# llm_config.py LLM_TYPE = "ollama" # Options: 'ollama', 'openai', 'anthropic' # LLM settings for Ollama LLM_CONFIG_OLLAMA = { "llm_type": "ollama", "base_url": "http://localhost:11434", # default Ollama server URL "model_name": "custom-phi3-32k-Q4_K_M", # Replace with your Ollama model name "temperature": 0.7, "top_p": 0.9, "n_ctx": 55000, "stop": ["User:", "\n\n"] } # LLM settings for OpenAI # WARNING: This application makes frequent API calls during research operations. If using paid API services # (OpenAI/Anthropic), this can result in significant costs accumulating quickly - proceed with caution and # monitor your API usage carefully if it's paid. LLM_CONFIG_OPENAI = { "llm_type": "openai", "api_key": "", # Set via environment variable OPENAI_API_KEY "base_url": None, # Optional: Set to use alternative OpenAI-compatible endpoints "model_name": "gpt-4o", # Required: Specify the model to use "temperature": 0.7, "top_p": 0.9, "max_tokens": 4096, "stop": ["User:", "\n\n"], "presence_penalty": 0, "frequency_penalty": 0 } # LLM settings for Anthropic # WARNING: This application makes frequent API calls during research operations. If using paid API services # (OpenAI/Anthropic), this can result in significant costs accumulating quickly - proceed with caution and # monitor your API usage carefully if it's paid. LLM_CONFIG_ANTHROPIC = { "llm_type": "anthropic", "api_key": "", # Set via environment variable ANTHROPIC_API_KEY "model_name": "claude-3-5-sonnet-latest", # Required: Specify the model to use "temperature": 0.7, "top_p": 0.9, "max_tokens": 4096, "stop": ["User:", "\n\n"] } def get_llm_config(): if LLM_TYPE == "llama_cpp": return LLM_CONFIG_LLAMA_CPP elif LLM_TYPE == "ollama": return LLM_CONFIG_OLLAMA elif LLM_TYPE == "openai": return LLM_CONFIG_OPENAI elif LLM_TYPE == "anthropic": return LLM_CONFIG_ANTHROPIC else: raise ValueError(f"Invalid LLM_TYPE: {LLM_TYPE}")