Summary:
- Make the data/checkpoint code fsspec compatible
- Still will not work with s3 saves, due to `torch.distributed.checkpoint.save` not being out of the box workable with `fsspec`. Will implement in followup PR
Test Plan:
Run unit tests and the commands below
```
python -m bytelatent.train config=internal/configs/s3_debug.yaml eval=null checkpoint.dump.every=100
```
```
torchrun --nproc-per-node 8 -m bytelatent.train config=internal/configs/s3_debug.yaml eval=null checkpoint.dump.every=100
```
These currently won't work due to the torch distributed save, but theses hould be tested at a later date
```
python -m bytelatent.train config=internal/configs/s3_debug.yaml eval=null checkpoint.dump.every=100 dump_dir=s3://blt/scratch/checkpoint-test/
```
```
torchrun --nproc-per-node 8 -m bytelatent.train config=internal/configs/s3_debug.yaml eval=null checkpoint.dump.every=100 dump_dir=s3://blt/scratch/checkpoint-test/
```
Summary:
- Refactor local model configs to be separate and clearer
- Add attention arguments and correct which attention is used in local models
- Preparation for being able to have an entropy train script
- Fix failing unit tests
Test Plan:
Summary:
For compatibility with either local/nfs or S3 datasets, swap to fsspec.
Add a tool to compare local and remote filesystems
Test Plan:
- Ran regular train script
- Ran with config with data in S3