blt/bytelatent/args.py
Pedro Rodriguez 6ffeb66b53
Some checks are pending
Lint with Black / lint (push) Waiting to run
Lint with isort / lint (push) Waiting to run
Changes for training entropy model and correcting attention in local models (#25)
Summary:

- Refactor local model configs to be separate and clearer
- Add attention arguments and correct which attention is used in local models
- Preparation for being able to have an entropy train script
- Fix failing unit tests

Test Plan:
2025-01-17 14:23:01 -08:00

213 lines
7.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
import logging
import os
from typing import Any
import numpy as np
import yaml
from pydantic import BaseModel, ConfigDict
from bytelatent.checkpoint import CheckpointArgs
from bytelatent.data.data_types import Batch
from bytelatent.data.iterators.abstract_iterator import StatefulIterator
from bytelatent.data.iterators.arrow_iterator import (
ArrowFileIterator,
find_and_sanitize_chunks,
)
from bytelatent.data.iterators.looping_iterator import LoopingIterator
from bytelatent.data.iterators.multiprocess_iterator import MultiprocessIterator
from bytelatent.data.iterators.packing_iterator import PackingArgs, PackingIterator
from bytelatent.data.iterators.preprocess_iterator import PreprocessIterator
from bytelatent.data.iterators.sampling_iterator import SamplingIterator
from bytelatent.data.iterators.sequence_iterator import (
SequenceIterator,
SequencePackingArgs,
)
from bytelatent.data.patcher import PatcherArgs
from bytelatent.distributed import DistributedArgs, EnvironmentArgs
from bytelatent.metrics import LoggingArgs
from bytelatent.model.blt import ByteLatentTransformerArgs
from bytelatent.optim import OptimArgs
from bytelatent.profiling import ProfilerArgs
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
from bytelatent.transformer import LMTransformerArgs
logger = logging.getLogger()
def get_rng_state(seed: int, rank: int, world_size: int) -> dict[str, Any]:
return np.random.default_rng((seed, rank, world_size)).bit_generator.state
def distribute_data_to_rank(
*,
dataset_path: str,
preprocess_dir: str,
entropy_model_name: str | None,
arrow_batch_size: int,
rank: int,
world_size: int,
s3_profile: str | None = None,
) -> ArrowFileIterator:
dataset_chunks = find_and_sanitize_chunks(
dataset_path, world_size, s3_profile=s3_profile
)
n_workers_per_chunk = world_size // len(dataset_chunks)
rank_to_arrow_iterator_params = []
for chunk_path in dataset_chunks:
for worker_id in range(n_workers_per_chunk):
rank_to_arrow_iterator_params.append(
ArrowFileIterator(
file_path=chunk_path,
worker_id=worker_id,
num_workers=n_workers_per_chunk,
preprocess_dir=preprocess_dir,
dataset_files=None,
entropy_model_name=entropy_model_name,
arrow_batch_size=arrow_batch_size,
s3_profile=s3_profile,
)
)
return rank_to_arrow_iterator_params[rank]
class DataloaderArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
s3_profile: str | None = None
root_dir: str | None = None
sources: dict[str, float] = {}
batch_size: int = 2
seq_len: int = 2048
seed: int = 42
add_bos: bool = True
add_eos: bool = True
load_async: bool = True
prefetch_size: int = 64
preprocess_dir: str | None = None
dataset_files: list[str] | None = None
entropy_model_name: str | None = "transformer_100m"
arrow_batch_size: int = 100
buffer_size: int = 64
pad_to_max_length: bool = True
max_encoder_seq_length: int = 12288
enable_byte_ngrams: bool = False
tokenizer_args: TokenizerArgs = TokenizerArgs()
patcher_args: PatcherArgs = PatcherArgs()
def _create_sequence_iterators(
self, rank: int, world_size: int
) -> dict[str, SequenceIterator]:
sequence_packing_args = SequencePackingArgs(
output_seq_len=self.seq_len,
buffer_size=self.buffer_size,
)
source_to_sequence_iterator: dict[str, SequenceIterator] = {}
for dataset_path in self.sources:
shuffle_rng_state = get_rng_state(self.seed + 1, rank, world_size)
arrow_iterator = distribute_data_to_rank(
dataset_path=os.path.join(self.root_dir, dataset_path),
preprocess_dir=self.preprocess_dir,
entropy_model_name=self.entropy_model_name,
arrow_batch_size=self.arrow_batch_size,
rank=rank,
world_size=world_size,
s3_profile=self.s3_profile,
)
looping_iterator = LoopingIterator(arrow_iterator)
preprocess_iterator = PreprocessIterator(
looping_iterator,
patcher_args=self.patcher_args,
tokenizer_args=self.tokenizer_args,
)
sequence_iterator = SequenceIterator(
preprocess_iterator,
sequence_packing_args=sequence_packing_args,
rng_state=shuffle_rng_state,
)
source_to_sequence_iterator[dataset_path] = sequence_iterator
return source_to_sequence_iterator
def build_from_rank(
self, rank: int, world_size: int
) -> StatefulIterator[Batch, Any]:
source_to_sequence_iterators = self._create_sequence_iterators(rank, world_size)
weight_rng_state = get_rng_state(self.seed + 1, rank, world_size)
sampling_iterator = SamplingIterator(
rng_state=weight_rng_state,
source_to_weight=self.sources,
source_to_iterator=source_to_sequence_iterators,
)
tokenizer = self.tokenizer_args.build()
packing_args = PackingArgs(
batch_size=self.batch_size,
seq_len=self.seq_len,
pad_id=tokenizer.boe_id,
max_length=self.max_encoder_seq_length,
pad_to_max_length=self.pad_to_max_length,
enable_byte_ngrams=self.enable_byte_ngrams,
)
packing_iterator = PackingIterator(sampling_iterator, packing_args=packing_args)
mp_iterator = MultiprocessIterator(
packing_iterator, n_batches_to_prefetch=self.prefetch_size
)
return mp_iterator
class TrainArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
name: str = "lingua"
dump_dir: str = ""
seed: int = 42
debug_dynamo: bool = False
# Number of gradient accumulation steps
# Total batch size is batch_size*grad_acc_steps
grad_acc_steps: int = 1
gc_collect_freq: int = 1000
probe_freq: int | None = None
# Nb optimizer steps to take
steps: int = 1000
data: DataloaderArgs = DataloaderArgs()
optim: OptimArgs = OptimArgs()
model: ByteLatentTransformerArgs = ByteLatentTransformerArgs()
# This is only needed for training the entropy model
entropy_model: LMTransformerArgs | None = None
# Instead of training main model, train entropy model
train_entropy_model: bool = False
distributed: DistributedArgs = DistributedArgs()
env: EnvironmentArgs = EnvironmentArgs()
checkpoint: CheckpointArgs = CheckpointArgs()
profiling: ProfilerArgs = ProfilerArgs()
logging: LoggingArgs = LoggingArgs()
# If set to None, eval is run locally otherwise it launches a new job with the given number of gpus
async_eval_gpus: int | None = None
eval: Any | None = None
eval_on_gpus: int | None = None
def dump_to_yaml_file(
self, path: str, log_config: bool = True, sort_keys: bool = True
):
model_dict = self.model_dump(mode="json")
yaml_str = yaml.dump(
model_dict,
allow_unicode=True,
sort_keys=sort_keys,
default_flow_style=False,
)
with open(path, "w") as f:
if log_config:
logger.info("Using the following config for this run:")
logger.info(yaml_str)
f.write(yaml_str)