SurfSense/surfsense_backend/app/agents/researcher/qna_agent/nodes.py
2025-06-03 00:10:35 -07:00

148 lines
5.6 KiB
Python

from .configuration import Configuration
from langchain_core.runnables import RunnableConfig
from .state import State
from typing import Any, Dict
from app.config import config as app_config
from .prompts import get_qna_citation_system_prompt
from langchain_core.messages import HumanMessage, SystemMessage
async def rerank_documents(state: State, config: RunnableConfig) -> Dict[str, Any]:
"""
Rerank the documents based on relevance to the user's question.
This node takes the relevant documents provided in the configuration,
reranks them using the reranker service based on the user's query,
and updates the state with the reranked documents.
Returns:
Dict containing the reranked documents.
"""
# Get configuration and relevant documents
configuration = Configuration.from_runnable_config(config)
documents = configuration.relevant_documents
user_query = configuration.user_query
# If no documents were provided, return empty list
if not documents or len(documents) == 0:
return {
"reranked_documents": []
}
# Get reranker service from app config
reranker_service = getattr(app_config, "reranker_service", None)
# Use documents as is if no reranker service is available
reranked_docs = documents
if reranker_service:
try:
# Convert documents to format expected by reranker if needed
reranker_input_docs = [
{
"chunk_id": doc.get("chunk_id", f"chunk_{i}"),
"content": doc.get("content", ""),
"score": doc.get("score", 0.0),
"document": {
"id": doc.get("document", {}).get("id", ""),
"title": doc.get("document", {}).get("title", ""),
"document_type": doc.get("document", {}).get("document_type", ""),
"metadata": doc.get("document", {}).get("metadata", {})
}
} for i, doc in enumerate(documents)
]
# Rerank documents using the user's query
reranked_docs = reranker_service.rerank_documents(user_query, reranker_input_docs)
# Sort by score in descending order
reranked_docs.sort(key=lambda x: x.get("score", 0), reverse=True)
print(f"Reranked {len(reranked_docs)} documents for Q&A query: {user_query}")
except Exception as e:
print(f"Error during reranking: {str(e)}")
# Use original docs if reranking fails
return {
"reranked_documents": reranked_docs
}
async def answer_question(state: State, config: RunnableConfig) -> Dict[str, Any]:
"""
Answer the user's question using the provided documents.
This node takes the relevant documents provided in the configuration and uses
an LLM to generate a comprehensive answer to the user's question with
proper citations. The citations follow IEEE format using source IDs from the
documents.
Returns:
Dict containing the final answer in the "final_answer" key.
"""
# Get configuration and relevant documents from configuration
configuration = Configuration.from_runnable_config(config)
documents = configuration.relevant_documents
user_query = configuration.user_query
# Initialize LLM
llm = app_config.fast_llm_instance
# If no documents were provided, return a message indicating this
if not documents or len(documents) == 0:
return {
"final_answer": "I don't have any relevant documents in your personal knowledge base to answer this question. Please try asking about topics covered in your saved content, or add more documents to your knowledge base."
}
# Prepare documents for citation formatting
formatted_documents = []
for i, doc in enumerate(documents):
# Extract content and metadata
content = doc.get("content", "")
doc_info = doc.get("document", {})
document_id = doc_info.get("id") # Use document ID
# Format document according to the citation system prompt's expected format
formatted_doc = f"""
<document>
<metadata>
<source_id>{document_id}</source_id>
<source_type>{doc_info.get("document_type", "CRAWLED_URL")}</source_type>
</metadata>
<content>
{content}
</content>
</document>
"""
formatted_documents.append(formatted_doc)
# Create the formatted documents text
documents_text = "\n".join(formatted_documents)
# Construct a clear, structured query for the LLM
human_message_content = f"""
Source material from your personal knowledge base:
<documents>
{documents_text}
</documents>
User's question:
<user_query>
{user_query}
</user_query>
Please provide a detailed, comprehensive answer to the user's question using the information from their personal knowledge sources. Make sure to cite all information appropriately and engage in a conversational manner.
"""
# Create messages for the LLM, including chat history for context
messages_with_chat_history = state.chat_history + [
SystemMessage(content=get_qna_citation_system_prompt()),
HumanMessage(content=human_message_content)
]
# Call the LLM and get the response
response = await llm.ainvoke(messages_with_chat_history)
final_answer = response.content
return {
"final_answer": final_answer
}