feat: Added Q/A Mode in Research Agent

This commit is contained in:
DESKTOP-RTLN3BA\$punk 2025-06-03 00:10:35 -07:00
parent 4820caf901
commit 0c07898f4a
18 changed files with 792 additions and 42 deletions

37
.vscode/launch.json vendored Normal file
View file

@ -0,0 +1,37 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python Debugger: UV Run with Reload",
"type": "debugpy",
"request": "launch",
"module": "uvicorn",
"args": [
"app.app:app",
"--reload",
"--host",
"0.0.0.0",
"--log-level",
"info",
"--reload-dir",
"app"
],
"console": "integratedTerminal",
"justMyCode": false,
"cwd": "${workspaceFolder}/surfsense_backend",
"python": "${workspaceFolder}/surfsense_backend/.venv/Scripts/python.exe"
},
{
"name": "Python Debugger: main.py (direct)",
"type": "debugpy",
"request": "launch",
"program": "${workspaceFolder}/surfsense_backend/main.py",
"console": "integratedTerminal",
"justMyCode": false,
"cwd": "${workspaceFolder}/surfsense_backend"
}
]
}

View file

@ -1,16 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python Debugger: main.py",
"type": "debugpy",
"request": "launch",
"program": "${workspaceFolder}/main.py",
"console": "integratedTerminal",
"justMyCode": false
}
]
}

View file

@ -0,0 +1,108 @@
"""Update ChatType enum from GENERAL/DEEP/DEEPER/DEEPEST to QNA/REPORT_* structure
Revision ID: 10
Revises: 9
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision: str = "10"
down_revision: Union[str, None] = "9"
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
# Define the ENUM type name
CHAT_TYPE_ENUM = "chattype"
def upgrade() -> None:
"""Upgrade schema - replace ChatType enum values with new QNA/REPORT structure."""
# Old enum name for temporary storage
old_enum_name = f"{CHAT_TYPE_ENUM}_old"
# New enum values
new_values = (
"QNA",
"REPORT_GENERAL",
"REPORT_DEEP",
"REPORT_DEEPER"
)
new_values_sql = ", ".join([f"'{v}'" for v in new_values])
# Table and column info
table_name = "chats"
column_name = "type"
# Step 1: Rename the current enum type
op.execute(f"ALTER TYPE {CHAT_TYPE_ENUM} RENAME TO {old_enum_name}")
# Step 2: Create the new enum type with new values
op.execute(f"CREATE TYPE {CHAT_TYPE_ENUM} AS ENUM({new_values_sql})")
# Step 3: Add a temporary column with the new type
op.execute(f"ALTER TABLE {table_name} ADD COLUMN {column_name}_new {CHAT_TYPE_ENUM}")
# Step 4: Update the temporary column with mapped values
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'QNA' WHERE {column_name}::text = 'GENERAL'")
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'REPORT_DEEP' WHERE {column_name}::text = 'DEEP'")
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'REPORT_DEEPER' WHERE {column_name}::text = 'DEEPER'")
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'REPORT_DEEPER' WHERE {column_name}::text = 'DEEPEST'")
# Step 5: Drop the old column
op.execute(f"ALTER TABLE {table_name} DROP COLUMN {column_name}")
# Step 6: Rename the new column to the original name
op.execute(f"ALTER TABLE {table_name} RENAME COLUMN {column_name}_new TO {column_name}")
# Step 7: Drop the old enum type
op.execute(f"DROP TYPE {old_enum_name}")
def downgrade() -> None:
"""Downgrade schema - revert ChatType enum to old GENERAL/DEEP/DEEPER/DEEPEST structure."""
# Old enum name for temporary storage
old_enum_name = f"{CHAT_TYPE_ENUM}_old"
# Original enum values
original_values = (
"GENERAL",
"DEEP",
"DEEPER",
"DEEPEST"
)
original_values_sql = ", ".join([f"'{v}'" for v in original_values])
# Table and column info
table_name = "chats"
column_name = "type"
# Step 1: Rename the current enum type
op.execute(f"ALTER TYPE {CHAT_TYPE_ENUM} RENAME TO {old_enum_name}")
# Step 2: Create the new enum type with original values
op.execute(f"CREATE TYPE {CHAT_TYPE_ENUM} AS ENUM({original_values_sql})")
# Step 3: Add a temporary column with the original type
op.execute(f"ALTER TABLE {table_name} ADD COLUMN {column_name}_new {CHAT_TYPE_ENUM}")
# Step 4: Update the temporary column with mapped values back to old values
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'GENERAL' WHERE {column_name}::text = 'QNA'")
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'GENERAL' WHERE {column_name}::text = 'REPORT_GENERAL'")
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'DEEP' WHERE {column_name}::text = 'REPORT_DEEP'")
op.execute(f"UPDATE {table_name} SET {column_name}_new = 'DEEPER' WHERE {column_name}::text = 'REPORT_DEEPER'")
# Step 5: Drop the old column
op.execute(f"ALTER TABLE {table_name} DROP COLUMN {column_name}")
# Step 6: Rename the new column to the original name
op.execute(f"ALTER TABLE {table_name} RENAME COLUMN {column_name}_new TO {column_name}")
# Step 7: Drop the old enum type
op.execute(f"DROP TYPE {old_enum_name}")

View file

@ -13,6 +13,13 @@ class SearchMode(Enum):
CHUNKS = "CHUNKS" CHUNKS = "CHUNKS"
DOCUMENTS = "DOCUMENTS" DOCUMENTS = "DOCUMENTS"
class ResearchMode(Enum):
"""Enum defining the type of research mode."""
QNA = "QNA"
REPORT_GENERAL = "REPORT_GENERAL"
REPORT_DEEP = "REPORT_DEEP"
REPORT_DEEPER = "REPORT_DEEPER"
@dataclass(kw_only=True) @dataclass(kw_only=True)
class Configuration: class Configuration:
@ -25,7 +32,7 @@ class Configuration:
user_id: str user_id: str
search_space_id: int search_space_id: int
search_mode: SearchMode search_mode: SearchMode
research_mode: ResearchMode
@classmethod @classmethod
def from_runnable_config( def from_runnable_config(

View file

@ -1,7 +1,7 @@
from langgraph.graph import StateGraph from langgraph.graph import StateGraph
from .state import State from .state import State
from .nodes import reformulate_user_query, write_answer_outline, process_sections from .nodes import reformulate_user_query, write_answer_outline, process_sections, handle_qna_workflow
from .configuration import Configuration from .configuration import Configuration, ResearchMode
from typing import TypedDict, List, Dict, Any, Optional from typing import TypedDict, List, Dict, Any, Optional
# Define what keys are in our state dict # Define what keys are in our state dict
@ -11,12 +11,27 @@ class GraphState(TypedDict):
# Final output # Final output
final_written_report: Optional[str] final_written_report: Optional[str]
def route_based_on_research_mode(state: State) -> str:
"""
Route to different workflows based on research_mode.
Args:
state: The current state containing the configuration
Returns:
"qna_workflow" for QNA mode, "report_workflow" for report modes
"""
# The configuration should be available in the graph context
# We'll handle this by checking the research_mode during execution
return "route_research_mode"
def build_graph(): def build_graph():
""" """
Build and return the LangGraph workflow. Build and return the LangGraph workflow.
This function constructs the researcher agent graph with proper state management This function constructs the researcher agent graph with conditional routing
and node connections following LangGraph best practices. based on research_mode - QNA mode uses a direct Q&A workflow while other modes
use the full report generation pipeline.
Returns: Returns:
A compiled LangGraph workflow A compiled LangGraph workflow
@ -26,12 +41,36 @@ def build_graph():
# Add nodes to the graph # Add nodes to the graph
workflow.add_node("reformulate_user_query", reformulate_user_query) workflow.add_node("reformulate_user_query", reformulate_user_query)
workflow.add_node("handle_qna_workflow", handle_qna_workflow)
workflow.add_node("write_answer_outline", write_answer_outline) workflow.add_node("write_answer_outline", write_answer_outline)
workflow.add_node("process_sections", process_sections) workflow.add_node("process_sections", process_sections)
# Define the edges - create a linear flow # Define the edges
workflow.add_edge("__start__", "reformulate_user_query") workflow.add_edge("__start__", "reformulate_user_query")
workflow.add_edge("reformulate_user_query", "write_answer_outline")
# Add conditional edges from reformulate_user_query based on research mode
def route_after_reformulate(state: State, config) -> str:
"""Route based on research_mode after reformulating the query."""
configuration = Configuration.from_runnable_config(config)
if configuration.research_mode == ResearchMode.QNA.value:
return "handle_qna_workflow"
else:
return "write_answer_outline"
workflow.add_conditional_edges(
"reformulate_user_query",
route_after_reformulate,
{
"handle_qna_workflow": "handle_qna_workflow",
"write_answer_outline": "write_answer_outline"
}
)
# QNA workflow path
workflow.add_edge("handle_qna_workflow", "__end__")
# Report generation workflow path
workflow.add_edge("write_answer_outline", "process_sections") workflow.add_edge("write_answer_outline", "process_sections")
workflow.add_edge("process_sections", "__end__") workflow.add_edge("process_sections", "__end__")

View file

@ -15,10 +15,10 @@ from .prompts import get_answer_outline_system_prompt
from .state import State from .state import State
from .sub_section_writer.graph import graph as sub_section_writer_graph from .sub_section_writer.graph import graph as sub_section_writer_graph
from .sub_section_writer.configuration import SubSectionType from .sub_section_writer.configuration import SubSectionType
from .qna_agent.graph import graph as qna_agent_graph
from app.utils.query_service import QueryService from app.utils.query_service import QueryService
from langgraph.types import StreamWriter from langgraph.types import StreamWriter
@ -842,4 +842,131 @@ async def reformulate_user_query(state: State, config: RunnableConfig, writer: S
"reformulated_query": reformulated_query "reformulated_query": reformulated_query
} }
async def handle_qna_workflow(state: State, config: RunnableConfig, writer: StreamWriter) -> Dict[str, Any]:
"""
Handle the QNA research workflow.
This node fetches relevant documents for the user query and then uses the QNA agent
to generate a comprehensive answer with proper citations.
Returns:
Dict containing the final answer in the "final_written_report" key for consistency.
"""
streaming_service = state.streaming_service
configuration = Configuration.from_runnable_config(config)
reformulated_query = state.reformulated_query
user_query = configuration.user_query
streaming_service.only_update_terminal("🤔 Starting Q&A research workflow...")
writer({"yeild_value": streaming_service._format_annotations()})
streaming_service.only_update_terminal(f"🔍 Researching: \"{user_query[:100]}...\"")
writer({"yeild_value": streaming_service._format_annotations()})
# Fetch relevant documents for the QNA query
streaming_service.only_update_terminal("🔍 Searching for relevant information across all connectors...")
writer({"yeild_value": streaming_service._format_annotations()})
# Use a reasonable top_k for QNA - not too many documents to avoid overwhelming the LLM
TOP_K = 15
relevant_documents = []
async with async_session_maker() as db_session:
try:
# Create connector service inside the db_session scope
connector_service = ConnectorService(db_session)
# Use the reformulated query as a single research question
research_questions = [reformulated_query]
relevant_documents = await fetch_relevant_documents(
research_questions=research_questions,
user_id=configuration.user_id,
search_space_id=configuration.search_space_id,
db_session=db_session,
connectors_to_search=configuration.connectors_to_search,
writer=writer,
state=state,
top_k=TOP_K,
connector_service=connector_service,
search_mode=configuration.search_mode
)
except Exception as e:
error_message = f"Error fetching relevant documents for QNA: {str(e)}"
print(error_message)
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
# Continue with empty documents - the QNA agent will handle this gracefully
relevant_documents = []
print(f"Fetched {len(relevant_documents)} relevant documents for QNA")
streaming_service.only_update_terminal(f"🧠 Generating comprehensive answer using {len(relevant_documents)} relevant sources...")
writer({"yeild_value": streaming_service._format_annotations()})
# Prepare configuration for the QNA agent
qna_config = {
"configurable": {
"user_query": reformulated_query, # Use the reformulated query
"relevant_documents": relevant_documents,
"user_id": configuration.user_id,
"search_space_id": configuration.search_space_id
}
}
# Create the state for the QNA agent (it has a different state structure)
qna_state = {
"db_session": state.db_session,
"chat_history": state.chat_history
}
try:
streaming_service.only_update_terminal("✍️ Writing comprehensive answer with citations...")
writer({"yeild_value": streaming_service._format_annotations()})
# Track streaming content for real-time updates
complete_content = ""
# Call the QNA agent with streaming
async for chunk_type, chunk in qna_agent_graph.astream(qna_state, qna_config, stream_mode=["values"]):
if "final_answer" in chunk:
new_content = chunk["final_answer"]
if new_content and new_content != complete_content:
# Extract only the new content (delta)
delta = new_content[len(complete_content):]
complete_content = new_content
# Stream the real-time answer if there's new content
if delta:
# Update terminal with progress
word_count = len(complete_content.split())
streaming_service.only_update_terminal(f"✍️ Writing answer... ({word_count} words)")
# Update the answer in real-time
answer_lines = complete_content.split("\n")
streaming_service.only_update_answer(answer_lines)
writer({"yeild_value": streaming_service._format_annotations()})
# Set default if no content was received
if not complete_content:
complete_content = "I couldn't find relevant information in your knowledge base to answer this question."
streaming_service.only_update_terminal("🎉 Q&A answer generated successfully!")
writer({"yeild_value": streaming_service._format_annotations()})
# Return the final answer in the expected state field
return {
"final_written_report": complete_content
}
except Exception as e:
error_message = f"Error generating QNA answer: {str(e)}"
print(error_message)
streaming_service.only_update_terminal(f"{error_message}", "error")
writer({"yeild_value": streaming_service._format_annotations()})
return {
"final_written_report": f"Error generating answer: {str(e)}"
}

View file

@ -0,0 +1,6 @@
"""QnA Agent.
"""
from .graph import graph
__all__ = ["graph"]

View file

@ -0,0 +1,28 @@
"""Define the configurable parameters for the agent."""
from __future__ import annotations
from dataclasses import dataclass, fields
from typing import Optional, List, Any
from langchain_core.runnables import RunnableConfig
@dataclass(kw_only=True)
class Configuration:
"""The configuration for the Q&A agent."""
# Configuration parameters for the Q&A agent
user_query: str # The user's question to answer
relevant_documents: List[Any] # Documents provided directly to the agent for answering
user_id: str # User identifier
search_space_id: int # Search space identifier
@classmethod
def from_runnable_config(
cls, config: Optional[RunnableConfig] = None
) -> Configuration:
"""Create a Configuration instance from a RunnableConfig object."""
configurable = (config.get("configurable") or {}) if config else {}
_fields = {f.name for f in fields(cls) if f.init}
return cls(**{k: v for k, v in configurable.items() if k in _fields})

View file

@ -0,0 +1,20 @@
from langgraph.graph import StateGraph
from .state import State
from .nodes import rerank_documents, answer_question
from .configuration import Configuration
# Define a new graph
workflow = StateGraph(State, config_schema=Configuration)
# Add the nodes to the graph
workflow.add_node("rerank_documents", rerank_documents)
workflow.add_node("answer_question", answer_question)
# Connect the nodes
workflow.add_edge("__start__", "rerank_documents")
workflow.add_edge("rerank_documents", "answer_question")
workflow.add_edge("answer_question", "__end__")
# Compile the workflow into an executable graph
graph = workflow.compile()
graph.name = "SurfSense QnA Agent" # This defines the custom name in LangSmith

View file

@ -0,0 +1,148 @@
from .configuration import Configuration
from langchain_core.runnables import RunnableConfig
from .state import State
from typing import Any, Dict
from app.config import config as app_config
from .prompts import get_qna_citation_system_prompt
from langchain_core.messages import HumanMessage, SystemMessage
async def rerank_documents(state: State, config: RunnableConfig) -> Dict[str, Any]:
"""
Rerank the documents based on relevance to the user's question.
This node takes the relevant documents provided in the configuration,
reranks them using the reranker service based on the user's query,
and updates the state with the reranked documents.
Returns:
Dict containing the reranked documents.
"""
# Get configuration and relevant documents
configuration = Configuration.from_runnable_config(config)
documents = configuration.relevant_documents
user_query = configuration.user_query
# If no documents were provided, return empty list
if not documents or len(documents) == 0:
return {
"reranked_documents": []
}
# Get reranker service from app config
reranker_service = getattr(app_config, "reranker_service", None)
# Use documents as is if no reranker service is available
reranked_docs = documents
if reranker_service:
try:
# Convert documents to format expected by reranker if needed
reranker_input_docs = [
{
"chunk_id": doc.get("chunk_id", f"chunk_{i}"),
"content": doc.get("content", ""),
"score": doc.get("score", 0.0),
"document": {
"id": doc.get("document", {}).get("id", ""),
"title": doc.get("document", {}).get("title", ""),
"document_type": doc.get("document", {}).get("document_type", ""),
"metadata": doc.get("document", {}).get("metadata", {})
}
} for i, doc in enumerate(documents)
]
# Rerank documents using the user's query
reranked_docs = reranker_service.rerank_documents(user_query, reranker_input_docs)
# Sort by score in descending order
reranked_docs.sort(key=lambda x: x.get("score", 0), reverse=True)
print(f"Reranked {len(reranked_docs)} documents for Q&A query: {user_query}")
except Exception as e:
print(f"Error during reranking: {str(e)}")
# Use original docs if reranking fails
return {
"reranked_documents": reranked_docs
}
async def answer_question(state: State, config: RunnableConfig) -> Dict[str, Any]:
"""
Answer the user's question using the provided documents.
This node takes the relevant documents provided in the configuration and uses
an LLM to generate a comprehensive answer to the user's question with
proper citations. The citations follow IEEE format using source IDs from the
documents.
Returns:
Dict containing the final answer in the "final_answer" key.
"""
# Get configuration and relevant documents from configuration
configuration = Configuration.from_runnable_config(config)
documents = configuration.relevant_documents
user_query = configuration.user_query
# Initialize LLM
llm = app_config.fast_llm_instance
# If no documents were provided, return a message indicating this
if not documents or len(documents) == 0:
return {
"final_answer": "I don't have any relevant documents in your personal knowledge base to answer this question. Please try asking about topics covered in your saved content, or add more documents to your knowledge base."
}
# Prepare documents for citation formatting
formatted_documents = []
for i, doc in enumerate(documents):
# Extract content and metadata
content = doc.get("content", "")
doc_info = doc.get("document", {})
document_id = doc_info.get("id") # Use document ID
# Format document according to the citation system prompt's expected format
formatted_doc = f"""
<document>
<metadata>
<source_id>{document_id}</source_id>
<source_type>{doc_info.get("document_type", "CRAWLED_URL")}</source_type>
</metadata>
<content>
{content}
</content>
</document>
"""
formatted_documents.append(formatted_doc)
# Create the formatted documents text
documents_text = "\n".join(formatted_documents)
# Construct a clear, structured query for the LLM
human_message_content = f"""
Source material from your personal knowledge base:
<documents>
{documents_text}
</documents>
User's question:
<user_query>
{user_query}
</user_query>
Please provide a detailed, comprehensive answer to the user's question using the information from their personal knowledge sources. Make sure to cite all information appropriately and engage in a conversational manner.
"""
# Create messages for the LLM, including chat history for context
messages_with_chat_history = state.chat_history + [
SystemMessage(content=get_qna_citation_system_prompt()),
HumanMessage(content=human_message_content)
]
# Call the LLM and get the response
response = await llm.ainvoke(messages_with_chat_history)
final_answer = response.content
return {
"final_answer": final_answer
}

View file

@ -0,0 +1,120 @@
import datetime
def get_qna_citation_system_prompt():
return f"""
Today's date: {datetime.datetime.now().strftime("%Y-%m-%d")}
You are SurfSense, an advanced AI research assistant that provides detailed, well-researched answers to user questions by synthesizing information from multiple personal knowledge sources.
<knowledge_sources>
- EXTENSION: "Web content saved via SurfSense browser extension" (personal browsing history)
- CRAWLED_URL: "Webpages indexed by SurfSense web crawler" (personally selected websites)
- FILE: "User-uploaded documents (PDFs, Word, etc.)" (personal files)
- SLACK_CONNECTOR: "Slack conversations and shared content" (personal workspace communications)
- NOTION_CONNECTOR: "Notion workspace pages and databases" (personal knowledge management)
- YOUTUBE_VIDEO: "YouTube video transcripts and metadata" (personally saved videos)
- GITHUB_CONNECTOR: "GitHub repository content and issues" (personal repositories and interactions)
- LINEAR_CONNECTOR: "Linear project issues and discussions" (personal project management)
- DISCORD_CONNECTOR: "Discord server messages and channels" (personal community interactions)
- TAVILY_API: "Tavily search API results" (personalized search results)
- LINKUP_API: "Linkup search API results" (personalized search results)
</knowledge_sources>
<instructions>
1. Carefully analyze all provided documents in the <document> sections.
2. Extract relevant information that directly addresses the user's question.
3. Provide a comprehensive, detailed answer using information from the user's personal knowledge sources.
4. For EVERY piece of information you include from the documents, add an IEEE-style citation in square brackets [X] where X is the source_id from the document's metadata.
5. Make sure ALL factual statements from the documents have proper citations.
6. If multiple documents support the same point, include all relevant citations [X], [Y].
7. Structure your answer logically and conversationally, as if having a detailed discussion with the user.
8. Use your own words to synthesize and connect ideas, but cite ALL information from the documents.
9. If documents contain conflicting information, acknowledge this and present both perspectives with appropriate citations.
10. If the user's question cannot be fully answered with the provided documents, clearly state what information is missing.
11. Provide actionable insights and practical information when relevant to the user's question.
12. CRITICAL: You MUST use the exact source_id value from each document's metadata for citations. Do not create your own citation numbers.
13. CRITICAL: Every citation MUST be in the IEEE format [X] where X is the exact source_id value.
14. CRITICAL: Never renumber or reorder citations - always use the original source_id values.
15. CRITICAL: Do not return citations as clickable links.
16. CRITICAL: Never format citations as markdown links like "([1](https://example.com))". Always use plain square brackets only.
17. CRITICAL: Citations must ONLY appear as [X] or [X], [Y], [Z] format - never with parentheses, hyperlinks, or other formatting.
18. CRITICAL: Never make up citation numbers. Only use source_id values that are explicitly provided in the document metadata.
19. CRITICAL: If you are unsure about a source_id, do not include a citation rather than guessing or making one up.
20. CRITICAL: Remember that all knowledge sources contain personal information - provide answers that reflect this personal context.
21. CRITICAL: Be conversational and engaging while maintaining accuracy and proper citations.
</instructions>
<format>
- Write in a clear, conversational tone suitable for detailed Q&A discussions
- Provide comprehensive answers that thoroughly address the user's question
- Use appropriate paragraphs and structure for readability
- Every fact from the documents must have an IEEE-style citation in square brackets [X] where X is the EXACT source_id from the document's metadata
- Citations should appear at the end of the sentence containing the information they support
- Multiple citations should be separated by commas: [X], [Y], [Z]
- No need to return references section. Just citation numbers in answer.
- NEVER create your own citation numbering system - use the exact source_id values from the documents
- NEVER format citations as clickable links or as markdown links like "([1](https://example.com))". Always use plain square brackets only
- NEVER make up citation numbers if you are unsure about the source_id. It is better to omit the citation than to guess
- ALWAYS provide personalized answers that reflect the user's own knowledge and context
- Be thorough and detailed in your explanations while remaining focused on the user's specific question
- If asking follow-up questions would be helpful, suggest them at the end of your response
</format>
<input_example>
<documents>
<document>
<metadata>
<source_id>5</source_id>
<source_type>GITHUB_CONNECTOR</source_type>
</metadata>
<content>
Python's asyncio library provides tools for writing concurrent code using the async/await syntax. It's particularly useful for I/O-bound and high-level structured network code.
</content>
</document>
<document>
<metadata>
<source_id>12</source_id>
<source_type>YOUTUBE_VIDEO</source_type>
</metadata>
<content>
Asyncio can improve performance by allowing other code to run while waiting for I/O operations to complete. However, it's not suitable for CPU-bound tasks as it runs on a single thread.
</content>
</document>
</documents>
User Question: "How does Python asyncio work and when should I use it?"
</input_example>
<output_example>
Based on your GitHub repositories and video content, Python's asyncio library provides tools for writing concurrent code using the async/await syntax [5]. It's particularly useful for I/O-bound and high-level structured network code [5].
The key advantage of asyncio is that it can improve performance by allowing other code to run while waiting for I/O operations to complete [12]. This makes it excellent for scenarios like web scraping, API calls, database operations, or any situation where your program spends time waiting for external resources.
However, from your video learning, it's important to note that asyncio is not suitable for CPU-bound tasks as it runs on a single thread [12]. For computationally intensive work, you'd want to use multiprocessing instead.
Would you like me to explain more about specific asyncio patterns or help you determine if asyncio is right for a particular project you're working on?
</output_example>
<incorrect_citation_formats>
DO NOT use any of these incorrect citation formats:
- Using parentheses and markdown links: ([1](https://github.com/MODSetter/SurfSense))
- Using parentheses around brackets: ([1])
- Using hyperlinked text: [link to source 1](https://example.com)
- Using footnote style: ... library¹
- Making up citation numbers when source_id is unknown
ONLY use plain square brackets [1] or multiple citations [1], [2], [3]
</incorrect_citation_formats>
<user_query_instructions>
When you see a user query, focus exclusively on providing a detailed, comprehensive answer using information from the provided documents, which contain the user's personal knowledge and data.
Make sure your response:
1. Directly and thoroughly answers the user's question with personalized information from their own knowledge sources
2. Uses proper citations for all information from documents
3. Is conversational, engaging, and detailed
4. Acknowledges the personal nature of the information being provided
5. Offers follow-up suggestions when appropriate
</user_query_instructions>
"""

View file

@ -0,0 +1,25 @@
"""Define the state structures for the agent."""
from __future__ import annotations
from dataclasses import dataclass, field
from typing import List, Optional, Any
from sqlalchemy.ext.asyncio import AsyncSession
@dataclass
class State:
"""Defines the dynamic state for the Q&A agent during execution.
This state tracks the database session, chat history, and the outputs
generated by the agent's nodes during question answering.
See: https://langchain-ai.github.io/langgraph/concepts/low_level/#state
for more information.
"""
# Runtime context
db_session: AsyncSession
chat_history: Optional[List[Any]] = field(default_factory=list)
# OUTPUT: Populated by agent nodes
reranked_documents: Optional[List[Any]] = None
final_answer: Optional[str] = None

View file

@ -63,10 +63,10 @@ class SearchSourceConnectorType(str, Enum):
DISCORD_CONNECTOR = "DISCORD_CONNECTOR" DISCORD_CONNECTOR = "DISCORD_CONNECTOR"
class ChatType(str, Enum): class ChatType(str, Enum):
GENERAL = "GENERAL" QNA = "QNA"
DEEP = "DEEP" REPORT_GENERAL = "REPORT_GENERAL"
DEEPER = "DEEPER" REPORT_DEEP = "REPORT_DEEP"
DEEPEST = "DEEPEST" REPORT_DEEPER = "REPORT_DEEPER"
class Base(DeclarativeBase): class Base(DeclarativeBase):
pass pass

View file

@ -34,12 +34,16 @@ async def stream_connector_search_results(
str: Formatted response strings str: Formatted response strings
""" """
streaming_service = StreamingService() streaming_service = StreamingService()
if research_mode == "GENERAL":
if research_mode == "REPORT_GENERAL":
NUM_SECTIONS = 1 NUM_SECTIONS = 1
elif research_mode == "DEEP": elif research_mode == "REPORT_DEEP":
NUM_SECTIONS = 3 NUM_SECTIONS = 3
elif research_mode == "DEEPER": elif research_mode == "REPORT_DEEPER":
NUM_SECTIONS = 6 NUM_SECTIONS = 6
else:
# Default fallback
NUM_SECTIONS = 1
# Convert UUID to string if needed # Convert UUID to string if needed
user_id_str = str(user_id) if isinstance(user_id, UUID) else user_id user_id_str = str(user_id) if isinstance(user_id, UUID) else user_id
@ -57,7 +61,8 @@ async def stream_connector_search_results(
"connectors_to_search": selected_connectors, "connectors_to_search": selected_connectors,
"user_id": user_id_str, "user_id": user_id_str,
"search_space_id": search_space_id, "search_space_id": search_space_id,
"search_mode": search_mode "search_mode": search_mode,
"research_mode": research_mode
} }
} }
# Initialize state with database session and streaming service # Initialize state with database session and streaming service

View file

@ -45,7 +45,7 @@ import {
scrollTabsRight as scrollTabsRightUtil, scrollTabsRight as scrollTabsRightUtil,
Source, Source,
ResearchMode, ResearchMode,
researcherOptions ResearchModeControl
} from '@/components/chat'; } from '@/components/chat';
import { MarkdownViewer } from '@/components/markdown-viewer'; import { MarkdownViewer } from '@/components/markdown-viewer';
import { Logo } from '@/components/Logo'; import { Logo } from '@/components/Logo';
@ -250,7 +250,7 @@ const ChatPage = () => {
const [terminalExpanded, setTerminalExpanded] = useState(false); const [terminalExpanded, setTerminalExpanded] = useState(false);
const [selectedConnectors, setSelectedConnectors] = useState<string[]>(["CRAWLED_URL"]); const [selectedConnectors, setSelectedConnectors] = useState<string[]>(["CRAWLED_URL"]);
const [searchMode, setSearchMode] = useState<'DOCUMENTS' | 'CHUNKS'>('DOCUMENTS'); const [searchMode, setSearchMode] = useState<'DOCUMENTS' | 'CHUNKS'>('DOCUMENTS');
const [researchMode, setResearchMode] = useState<ResearchMode>("GENERAL"); const [researchMode, setResearchMode] = useState<ResearchMode>("QNA");
const [currentTime, setCurrentTime] = useState<string>(''); const [currentTime, setCurrentTime] = useState<string>('');
const [currentDate, setCurrentDate] = useState<string>(''); const [currentDate, setCurrentDate] = useState<string>('');
const terminalMessagesRef = useRef<HTMLDivElement>(null); const terminalMessagesRef = useRef<HTMLDivElement>(null);
@ -1079,12 +1079,11 @@ const ChatPage = () => {
</button> </button>
</div> </div>
{/* Research Mode Segmented Control */} {/* Research Mode Control */}
<div className="h-8"> <div className="h-8">
<SegmentedControl<ResearchMode> <ResearchModeControl
value={researchMode} value={researchMode}
onChange={setResearchMode} onChange={setResearchMode}
options={researcherOptions}
/> />
</div> </div>
</div> </div>

View file

@ -29,7 +29,7 @@ const ResearcherPage = () => {
'Authorization': `Bearer ${token}` 'Authorization': `Bearer ${token}`
}, },
body: JSON.stringify({ body: JSON.stringify({
type: "GENERAL", type: "QNA",
title: "Untitled Chat", // Empty title initially title: "Untitled Chat", // Empty title initially
initial_connectors: ["CRAWLED_URL"], // Default connector initial_connectors: ["CRAWLED_URL"], // Default connector
messages: [], messages: [],

View file

@ -10,6 +10,8 @@ import {
File, File,
Link, Link,
Webhook, Webhook,
MessageCircle,
FileText,
} from 'lucide-react'; } from 'lucide-react';
import { IconBrandNotion, IconBrandSlack, IconBrandYoutube, IconBrandGithub, IconLayoutKanban, IconLinkPlus, IconBrandDiscord } from "@tabler/icons-react"; import { IconBrandNotion, IconBrandSlack, IconBrandYoutube, IconBrandGithub, IconLayoutKanban, IconLinkPlus, IconBrandDiscord } from "@tabler/icons-react";
import { Button } from '@/components/ui/button'; import { Button } from '@/components/ui/button';
@ -56,17 +58,22 @@ export const getConnectorIcon = (connectorType: string) => {
export const researcherOptions: { value: ResearchMode; label: string; icon: React.ReactNode }[] = [ export const researcherOptions: { value: ResearchMode; label: string; icon: React.ReactNode }[] = [
{ {
value: 'GENERAL', value: 'QNA',
label: 'Q/A',
icon: getConnectorIcon('GENERAL')
},
{
value: 'REPORT_GENERAL',
label: 'General', label: 'General',
icon: getConnectorIcon('GENERAL') icon: getConnectorIcon('GENERAL')
}, },
{ {
value: 'DEEP', value: 'REPORT_DEEP',
label: 'Deep', label: 'Deep',
icon: getConnectorIcon('DEEP') icon: getConnectorIcon('DEEP')
}, },
{ {
value: 'DEEPER', value: 'REPORT_DEEPER',
label: 'Deeper', label: 'Deeper',
icon: getConnectorIcon('DEEPER') icon: getConnectorIcon('DEEPER')
}, },
@ -169,3 +176,93 @@ export const ConnectorButton = ({ selectedConnectors, onClick, connectorSources
</Button> </Button>
); );
}; };
// New component for Research Mode Control with Q/A and Report toggle
type ResearchModeControlProps = {
value: ResearchMode;
onChange: (value: ResearchMode) => void;
};
export const ResearchModeControl = ({ value, onChange }: ResearchModeControlProps) => {
// Determine if we're in Q/A mode or Report mode
const isQnaMode = value === 'QNA';
const isReportMode = value.startsWith('REPORT_');
// Get the current report sub-mode
const getCurrentReportMode = () => {
if (!isReportMode) return 'GENERAL';
return value.replace('REPORT_', '') as 'GENERAL' | 'DEEP' | 'DEEPER';
};
const reportSubOptions = [
{ value: 'GENERAL', label: 'General', icon: getConnectorIcon('GENERAL') },
{ value: 'DEEP', label: 'Deep', icon: getConnectorIcon('DEEP') },
{ value: 'DEEPER', label: 'Deeper', icon: getConnectorIcon('DEEPER') },
];
const handleModeToggle = (mode: 'QNA' | 'REPORT') => {
if (mode === 'QNA') {
onChange('QNA');
} else {
// Default to GENERAL for Report mode
onChange('REPORT_GENERAL');
}
};
const handleReportSubModeChange = (subMode: string) => {
onChange(`REPORT_${subMode}` as ResearchMode);
};
return (
<div className="flex items-center gap-2">
{/* Main Q/A vs Report Toggle */}
<div className="flex h-8 rounded-md border border-border overflow-hidden">
<button
className={`flex h-full items-center gap-1 px-3 text-xs font-medium transition-colors whitespace-nowrap ${
isQnaMode
? 'bg-primary text-primary-foreground'
: 'hover:bg-muted text-muted-foreground hover:text-foreground'
}`}
onClick={() => handleModeToggle('QNA')}
aria-pressed={isQnaMode}
>
<MessageCircle className="h-3 w-3" />
<span>Q/A</span>
</button>
<button
className={`flex h-full items-center gap-1 px-3 text-xs font-medium transition-colors whitespace-nowrap ${
isReportMode
? 'bg-primary text-primary-foreground'
: 'hover:bg-muted text-muted-foreground hover:text-foreground'
}`}
onClick={() => handleModeToggle('REPORT')}
aria-pressed={isReportMode}
>
<FileText className="h-3 w-3" />
<span>Report</span>
</button>
</div>
{/* Report Sub-options (only show when in Report mode) */}
{isReportMode && (
<div className="flex h-8 rounded-md border border-border overflow-hidden">
{reportSubOptions.map((option) => (
<button
key={option.value}
className={`flex h-full items-center gap-1 px-2 text-xs font-medium transition-colors whitespace-nowrap ${
getCurrentReportMode() === option.value
? 'bg-primary text-primary-foreground'
: 'hover:bg-muted text-muted-foreground hover:text-foreground'
}`}
onClick={() => handleReportSubModeChange(option.value)}
aria-pressed={getCurrentReportMode() === option.value}
>
{option.icon}
<span>{option.label}</span>
</button>
))}
</div>
)}
</div>
);
};

View file

@ -48,4 +48,4 @@ export interface ToolInvocationUIPart {
} }
export type ResearchMode = 'GENERAL' | 'DEEP' | 'DEEPER' | 'DEEPEST'; export type ResearchMode = 'QNA' | 'REPORT_GENERAL' | 'REPORT_DEEP' | 'REPORT_DEEPER';