Automated-AI-Web-Researcher.../llm_config.py

58 lines
2 KiB
Python
Raw Permalink Normal View History

2024-11-26 02:25:04 +00:00
# llm_config.py
2024-11-26 02:25:41 +00:00
LLM_TYPE = "ollama" # Options: 'ollama', 'openai', 'anthropic'
2024-11-26 02:25:04 +00:00
# LLM settings for Ollama
LLM_CONFIG_OLLAMA = {
"llm_type": "ollama",
"base_url": "http://localhost:11434", # default Ollama server URL
"model_name": "custom-phi3-32k-Q4_K_M", # Replace with your Ollama model name
"temperature": 0.7,
"top_p": 0.9,
"n_ctx": 55000,
"stop": ["User:", "\n\n"]
}
2024-11-27 02:34:02 +00:00
# LLM settings for OpenAI
# WARNING: This application makes frequent API calls during research operations. If using paid API services
# (OpenAI/Anthropic), this can result in significant costs accumulating quickly - proceed with caution and
# monitor your API usage carefully if it's paid.
2024-11-26 02:25:04 +00:00
LLM_CONFIG_OPENAI = {
"llm_type": "openai",
"api_key": "", # Set via environment variable OPENAI_API_KEY
"base_url": None, # Optional: Set to use alternative OpenAI-compatible endpoints
"model_name": "gpt-4o", # Required: Specify the model to use
"temperature": 0.7,
"top_p": 0.9,
"max_tokens": 4096,
"stop": ["User:", "\n\n"],
"presence_penalty": 0,
"frequency_penalty": 0
}
# LLM settings for Anthropic
2024-11-27 02:34:02 +00:00
# WARNING: This application makes frequent API calls during research operations. If using paid API services
# (OpenAI/Anthropic), this can result in significant costs accumulating quickly - proceed with caution and
# monitor your API usage carefully if it's paid.
2024-11-26 02:25:04 +00:00
LLM_CONFIG_ANTHROPIC = {
"llm_type": "anthropic",
"api_key": "", # Set via environment variable ANTHROPIC_API_KEY
"model_name": "claude-3-5-sonnet-latest", # Required: Specify the model to use
"temperature": 0.7,
"top_p": 0.9,
"max_tokens": 4096,
"stop": ["User:", "\n\n"]
}
def get_llm_config():
if LLM_TYPE == "llama_cpp":
return LLM_CONFIG_LLAMA_CPP
elif LLM_TYPE == "ollama":
return LLM_CONFIG_OLLAMA
elif LLM_TYPE == "openai":
return LLM_CONFIG_OPENAI
elif LLM_TYPE == "anthropic":
return LLM_CONFIG_ANTHROPIC
else:
raise ValueError(f"Invalid LLM_TYPE: {LLM_TYPE}")