctx->grad_v[i] = nullptr; + } + } } } - result->buf_static = ggml_backend_alloc_ctx_tensors( - result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); + // gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients. + opt_ctx->gb_grad = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gf, /*force_grads =*/ true); + ggml_build_backward_expand(opt_ctx->ctx_compute, opt_ctx->gb_grad, opt_ctx->grad_accs.data()); - result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type()); + if (opt_ctx->buf_static) { + if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_GRAD) { + return; + } + } else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_GRAD) { + opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0)); + ggml_graph_reset(opt_ctx->gb_grad); + } - ggml_graph_reset(result->gb_opt); + GGML_ASSERT(opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT); + + // gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step. + opt_ctx->gb_opt = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gb_grad, /*force_grads =*/ true); + + opt_ctx->adamw_params = ggml_new_tensor_1d(opt_ctx->ctx_cpu, GGML_TYPE_F32, 7); + ggml_set_input(opt_ctx->adamw_params); + ggml_set_name(opt_ctx->adamw_params, "adamw_params"); + + for (int i = opt_ctx->gf->n_nodes-1; i >= 0; --i) { + struct ggml_tensor * node = opt_ctx->gb_opt->nodes[i]; + struct ggml_tensor * grad = ggml_graph_get_grad(opt_ctx->gb_opt, node); + + if (grad && (node->flags & GGML_TENSOR_FLAG_PARAM)) { + struct ggml_tensor * m = opt_ctx->grad_m[i]; + struct ggml_tensor * v = opt_ctx->grad_v[i]; + struct ggml_tensor * opt_step = ggml_opt_step_adamw(opt_ctx->ctx_compute, node, grad, m, v, opt_ctx->adamw_params); + + ggml_set_name(m, (std::string("AdamW m for ") + std::string(node->name)).c_str()); + ggml_set_name(v, (std::string("AdamW v for ") + std::string(node->name)).c_str()); + ggml_set_name(opt_step, (std::string("AdamW step for ") + std::string(node->name)).c_str()); + + ggml_build_forward_expand(opt_ctx->gb_opt, opt_step); + } + } + + if (!opt_ctx->buf_static) { + opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors( + opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0)); + ggml_graph_reset(opt_ctx->gb_opt); + } + + opt_ctx->buf_cpu = ggml_backend_alloc_ctx_tensors_from_buft(opt_ctx->ctx_cpu, ggml_backend_cpu_buffer_type()); +} + +ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) { + ggml_opt_context_t result = new struct ggml_opt_context; + result->backend_sched = params.backend_sched; + result->ctx_compute = params.ctx_compute; + result->loss_type = params.loss_type; + result->build_type = params.build_type; + result->build_type_alloc = params.build_type; + result->inputs = params.inputs; + result->outputs = params.outputs; + result->opt_period = params.opt_period; + result->get_opt_pars = params.get_opt_pars; + result->get_opt_pars_ud = params.get_opt_pars_ud; + + GGML_ASSERT(result->opt_period >= 1); + + result->static_graphs = result->ctx_compute; + + if (!result->static_graphs) { + GGML_ASSERT(!result->inputs); + GGML_ASSERT(!result->outputs); + return result; + } + + GGML_ASSERT(result->inputs); + GGML_ASSERT(result->outputs); + + result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass. + ggml_build_forward_expand(result->gf, result->outputs); + + ggml_opt_build(result); return result; } @@ -464,9 +561,9 @@ void ggml_opt_free(ggml_opt_context_t opt_ctx) { return; } ggml_backend_buffer_free(opt_ctx->buf_static); - ggml_backend_buffer_free(opt_ctx->buf_static_cpu); + ggml_backend_buffer_free(opt_ctx->buf_cpu); ggml_free(opt_ctx->ctx_static); - ggml_free(opt_ctx->ctx_static_cpu); + ggml_free(opt_ctx->ctx_cpu); delete opt_ctx; } @@ -582,8 +679,79 @@ void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, doubl // ====== Computation ====== -static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_opt_result * result) { - if (graph != opt_ctx->gf) { +void ggml_opt_prepare_alloc( + ggml_opt_context_t opt_ctx, + struct ggml_context * ctx_compute, + struct ggml_cgraph * gf, + struct ggml_tensor * inputs, + struct ggml_tensor * outputs) { + GGML_ASSERT(!opt_ctx->static_graphs); + opt_ctx->ctx_compute = ctx_compute; + opt_ctx->gf = gf; + opt_ctx->inputs = inputs; + opt_ctx->outputs = outputs; +} + +void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward) { + GGML_ASSERT(!opt_ctx->eval_ready); + if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period > 1 && opt_ctx->opt_i == 0) { + ggml_graph_reset(opt_ctx->gb_grad); + } + if (backward) { + const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period; + opt_ctx->build_type = opt_i_next == 0 ? GGML_OPT_BUILD_TYPE_OPT : GGML_OPT_BUILD_TYPE_GRAD; + } else { + opt_ctx->build_type = GGML_OPT_BUILD_TYPE_FORWARD; + } + + if (!opt_ctx->static_graphs) { + ggml_opt_build(opt_ctx); + } + + struct ggml_cgraph * graph = nullptr; + switch (opt_ctx->build_type) { + case GGML_OPT_BUILD_TYPE_FORWARD: { + graph = opt_ctx->gf; + } break; + case GGML_OPT_BUILD_TYPE_GRAD: { + graph = opt_ctx->gb_grad; + } break; + case GGML_OPT_BUILD_TYPE_OPT: { + graph = opt_ctx->gb_opt; + } break; + } + GGML_ASSERT(graph); + + if (opt_ctx->allocated_graph == graph) { + opt_ctx->eval_ready = true; + return; + } + + ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph + + if (opt_ctx->static_graphs) { + ggml_init_params params = { + /*.mem_size =*/ graph->size*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph->size, graph->grads), + /*.mem_buffer =*/ nullptr, + /*.no_alloc =*/ true, + }; + ggml_free(opt_ctx->ctx_copy); + opt_ctx->ctx_copy = ggml_init(params); + + opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph); + } else { + opt_ctx->allocated_graph_copy = graph; + } + + ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy); + opt_ctx->allocated_graph = graph; + + opt_ctx->eval_ready = true; +} + +void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result) { + GGML_ASSERT(opt_ctx->eval_ready); + if (opt_ctx->allocated_graph == opt_ctx->gb_opt) { struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud); GGML_ASSERT(opt_pars.adamw.alpha > 0.0f); @@ -609,9 +777,19 @@ static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, adamw_par_data[6] = beta2h; } - ggml_opt_alloc_graph(opt_ctx, graph); ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy); opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt; + opt_ctx->opt_i = (opt_ctx->opt_i + 1) % opt_ctx->opt_period; + + if (!opt_ctx->static_graphs) { + opt_ctx->gf = nullptr; + opt_ctx->gb_grad = nullptr; + opt_ctx->gb_opt = nullptr; + opt_ctx->allocated_graph = nullptr; + opt_ctx->allocated_graph_copy = nullptr; + } + + opt_ctx->eval_ready = false; if (!result) { return; @@ -635,12 +813,14 @@ static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss)); result->loss.push_back(loss); - GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32); - std::vector pred(ndata); - ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred)); - result->pred.insert(result->pred.end(), pred.begin(), pred.end()); + if (opt_ctx->pred) { + GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32); + std::vector pred(ndata); + ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred)); + result->pred.insert(result->pred.end(), pred.begin(), pred.end()); + } - if (!opt_ctx->labels || result->ncorrect < 0) { + if (!opt_ctx->ncorrect || result->ncorrect < 0) { result->ncorrect = -1; return; } @@ -652,26 +832,6 @@ static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, result->ncorrect += ncorrect; } -void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) { - ggml_opt_eval_graph(opt_ctx, opt_ctx->gf, result); -} - -void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) { - if (opt_ctx->opt_period == 1) { - ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result); - return; - } - - const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period; - if (opt_i_next == 0) { - ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result); - ggml_opt_reset(opt_ctx, /*optimizer =*/ false); - } else { - ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_grad, result); - } - opt_ctx->opt_i = opt_i_next; -} - // ====== High-Level Functions ====== void ggml_opt_epoch( @@ -700,16 +860,18 @@ void ggml_opt_epoch( int64_t ibatch = 0; int64_t t_loop_start = ggml_time_us(); for (; ibatch < ibatch_split; ++ibatch) { + ggml_opt_alloc(opt_ctx, /*backward =*/ true); ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch); - ggml_opt_forward_backward(opt_ctx, result_train); + ggml_opt_eval(opt_ctx, result_train); if (callback_train) { callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start); } } t_loop_start = ggml_time_us(); for (; ibatch < nbatches; ++ibatch) { + ggml_opt_alloc(opt_ctx, /*backward =*/ false); ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch); - ggml_opt_forward(opt_ctx, result_eval); + ggml_opt_eval(opt_ctx, result_eval); if (callback_eval) { callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start); } @@ -726,13 +888,26 @@ void ggml_opt_epoch_callback_progress_bar( int64_t t_start_us) { fprintf(stderr, "%s[", train ? "train: " : "val: "); - constexpr int64_t bar_length = 25; + // The progress bar consists of partially filled blocks, unicode has 8 separate fill levels. + constexpr int64_t bar_length = 8; + const int64_t ibatch8 = 8 * ibatch; for (int64_t j = 0; j < bar_length; ++j) { - const int64_t ibatch_j = ibatch_max * j/bar_length; - if (ibatch_j < ibatch) { - fprintf(stderr, "="); - } else if (ibatch_max * (j - 1)/bar_length < ibatch) { - fprintf(stderr, ">"); + if (ibatch_max * (8*j + 8) / bar_length < ibatch8) { + fprintf(stderr, "\u2588"); // full block + } else if (ibatch_max * (8*j + 7) / bar_length < ibatch8) { + fprintf(stderr, "\u2589"); // 7/8 filled + } else if (ibatch_max * (8*j + 6) / bar_length < ibatch8) { + fprintf(stderr, "\u258A"); // 6/8 filled + } else if (ibatch_max * (8*j + 5) / bar_length < ibatch8) { + fprintf(stderr, "\u258B"); // 5/8 filled + } else if (ibatch_max * (8*j + 4) / bar_length < ibatch8) { + fprintf(stderr, "\u258C"); // 4/8 filled + } else if (ibatch_max * (8*j + 3) / bar_length < ibatch8) { + fprintf(stderr, "\u258D"); // 3/8 filled + } else if (ibatch_max * (8*j + 2) / bar_length < ibatch8) { + fprintf(stderr, "\u258E"); // 2/8 filled + } else if (ibatch_max * (8*j + 1) / bar_length < ibatch8) { + fprintf(stderr, "\u258F"); // 1/8 filled } else { fprintf(stderr, " "); } @@ -764,8 +939,8 @@ void ggml_opt_epoch_callback_progress_bar( const int64_t t_eta_m = t_eta_s / 60; t_eta_s -= t_eta_m * 60; - fprintf(stderr, "| data=%06" PRId64 "/%06" PRId64 ", loss=%.6lf+-%.6lf, accuracy=%.2lf+-%.2lf%%, " - "t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 ", ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 "]\r", + fprintf(stderr, "] data=%07" PRId64 "/%07" PRId64 " loss=%.5lf±%.5lf acc=%.2lf±%.2lf%% " + "t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " \r", idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc, t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s); if (ibatch == ibatch_max) { @@ -806,7 +981,10 @@ void ggml_opt_fit( int64_t epoch = 1; - ggml_opt_params params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type); + ggml_opt_params params = ggml_opt_default_params(backend_sched, loss_type); + params.ctx_compute = ctx_compute; + params.inputs = inputs; + params.outputs = outputs; params.opt_period = opt_period; params.get_opt_pars = get_opt_pars; params.get_opt_pars_ud = &epoch; diff --git a/ggml/src/ggml-sycl/quants.hpp b/ggml/src/ggml-sycl/quants.hpp new file mode 100644 index 000000000..a74e30526 --- /dev/null +++ b/ggml/src/ggml-sycl/quants.hpp @@ -0,0 +1,61 @@ +// +// MIT license +// Copyright (C) 2025 Codeplay Software Ltd. +// Copyright (C) 2025 Intel Corporation +// SPDX-License-Identifier: MIT +// + +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// + +#ifndef GGML_SYCL_QUANTS_HPP +#define GGML_SYCL_QUANTS_HPP + +#include "ggml-common.h" +#include "ggml.h" + +namespace ggml_sycl_reordered { + + +// The reordered block moves quants (qs) and scales(d) to two +// uniform regions of memory that is contiguous in the same tensor. +// What this means is that instead of having: +// [d0, qs0] [d1, qs1] [d2, qs2] ... [dN, qsN] +// We have: +// [qs0, qs1, qs2, ..., qsN] [d0, d1, d2, ..., dN] +// +// Notes: out-of-bounds qs will run into d values +// Aligment relies on the allocated size of qs + +template struct block_q_t; + + +// qk number of weights / quants in a block +// qr number of weights in a byte (described as 'before dequantization') +// for quantization types that has low and high bits split, qr is calculated with +// using the lower bits, e.g for Q6 quants QR6 is 2 +// qi number of 32 bit integers needed to represent all the quants from a block (`qs` field) +// See ggml-common.h to see how these are calculated +template <> struct block_q_t { + struct traits { + static constexpr uint32_t qk = QK4_0; + static constexpr uint32_t qi = QI4_0; + static constexpr uint32_t qr = QR4_0; + static constexpr uint32_t vdr_mmvq = 2; + }; + + static constexpr int get_block_offset(const int block_index) { return block_index * (traits::qk / traits::qr); } + + static constexpr int get_d_offset(int nrows, int ncols, const int block_index) { + return (ncols / traits::qr * nrows) + block_index * sizeof(ggml_half); + } + + static constexpr int block_to_q8_1_ratio() { return traits::qk / QK8_1; } +}; + +} // namespace ggml_sycl_reordered + +#endif // GGML_SYCL_QUANTS_HPP diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 37bfd857a..b9e8a0b20 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -5512,7 +5512,7 @@ static void ggml_compute_backward( // tensor = src0 * 1 + src1 * 0 if (src0_needs_grads) { // dsrc0 = dtensor * 1 - ggml_add_or_set(ctx, cgraph, isrc0, grad); + ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad, src0)); } if (src1_needs_grads) { // dsrc1 = dtensor * 0 -> noop @@ -5793,10 +5793,9 @@ void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * } void ggml_build_backward_expand( - struct ggml_context * ctx_static, - struct ggml_context * ctx_compute, - struct ggml_cgraph * cgraph, - bool accumulate) { + struct ggml_context * ctx, + struct ggml_cgraph * cgraph, + struct ggml_tensor ** grad_accs) { GGML_ASSERT(cgraph->n_nodes > 0); GGML_ASSERT(cgraph->grads); GGML_ASSERT(cgraph->grad_accs); @@ -5869,21 +5868,24 @@ void ggml_build_backward_expand( GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE); - const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); - GGML_ASSERT(igrad != GGML_HASHSET_FULL); - GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad)); - if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) { - cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node); - cgraph->grads[igrad] = cgraph->grad_accs[igrad]; - ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name); + const size_t ihash = ggml_hash_find(&cgraph->visited_hash_set, node); + GGML_ASSERT(ihash != GGML_HASHSET_FULL); + GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, ihash)); + if (grad_accs && grad_accs[i]) { + cgraph->grad_accs[ihash] = grad_accs[i]; + cgraph->grads[ihash] = cgraph->grad_accs[ihash]; + } else if (node->flags & GGML_TENSOR_FLAG_LOSS) { + // loss tensors always need a gradient accumulator + cgraph->grad_accs[ihash] = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne); + cgraph->grads[ihash] = cgraph->grad_accs[ihash]; } - grads_needed[igrad] = true; + grads_needed[ihash] = true; } for (int i = n_nodes_f - 1; i >= 0; --i) { // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation // use allocator to automatically make inplace operations - ggml_compute_backward(ctx_compute, cgraph, i, grads_needed); + ggml_compute_backward(ctx, cgraph, i, grads_needed); } free(grads_needed); @@ -6029,8 +6031,8 @@ void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) { } } -struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { - struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL); +struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads) { + struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads || force_grads); ggml_graph_cpy(cgraph, result); return result; } @@ -6049,6 +6051,9 @@ struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { } void ggml_graph_reset(struct ggml_cgraph * cgraph) { + if (!cgraph) { + return; + } GGML_ASSERT(cgraph->grads != NULL); for (int i = 0; i < cgraph->n_nodes; i++) { @@ -6358,8 +6363,8 @@ void ggml_set_output(struct ggml_tensor * tensor) { tensor->flags |= GGML_TENSOR_FLAG_OUTPUT; } -void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) { - GGML_UNUSED(ctx); // TODO: remove this parameter +void ggml_set_param(struct ggml_tensor * tensor) { + GGML_ASSERT(tensor->op == GGML_OP_NONE); tensor->flags |= GGML_TENSOR_FLAG_PARAM; } diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 7dd7bb6d1..0e6226b90 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -483,7 +483,9 @@ class MODEL_TENSOR(IntEnum): V_ENC_EMBD_PATCH = auto() V_ENC_EMBD_POS = auto() V_ENC_ATTN_Q = auto() + V_ENC_ATTN_Q_NORM = auto() V_ENC_ATTN_K = auto() + V_ENC_ATTN_K_NORM = auto() V_ENC_ATTN_V = auto() V_ENC_INPUT_NORM = auto() V_ENC_OUTPUT = auto() @@ -491,6 +493,8 @@ class MODEL_TENSOR(IntEnum): V_ENC_FFN_UP = auto() V_ENC_FFN_GATE = auto() V_ENC_FFN_DOWN = auto() + V_LAYER_SCALE_1 = auto() + V_LAYER_SCALE_2 = auto() V_PRE_NORM = auto() V_POST_NORM = auto() V_MM_INP_NORM = auto() @@ -740,7 +744,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.V_ENC_EMBD_PATCH: "v.patch_embd", MODEL_TENSOR.V_ENC_EMBD_POS: "v.position_embd", MODEL_TENSOR.V_ENC_ATTN_Q: "v.blk.{bid}.attn_q", + MODEL_TENSOR.V_ENC_ATTN_Q_NORM: "v.blk.{bid}.attn_q_norm", MODEL_TENSOR.V_ENC_ATTN_K: "v.blk.{bid}.attn_k", + MODEL_TENSOR.V_ENC_ATTN_K_NORM: "v.blk.{bid}.attn_k_norm", MODEL_TENSOR.V_ENC_ATTN_V: "v.blk.{bid}.attn_v", MODEL_TENSOR.V_ENC_INPUT_NORM: "v.blk.{bid}.ln1", MODEL_TENSOR.V_ENC_OUTPUT: "v.blk.{bid}.attn_out", @@ -748,6 +754,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.V_ENC_FFN_UP: "v.blk.{bid}.ffn_up", MODEL_TENSOR.V_ENC_FFN_GATE: "v.blk.{bid}.ffn_gate", MODEL_TENSOR.V_ENC_FFN_DOWN: "v.blk.{bid}.ffn_down", + MODEL_TENSOR.V_LAYER_SCALE_1: "v.blk.{bid}.ls1", + MODEL_TENSOR.V_LAYER_SCALE_2: "v.blk.{bid}.ls2", MODEL_TENSOR.V_PRE_NORM: "v.pre_ln", MODEL_TENSOR.V_POST_NORM: "v.post_ln", MODEL_TENSOR.V_MM_INP_PROJ: "mm.input_projection", @@ -778,7 +786,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.V_ENC_EMBD_PATCH, MODEL_TENSOR.V_ENC_EMBD_POS, MODEL_TENSOR.V_ENC_ATTN_Q, + MODEL_TENSOR.V_ENC_ATTN_Q_NORM, MODEL_TENSOR.V_ENC_ATTN_K, + MODEL_TENSOR.V_ENC_ATTN_K_NORM, MODEL_TENSOR.V_ENC_ATTN_V, MODEL_TENSOR.V_ENC_INPUT_NORM, MODEL_TENSOR.V_ENC_OUTPUT, @@ -786,6 +796,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.V_ENC_FFN_UP, MODEL_TENSOR.V_ENC_FFN_GATE, MODEL_TENSOR.V_ENC_FFN_DOWN, + MODEL_TENSOR.V_LAYER_SCALE_1, + MODEL_TENSOR.V_LAYER_SCALE_2, MODEL_TENSOR.V_PRE_NORM, MODEL_TENSOR.V_POST_NORM, MODEL_TENSOR.V_MM_INP_PROJ, @@ -2167,6 +2179,7 @@ class VisionProjectorType: PIXTRAL = "pixtral" QWEN2VL = "qwen2vl_merger" QWEN25VL = "qwen2.5vl_merger" + INTERNVL = "internvl" # Items here are (block size, type size) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 003b0172c..ecf21b2b4 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -905,6 +905,7 @@ class TensorNameMap: MODEL_TENSOR.V_MMPROJ_MLP: ( "model.mm_projector.mlp.mlp.{bid}", + "mlp1.{bid}", # InternVL ), MODEL_TENSOR.V_MMPROJ_PEG: ( @@ -937,6 +938,10 @@ class TensorNameMap: "visual.blocks.{bid}.attn.q", # qwen2vl, generated ), + MODEL_TENSOR.V_ENC_ATTN_Q_NORM: ( + "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL + ), + MODEL_TENSOR.V_ENC_ATTN_K: ( "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj", "vpm.encoder.layers.{bid}.self_attn.k_proj", @@ -945,6 +950,10 @@ class TensorNameMap: "visual.blocks.{bid}.attn.k", # qwen2vl, generated ), + MODEL_TENSOR.V_ENC_ATTN_K_NORM: ( + "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL + ), + MODEL_TENSOR.V_ENC_ATTN_V: ( "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj", "vpm.encoder.layers.{bid}.self_attn.v_proj", @@ -955,6 +964,7 @@ class TensorNameMap: MODEL_TENSOR.V_ENC_INPUT_NORM: ( "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1", + "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL "vpm.encoder.layers.{bid}.layer_norm1", "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral @@ -963,6 +973,7 @@ class TensorNameMap: MODEL_TENSOR.V_ENC_OUTPUT: ( "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj", + "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL "vpm.encoder.layers.{bid}.self_attn.out_proj", "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral @@ -971,6 +982,7 @@ class TensorNameMap: MODEL_TENSOR.V_ENC_OUTPUT_NORM: ( "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2", + "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL "vpm.encoder.layers.{bid}.layer_norm2", "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral @@ -1000,6 +1012,14 @@ class TensorNameMap: "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl ), + MODEL_TENSOR.V_LAYER_SCALE_1: ( + "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL + ), + + MODEL_TENSOR.V_LAYER_SCALE_2: ( + "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL + ), + MODEL_TENSOR.V_PRE_NORM: ( "vision_tower.vision_model.pre_layrnorm", "vision_tower.ln_pre", # pixtral diff --git a/include/llama.h b/include/llama.h index eb881b035..37bd68d96 100644 --- a/include/llama.h +++ b/include/llama.h @@ -6,6 +6,7 @@ #include "ggml.h" #include "ggml-cpu.h" #include "ggml-backend.h" +#include "ggml-opt.h" #include #include @@ -114,6 +115,7 @@ extern "C" { LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32, LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33, LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34, + LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35, }; enum llama_rope_type { @@ -364,6 +366,7 @@ extern "C" { bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU bool flash_attn; // whether to use flash attention [EXPERIMENTAL] bool no_perf; // whether to measure performance timings + bool op_offload; // whether to offload host tensor operations to device }; // model quantization parameters @@ -445,6 +448,10 @@ extern "C" { size_t n_paths, struct llama_model_params params); + LLAMA_API void llama_model_save_to_file( + const struct llama_model * model, + const char * path_model); + DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model), "use llama_model_free instead"); @@ -1433,6 +1440,37 @@ extern "C" { LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain); LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain); + // + // training + // + + // function that returns whether or not a given tensor contains trainable parameters + typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata); + + // always returns true + LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata); + + struct llama_opt_params { + uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0 + + llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters + void * param_filter_ud; // userdata for determining which tensors contain trainable parameters + + ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters + void * get_opt_pars_ud; // userdata for calculating optimizer parameters + }; + + LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params); + + LLAMA_API void llama_opt_epoch( + struct llama_context * lctx, + ggml_opt_dataset_t dataset, + ggml_opt_result_t result_train, + ggml_opt_result_t result_eval, + int64_t idata_split, + ggml_opt_epoch_callback callback_train, + ggml_opt_epoch_callback callback_eval); + #ifdef __cplusplus } #endif diff --git a/klite.embd b/klite.embd index 00986e8cf..4cabf9884 100644 --- a/klite.embd +++ b/klite.embd @@ -64,6 +64,7 @@ Current version indicated by LITEVER below. --img_save_mono:url(""); --img_load:url(""); --img_delete:url(""); + --img_delete_mono:url(""); --img_download:url(""); --img_mic:url(""); --img_mic_live:url(""); @@ -2132,7 +2133,7 @@ Current version indicated by LITEVER below. color: #3bf723; } .color_lightgreen { - color: #b6ffa6; + color: #6db95e; } .color_offwhite { color: #bedae9; @@ -3146,6 +3147,7 @@ Current version indicated by LITEVER below. var last_request_str = "No Requests Available"; //full context of last submitted request var last_response_obj = null; var lastcheckgenkey = ""; //for checking polled-streaming unique id when generating in kcpp + var kai_poll_recoverykey = ""; //for recovering a lost polled streaming in case of disconnect. var globalabortcontroller = null; var passed_ai_warning_local = false; var welcome = ""; @@ -4947,6 +4949,33 @@ Current version indicated by LITEVER below. console.log("AbortController Not Supported: " + e); } } + function show_last_incomplete_kai_syncpoll_request() + { + if(kai_poll_recoverykey=="") + { + return; + } + hide_msgbox(); + fetch(custom_kobold_endpoint + koboldcpp_check_endpoint, { + method: 'POST', + headers: get_kobold_header(), + body: JSON.stringify({ + "genkey": kai_poll_recoverykey + }), + }) + .then((response) => response.json()) + .then((data) => { + //makes sure a delayed response doesnt arrive late and mess up + if (data && data.results != null && data.results.length > 0 && data.results[0].text) { + let recovered = data.results[0].text; + msgbox(recovered,"Recovered Last Response"); + } + }) + .catch((error) => { + console.error('Error:', error); + }); + kai_poll_recoverykey = ""; + } function kobold_api_sync_req(sub_endpt,submit_payload,trackedgenid) { let reqOpt = { @@ -4987,6 +5016,7 @@ Current version indicated by LITEVER below. //offer to abort msgboxYesNo("Attempt to abort existing request?","Send Abort Command?",()=>{ lastcheckgenkey = ""; + kai_poll_recoverykey = ""; abort_generation(); },null); } @@ -4998,8 +5028,17 @@ Current version indicated by LITEVER below. console.error('Error:', error); if(error.name!="AbortError") //aborts are silent { + if(synchro_pending_stream!="" && lastcheckgenkey!="") + { + kai_poll_recoverykey = lastcheckgenkey; + } flush_streaming_text(); - msgbox("Error while submitting prompt: " + error); + if(kai_poll_recoverykey!="") + { + msgbox(`Error while submitting prompt: ${error}

Click Here to attempt to recover the last response. This is not guaranteed to work.`,"Error Encountered",true); + }else{ + msgbox("Error while submitting prompt: " + error); + } } clear_poll_flags(); render_gametext(); @@ -14886,9 +14925,11 @@ Current version indicated by LITEVER below. if((custom_kobold_endpoint != "" && is_using_kcpp_with_streaming())) { lastcheckgenkey = "KCPP"+(Math.floor(1000 + Math.random() * 9000)).toString(); + kai_poll_recoverykey = ""; submit_payload.params.genkey = lastcheckgenkey; }else{ lastcheckgenkey = ""; + kai_poll_recoverykey = ""; } //v2 api specific fields @@ -15354,6 +15395,7 @@ Current version indicated by LITEVER below. targetep = pollinations_text_endpoint; oai_payload.private = true; oai_payload.referrer = "koboldai"; + oai_payload.seed = Math.floor(Math.random() * 99999999); } if(is_browser_supports_sse() && localsettings.tokenstreammode!=0) @@ -21569,7 +21611,7 @@ Current version indicated by LITEVER below.
Quick Slot Load

-
Save
Delete
+
Save
Delete
@@ -23346,6 +23388,7 @@ Current version indicated by LITEVER below.
Non-Standard Fields
+
Looking for the Streaming Toggle? It's now in Advanced Settings -> Streaming!