* dockerfiles and docker-compose

* containerization fixes

* docker instructions

* readme

* readme

* dont mount src by default, readme

* hf template determine fixes

* auto determine prompt template

* script to start talemate listening only to 127.0.0.1

* prompt tweaks

* auto narrate round every 3 rounds

* tweaks

* Add return to startscreen button

* Only show return to start screen button if scene is active

* improvements to character creation

* dedicated property for scene title separate fromn the save directory name

* filter out negations into negative keywords

* increase auto narrate delay

* add character portrait keyword

* summarization should ignore most recent message, as it is often regenerated.

* cohere client

* specify python3

* improve viable runpod text gen detection

* fix formatting in template preview

* cohere command-r plus template that i am not sure if correct or not

* mistral client set to decensor

* fix issue with parsing json responses

* command-r prompts updated

* use official mistralai python client

* send max_tokens

* new input autocomplete functionality

* prompt tweeaks

* llama 3 templates

* add <|eot_id|> to stopping strings

* prompt tweak

* tooltip

* llama-3 identifier

* command-r and command-r plus prompt identifiers

* text-gen-webui client tweaks to make llama3 eos tokens work correctly

* better llama-3 detection

* better llama-3 finalizing of parameters

* streamline client prompt finalizers
reduce YY model smoothing factor from 0.3 to 0.1 for text-generation-webui client

* relock

* linting

* set 0.23.0

* add new gpt-4 models

* set 0.23.0

* add note about conecting to text-gen-webui from docker

* fix openai image generation no longer working

* default to concept_art
This commit is contained in:
veguAI 2024-04-20 01:01:06 +03:00 committed by GitHub
parent 27eba3bd63
commit 83027b3a0f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
62 changed files with 2105 additions and 1085 deletions

25
Dockerfile.backend Normal file
View file

@ -0,0 +1,25 @@
# Use an official Python runtime as a parent image
FROM python:3.11-slim
# Set the working directory in the container
WORKDIR /app
# Copy the current directory contents into the container at /app
COPY ./src /app/src
# Copy poetry files
COPY pyproject.toml /app/
# If there's a poetry lock file, include the following line
COPY poetry.lock /app/
# Install poetry
RUN pip install poetry
# Install dependencies
RUN poetry install --no-dev
# Make port 5050 available to the world outside this container
EXPOSE 5050
# Run backend server
CMD ["poetry", "run", "python", "src/talemate/server/run.py", "runserver", "--host", "0.0.0.0", "--port", "5050"]

17
Dockerfile.frontend Normal file
View file

@ -0,0 +1,17 @@
# Use an official node runtime as a parent image
FROM node:20
# Set the working directory in the container
WORKDIR /app
# Copy the frontend directory contents into the container at /app
COPY ./talemate_frontend /app
# Install any needed packages specified in package.json
RUN npm install
# Make port 8080 available to the world outside this container
EXPOSE 8080
# Run frontend server
CMD ["npm", "run", "serve"]

View file

@ -43,6 +43,7 @@ Please read the documents in the `docs` folder for more advanced configuration a
- [Installation](#installation)
- [Windows](#windows)
- [Linux](#linux)
- [Docker](#docker)
- [Connecting to an LLM](#connecting-to-an-llm)
- [OpenAI / mistral.ai / Anthropic](#openai--mistralai--anthropic)
- [Text-generation-webui / LMStudio](#text-generation-webui--lmstudio)
@ -81,12 +82,29 @@ There is also a [troubleshooting guide](docs/troubleshoot.md) that might help.
`nodejs v19 or v20` :warning: `v21` not supported yet.
1. `git clone git@github.com:vegu-ai/talemate`
1. `git clone https://github.com/vegu-ai/talemate.git`
1. `cd talemate`
1. `source install.sh`
1. Start the backend: `python src/talemate/server/run.py runserver --host 0.0.0.0 --port 5050`.
1. Open a new terminal, navigate to the `talemate_frontend` directory, and start the frontend server by running `npm run serve`.
### Docker
1. `git clone https://github.com/vegu-ai/talemate.git`
1. `cd talemate`
1. `docker-compose up`
1. Navigate your browser to http://localhost:8080
:warning: When connecting local APIs running on the hostmachine (e.g. text-generation-webui), you need to use `host.docker.internal` as the hostname.
#### To shut down the Docker container
Just closing the terminal window will not stop the Docker container. You need to run `docker-compose down` to stop the container.
#### How to install Docker
1. Download and install Docker Desktop from the [official Docker website](https://www.docker.com/products/docker-desktop).
# Connecting to an LLM
On the right hand side click the "Add Client" button. If there is no button, you may need to toggle the client options by clicking this button:

27
docker-compose.yml Normal file
View file

@ -0,0 +1,27 @@
version: '3.8'
services:
talemate-backend:
build:
context: .
dockerfile: Dockerfile.backend
ports:
- "5050:5050"
volumes:
# can uncomment for dev purposes
#- ./src/talemate:/app/src/talemate
- ./config.yaml:/app/config.yaml
- ./scenes:/app/scenes
- ./templates:/app/templates
- ./chroma:/app/chroma
environment:
- PYTHONUNBUFFERED=1
talemate-frontend:
build:
context: .
dockerfile: Dockerfile.frontend
ports:
- "8080:8080"
volumes:
- ./talemate_frontend:/app

View file

@ -1,7 +1,7 @@
#!/bin/bash
# create a virtual environment
python -m venv talemate_env
python3 -m venv talemate_env
# activate the virtual environment
source talemate_env/bin/activate

1734
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -4,7 +4,7 @@ build-backend = "poetry.masonry.api"
[tool.poetry]
name = "talemate"
version = "0.22.0"
version = "0.23.0"
description = "AI-backed roleplay and narrative tools"
authors = ["FinalWombat"]
license = "GNU Affero General Public License v3.0"
@ -18,6 +18,9 @@ rope = "^0.22"
isort = "^5.10"
jinja2 = "^3.0"
openai = ">=1"
mistralai = ">=0.1.8"
cohere = ">=5.2.2"
anthropic = ">=0.19.1"
requests = "^2.26"
colorama = ">=0.4.6"
Pillow = ">=9.5"
@ -39,7 +42,6 @@ thefuzz = ">=0.20.0"
tiktoken = ">=0.5.1"
nltk = ">=3.8.1"
huggingface-hub = ">=0.20.2"
anthropic = ">=0.19.1"
RestrictedPython = ">7.1"
# ChromaDB

View file

@ -3,14 +3,16 @@ def game(TM):
MSG_PROCESSED_INSTRUCTIONS = "Simulation suite processed instructions"
MSG_HELP = "Instructions to the simulation computer are only process if the computer is addressed at the beginning of the instruction. Please state your commands by addressing the computer by stating \"Computer,\" followed by an instruction. For example ... \"Computer, i want to experience being on a derelict spaceship.\""
MSG_HELP = "Instructions to the simulation computer are only processed if the computer is directly addressed at the beginning of the instruction. Please state your commands by addressing the computer by stating \"Computer,\" followed by an instruction. For example ... \"Computer, i want to experience being on a derelict spaceship.\""
PROMPT_NARRATE_ROUND = "Narrate the simulation and reveal some new details to the player in one paragraph. YOU MUST NOT ADDRESS THE COMPUTER OR THE SIMULATION."
PROMPT_STARTUP = "Narrate the computer asking the user to state the nature of their desired simulation."
PROMPT_STARTUP = "Narrate the computer asking the user to state the nature of their desired simulation in a synthetic and soft sounding voice."
CTX_PIN_UNAWARE = "Characters in the simulation ARE NOT AWARE OF THE COMPUTER."
AUTO_NARRATE_INTERVAL = 10
def parse_sim_call_arguments(call:str) -> str:
"""
Returns the value between the parentheses of a simulation call
@ -117,7 +119,7 @@ def game(TM):
scene=TM.scene,
)
calls = calls.split("\n")
self.calls = calls = calls.split("\n")
calls = self.prepare_calls(calls)
@ -152,6 +154,33 @@ def game(TM):
self.update_world_state = True
self.set_simulation_title(compiled)
def set_simulation_title(self, compiled_calls):
"""
Generates a fitting title for the simulation based on the user's instructions
"""
TM.log.debug("SIMULATION SUITE: set simulation title", name=TM.scene.title, compiled_calls=compiled_calls)
if not compiled_calls:
return
if TM.scene.title != "Simulation Suite":
# name already changed, no need to do it again
return
title = TM.agents.creator.contextual_generate_from_args(
"scene:simulation title",
"Create a fitting title for the simulated scenario that the user has requested. You response MUST be a short but exciting, descriptive title.",
length=75
)
title = title.strip('"').strip()
TM.scene.set_title(title)
def prepare_calls(self, calls):
"""
Loops through calls and if a `set_player_name` call and a `set_player_persona` call are both
@ -320,6 +349,20 @@ def game(TM):
else:
character_name = TM.agents.creator.determine_character_name(character_name=f"{inject} - what is the name of the group of characters to be added to the scene? If no name can extracted from the text, extract a short descriptive name instead. Respond only with the name.", group=True)
# sometimes add_ai_character and change_ai_character are called in the same instruction targeting
# the same character, if this happens we need to combine into a single add_ai_character call
has_change_ai_character_call = TM.client.query_text_eval(f"Are there any calls to `change_ai_character` in the instruction for {character_name}?", "\n".join(self.calls))
if has_change_ai_character_call:
combined_arg = TM.agents.world_state.analyze_and_follow_instruction(
"\n".join(self.calls),
f"Combine the arguments of the function calls `add_ai_character` and `change_ai_character` for {character_name} into a single text string. Respond with the new argument."
)
call = f"add_ai_character({combined_arg})"
inject = f"The computer executes the function `{call}`"
TM.emit_status("busy", f"Simulation suite adding character: {character_name}", as_scene_message=True)
TM.log.debug("SIMULATION SUITE: add npc", name=character_name)
@ -429,6 +472,14 @@ def game(TM):
def finalize_round(self):
# track rounds
rounds = TM.game_state.get_var("instr.rounds", 0)
# increase rounds
TM.game_state.set_var("instr.rounds", rounds + 1, commit=False)
has_issued_instructions = TM.game_state.has_var("instr.has_issued_instructions")
if self.update_world_state:
self.run_update_world_state()
@ -437,7 +488,7 @@ def game(TM):
TM.game_state.set_var("instr.lastprocessed_call", self.player_message.id, commit=False)
TM.emit_status("success", MSG_PROCESSED_INSTRUCTIONS, as_scene_message=True)
elif self.player_message and not TM.game_state.has_var("instr.has_issued_instructions"):
elif self.player_message and not has_issued_instructions:
# simulation started, player message is NOT an instruction, and player has not given
# any instructions
self.guide_player()
@ -445,6 +496,10 @@ def game(TM):
elif self.player_message and not TM.scene.npc_character_names():
# simulation started, player message is NOT an instruction, but there are no npcs to interact with
self.narrate_round()
elif rounds % AUTO_NARRATE_INTERVAL == 0 and rounds and TM.scene.npc_character_names() and has_issued_instructions:
# every 3 rounds, narrate the round
self.narrate_round()
def guide_player(self):
TM.agents.narrator.action_to_narration(

View file

@ -1,5 +1,6 @@
{
"name": "Simulation Suite",
"title": "Simulation Suite",
"environment": "scene",
"immutable_save": true,
"restore_from": "simulation-suite.json",

View file

@ -2,4 +2,4 @@ from .agents import Agent
from .client import TextGeneratorWebuiClient
from .tale_mate import *
VERSION = "0.22.0"
VERSION = "0.23.0"

View file

@ -194,12 +194,12 @@ class Agent(ABC):
return {
"essential": self.essential,
}
@property
def sanitized_action_config(self):
if not getattr(self, "actions", None):
return {}
return {k: v.model_dump() for k, v in self.actions.items()}
async def _handle_ready_check(self, fut: asyncio.Future):

View file

@ -22,7 +22,14 @@ from talemate.events import GameLoopEvent
from talemate.prompts import Prompt
from talemate.scene_message import CharacterMessage, DirectorMessage
from .base import Agent, AgentAction, AgentActionConfig, AgentDetail, AgentEmission, set_processing
from .base import (
Agent,
AgentAction,
AgentActionConfig,
AgentDetail,
AgentEmission,
set_processing,
)
from .registry import register
if TYPE_CHECKING:
@ -180,22 +187,22 @@ class ConversationAgent(Agent):
if self.actions["generation_override"].enabled:
return self.actions["generation_override"].config["format"].value
return "movie_script"
@property
def conversation_format_label(self):
value = self.conversation_format
choices = self.actions["generation_override"].config["format"].choices
for choice in choices:
if choice["value"] == value:
return choice["label"]
return value
@property
def agent_details(self) -> dict:
details = {
"client": AgentDetail(
icon="mdi-network-outline",
@ -208,9 +215,9 @@ class ConversationAgent(Agent):
description="Generation format of the scene context, as seen by the AI",
).model_dump(),
}
return details
def connect(self, scene):
super().connect(scene)
talemate.emit.async_signals.get("game_loop").connect(self.on_game_loop)
@ -567,7 +574,7 @@ class ConversationAgent(Agent):
def clean_result(self, result, character):
if "#" in result:
result = result.split("#")[0]
if "(Internal" in result:
result = result.split("(Internal")[0]

View file

@ -1,9 +1,11 @@
from typing import TYPE_CHECKING, Union
import asyncio
from typing import TYPE_CHECKING, Tuple, Union
import pydantic
import talemate.util as util
from talemate.agents.base import set_processing
from talemate.emit import emit
from talemate.prompts import Prompt
if TYPE_CHECKING:
@ -22,7 +24,7 @@ class ContentGenerationContext(pydantic.BaseModel):
original: Union[str, None] = None
@property
def computed_context(self) -> (str, str):
def computed_context(self) -> Tuple[str, str]:
typ, context = self.context.split(":", 1)
return typ, context
@ -54,6 +56,8 @@ class AssistantMixin:
return await self.contextual_generate(generation_context)
contextual_generate_from_args.exposed = True
@set_processing
async def contextual_generate(
self,
@ -93,3 +97,45 @@ class AssistantMixin:
content = util.strip_partial_sentences(content)
return content.strip()
@set_processing
async def autocomplete_dialogue(
self,
input: str,
character: "Character",
emit_signal: bool = True,
) -> str:
"""
Autocomplete dialogue.
"""
response = await Prompt.request(
f"creator.autocomplete-dialogue",
self.client,
"create_short",
vars={
"scene": self.scene,
"max_tokens": self.client.max_token_length,
"input": input.strip(),
"character": character,
"can_coerce": self.client.Meta().requires_prompt_template,
},
pad_prepended_response=False,
dedupe_enabled=False,
)
response = util.clean_dialogue(response, character.name)[
len(character.name + ":") :
].strip()
if response.startswith(input):
response = response[len(input) :]
self.scene.log.debug(
"autocomplete_suggestion", suggestion=response, input=input
)
if emit_signal:
emit("autocomplete_suggestion", response)
return response

View file

@ -192,7 +192,7 @@ class CharacterCreatorMixin:
},
)
return content_context.strip()
@set_processing
async def determine_character_dialogue_instructions(
self,
@ -201,13 +201,13 @@ class CharacterCreatorMixin:
instructions = await Prompt.request(
f"creator.determine-character-dialogue-instructions",
self.client,
"create",
"create_concise",
vars={
"character": character,
},
)
r = instructions.strip().strip('"').strip()
r = instructions.strip().split("\n")[0].strip('"').strip()
return r
@set_processing
@ -230,7 +230,7 @@ class CharacterCreatorMixin:
self,
character_name: str,
allowed_names: list[str] = None,
group:bool = False,
group: bool = False,
) -> str:
name = await Prompt.request(
f"creator.determine-character-name",

View file

@ -128,20 +128,19 @@ class ScenarioCreatorMixin:
"text": text,
},
)
return description
return description.strip()
@set_processing
async def determine_content_context_for_description(
self,
description:str,
description: str,
):
content_context = await Prompt.request(
f"creator.determine-content-context",
self.client,
"create",
"create_short",
vars={
"description": description,
},
)
return content_context.strip()
return content_context.lstrip().split("\n")[0].strip('"').strip()

View file

@ -15,9 +15,9 @@ from talemate.agents.conversation import ConversationAgentEmission
from talemate.automated_action import AutomatedAction
from talemate.emit import emit, wait_for_input
from talemate.events import GameLoopActorIterEvent, GameLoopStartEvent, SceneStateEvent
from talemate.game.engine import GameInstructionsMixin
from talemate.prompts import Prompt
from talemate.scene_message import DirectorMessage, NarratorMessage
from talemate.game.engine import GameInstructionsMixin
from .base import Agent, AgentAction, AgentActionConfig, set_processing
from .registry import register
@ -78,9 +78,9 @@ class DirectorAgent(GameInstructionsMixin, Agent):
{
"label": "Inner Monologue",
"value": "internal_monologue",
}
]
)
},
],
),
},
),
}
@ -100,11 +100,11 @@ class DirectorAgent(GameInstructionsMixin, Agent):
@property
def direct_enabled(self):
return self.actions["direct"].enabled
@property
def direct_actors_enabled(self):
return self.actions["direct"].config["direct_actors"].value
@property
def direct_scene_enabled(self):
return self.actions["direct"].config["direct_scene"].value
@ -287,7 +287,6 @@ class DirectorAgent(GameInstructionsMixin, Agent):
self.scene.push_history(message)
else:
await self.run_scene_instructions(self.scene)
@set_processing
async def persist_characters_from_worldstate(
@ -329,7 +328,7 @@ class DirectorAgent(GameInstructionsMixin, Agent):
creator = instance.get_agent("creator")
self.scene.log.debug("persist_character", name=name)
if determine_name:
name = await creator.determine_character_name(name)
self.scene.log.debug("persist_character", adjusted_name=name)
@ -367,11 +366,15 @@ class DirectorAgent(GameInstructionsMixin, Agent):
self.scene.log.debug("persist_character", description=description)
dialogue_instructions = await creator.determine_character_dialogue_instructions(character)
dialogue_instructions = await creator.determine_character_dialogue_instructions(
character
)
character.dialogue_instructions = dialogue_instructions
self.scene.log.debug("persist_character", dialogue_instructions=dialogue_instructions)
self.scene.log.debug(
"persist_character", dialogue_instructions=dialogue_instructions
)
actor = self.scene.Actor(
character=character, agent=instance.get_agent("conversation")
@ -404,10 +407,11 @@ class DirectorAgent(GameInstructionsMixin, Agent):
self.scene.context = response.strip()
self.scene.emit_status()
async def log_action(self, action:str, action_description:str):
async def log_action(self, action: str, action_description: str):
message = DirectorMessage(message=action_description, action=action)
self.scene.push_history(message)
emit("director", message)
log_action.exposed = True
def inject_prompt_paramters(

View file

@ -617,6 +617,7 @@ class NarratorAgent(Agent):
emit("narrator", narrator_message)
return narrator_message
action_to_narration.exposed = True
# LLM client related methods. These are called during or after the client

View file

@ -140,7 +140,9 @@ class SummarizeAgent(Agent):
if recent_entry:
ts = recent_entry.get("ts", ts)
for i in range(start, len(scene.history)):
# we ignore the most recent entry, as the user may still chose to
# regenerate it
for i in range(start, max(start, len(scene.history) - 1)):
dialogue = scene.history[i]
# log.debug("build_archive", idx=i, content=str(dialogue)[:64]+"...")

View file

@ -73,7 +73,7 @@ class VisualBase(Agent):
),
"default_style": AgentActionConfig(
type="text",
value="ink_illustration",
value="concept_art",
choices=MAJOR_STYLES,
label="Default Style",
description="The default style to use for visual processing",
@ -219,15 +219,15 @@ class VisualBase(Agent):
)
await super().apply_config(*args, **kwargs)
backend_fn = getattr(self, f"{self.backend.lower()}_apply_config", None)
if backend_fn:
if not backend_changed and was_disabled and self.enabled:
# If the backend has not changed, but the agent was previously disabled
# and is now enabled, we need to trigger the backend apply_config function
backend_changed = True
task = asyncio.create_task(
backend_fn(backend_changed=backend_changed, *args, **kwargs)
)
@ -351,6 +351,9 @@ class VisualBase(Agent):
vis_type_styles = self.vis_type_styles(context.vis_type)
prompt = self.prepare_prompt(prompt, [vis_type_styles, thematic_style])
if context.vis_type == VIS_TYPES.CHARACTER:
prompt.keywords.append("character portrait")
if not prompt:
log.error(
"generate", error="No prompt provided and no context to generate from"
@ -429,6 +432,7 @@ class VisualBase(Agent):
async def generate_environment_background(self, instructions: str = None):
with VisualContext(vis_type=VIS_TYPES.ENVIRONMENT, instructions=instructions):
await self.generate(format="landscape")
generate_environment_background.exposed = True
async def generate_character_portrait(
@ -442,8 +446,10 @@ class VisualBase(Agent):
instructions=instructions,
):
await self.generate(format="portrait")
generate_character_portrait.exposed = True
# apply mixins to the agent (from HANDLERS dict[str, cls])
for mixin_backend, mixin in HANDLERS.items():

View file

@ -1,5 +1,6 @@
import base64
import io
from urllib.parse import unquote
import httpx
import structlog
@ -100,6 +101,8 @@ class OpenAIImageMixin:
else:
resolution = Resolution(width=1024, height=1024)
log.debug("openai_image_generate", resolution=resolution)
response = await client.images.generate(
model=self.openai_model_type,
prompt=prompt.positive_prompt,
@ -110,8 +113,15 @@ class OpenAIImageMixin:
download_url = response.data[0].url
# decode url because httpx will encode it again
download_url = unquote(download_url)
log.debug("openai_image_generate", download_url=download_url)
async with httpx.AsyncClient() as client:
response = await client.get(download_url, timeout=90)
log.debug("openai_image_generate", status_code=response.status_code)
if response.status_code >= 400:
raise ValueError(f"Error downloading image: {response.content}")
# bytes to base64encoded
image = base64.b64encode(response.content).decode("utf-8")
await self.emit_image(image)

View file

@ -31,6 +31,14 @@ class Style(pydantic.BaseModel):
def load(self, prompt: str, negative_prompt: str = ""):
self.keywords = prompt.split(", ")
self.negative_keywords = negative_prompt.split(", ")
# loop through keywords and drop any starting with "no " and add to negative_keywords
# with "no " removed
for kw in self.keywords:
if kw.startswith("no "):
self.keywords.remove(kw)
self.negative_keywords.append(kw[3:])
return self
def prepend(self, *styles):

View file

@ -212,6 +212,7 @@ class WorldStateAgent(Agent):
self.next_update = 0
await scene.world_state.request_update()
update_world_state.exposed = True
@set_processing

View file

@ -1,10 +1,11 @@
import os
import talemate.client.runpod
from talemate.client.lmstudio import LMStudioClient
from talemate.client.openai import OpenAIClient
from talemate.client.mistral import MistralAIClient
from talemate.client.anthropic import AnthropicClient
from talemate.client.cohere import CohereClient
from talemate.client.lmstudio import LMStudioClient
from talemate.client.mistral import MistralAIClient
from talemate.client.openai import OpenAIClient
from talemate.client.openai_compat import OpenAICompatibleClient
from talemate.client.registry import CLIENT_CLASSES, get_client_class, register
from talemate.client.textgenwebui import TextGeneratorWebuiClient

View file

@ -79,6 +79,8 @@ class ClientBase:
conversation_retries: int = 2
auto_break_repetition_enabled: bool = True
decensor_enabled: bool = True
auto_determine_prompt_template: bool = False
finalizers: list[str] = []
client_type = "base"
class Meta(pydantic.BaseModel):
@ -97,6 +99,7 @@ class ClientBase:
):
self.api_url = api_url
self.name = name or self.client_type
self.auto_determine_prompt_template_attempt = None
self.log = structlog.get_logger(f"client.{self.client_type}")
if "max_token_length" in kwargs:
self.max_token_length = (
@ -262,13 +265,30 @@ class ClientBase:
self.current_status = status
prompt_template_example, prompt_template_file = self.prompt_template_example()
has_prompt_template = (
prompt_template_file and prompt_template_file != "default.jinja2"
)
if not has_prompt_template and self.auto_determine_prompt_template:
# only attempt to determine the prompt template once per model and
# only if the model does not already have a prompt template
if self.auto_determine_prompt_template_attempt != self.model_name:
log.info("auto_determine_prompt_template", model_name=self.model_name)
self.auto_determine_prompt_template_attempt = self.model_name
self.determine_prompt_template()
prompt_template_example, prompt_template_file = (
self.prompt_template_example()
)
has_prompt_template = (
prompt_template_file and prompt_template_file != "default.jinja2"
)
data = {
"api_key": self.api_key,
"prompt_template_example": prompt_template_example,
"has_prompt_template": (
prompt_template_file and prompt_template_file != "default.jinja2"
),
"has_prompt_template": has_prompt_template,
"template_file": prompt_template_file,
"meta": self.Meta().model_dump(),
"error_action": None,
@ -289,6 +309,15 @@ class ClientBase:
if status_change:
instance.emit_agent_status_by_client(self)
def determine_prompt_template(self):
if not self.model_name:
return
template = model_prompt.query_hf_for_prompt_template_suggestion(self.model_name)
if template:
model_prompt.create_user_override(template, self.model_name)
async def get_model_name(self):
models = await self.client.models.list()
try:
@ -373,6 +402,14 @@ class ClientBase:
else:
parameters["extra_stopping_strings"] = dialog_stopping_strings
def finalize(self, parameters: dict, prompt: str):
for finalizer in self.finalizers:
fn = getattr(self, finalizer, None)
prompt, applied = fn(parameters, prompt)
if applied:
return prompt
return prompt
async def generate(self, prompt: str, parameters: dict, kind: str):
"""
Generates text from the given prompt and parameters.
@ -421,6 +458,9 @@ class ClientBase:
finalized_prompt = self.prompt_template(
self.get_system_message(kind), prompt
).strip(" ")
finalized_prompt = self.finalize(prompt_param, finalized_prompt)
prompt_param = finalize(prompt_param)
token_length = self.count_tokens(finalized_prompt)

View file

@ -0,0 +1,225 @@
import pydantic
import structlog
from cohere import AsyncClient
from talemate.client.base import ClientBase, ErrorAction
from talemate.client.registry import register
from talemate.config import load_config
from talemate.emit import emit
from talemate.emit.signals import handlers
from talemate.util import count_tokens
__all__ = [
"CohereClient",
]
log = structlog.get_logger("talemate")
# Edit this to add new models / remove old models
SUPPORTED_MODELS = [
"command",
"command-r",
"command-r-plus",
]
class Defaults(pydantic.BaseModel):
max_token_length: int = 16384
model: str = "command-r-plus"
@register()
class CohereClient(ClientBase):
"""
Cohere client for generating text.
"""
client_type = "cohere"
conversation_retries = 0
auto_break_repetition_enabled = False
decensor_enabled = True
class Meta(ClientBase.Meta):
name_prefix: str = "Cohere"
title: str = "Cohere"
manual_model: bool = True
manual_model_choices: list[str] = SUPPORTED_MODELS
requires_prompt_template: bool = False
defaults: Defaults = Defaults()
def __init__(self, model="command-r-plus", **kwargs):
self.model_name = model
self.api_key_status = None
self.config = load_config()
super().__init__(**kwargs)
handlers["config_saved"].connect(self.on_config_saved)
@property
def cohere_api_key(self):
return self.config.get("cohere", {}).get("api_key")
def emit_status(self, processing: bool = None):
error_action = None
if processing is not None:
self.processing = processing
if self.cohere_api_key:
status = "busy" if self.processing else "idle"
model_name = self.model_name
else:
status = "error"
model_name = "No API key set"
error_action = ErrorAction(
title="Set API Key",
action_name="openAppConfig",
icon="mdi-key-variant",
arguments=[
"application",
"cohere_api",
],
)
if not self.model_name:
status = "error"
model_name = "No model loaded"
self.current_status = status
emit(
"client_status",
message=self.client_type,
id=self.name,
details=model_name,
status=status,
data={
"error_action": error_action.model_dump() if error_action else None,
"meta": self.Meta().model_dump(),
},
)
def set_client(self, max_token_length: int = None):
if not self.cohere_api_key:
self.client = AsyncClient("sk-1111")
log.error("No cohere API key set")
if self.api_key_status:
self.api_key_status = False
emit("request_client_status")
emit("request_agent_status")
return
if not self.model_name:
self.model_name = "command-r-plus"
if max_token_length and not isinstance(max_token_length, int):
max_token_length = int(max_token_length)
model = self.model_name
self.client = AsyncClient(self.cohere_api_key)
self.max_token_length = max_token_length or 16384
if not self.api_key_status:
if self.api_key_status is False:
emit("request_client_status")
emit("request_agent_status")
self.api_key_status = True
log.info(
"cohere set client",
max_token_length=self.max_token_length,
provided_max_token_length=max_token_length,
model=model,
)
def reconfigure(self, **kwargs):
if kwargs.get("model"):
self.model_name = kwargs["model"]
self.set_client(kwargs.get("max_token_length"))
def on_config_saved(self, event):
config = event.data
self.config = config
self.set_client(max_token_length=self.max_token_length)
def response_tokens(self, response: str):
return count_tokens(response.text)
def prompt_tokens(self, prompt: str):
return count_tokens(prompt)
async def status(self):
self.emit_status()
def prompt_template(self, system_message: str, prompt: str):
if "<|BOT|>" in prompt:
_, right = prompt.split("<|BOT|>", 1)
if right:
prompt = prompt.replace("<|BOT|>", "\nStart your response with: ")
else:
prompt = prompt.replace("<|BOT|>", "")
return prompt
def tune_prompt_parameters(self, parameters: dict, kind: str):
super().tune_prompt_parameters(parameters, kind)
keys = list(parameters.keys())
valid_keys = ["temperature", "max_tokens"]
for key in keys:
if key not in valid_keys:
del parameters[key]
async def generate(self, prompt: str, parameters: dict, kind: str):
"""
Generates text from the given prompt and parameters.
"""
if not self.cohere_api_key:
raise Exception("No cohere API key set")
right = None
expected_response = None
try:
_, right = prompt.split("\nStart your response with: ")
expected_response = right.strip()
except (IndexError, ValueError):
pass
human_message = prompt.strip()
system_message = self.get_system_message(kind)
self.log.debug(
"generate",
prompt=prompt[:128] + " ...",
parameters=parameters,
system_message=system_message,
)
try:
response = await self.client.chat(
model=self.model_name,
preamble=system_message,
message=human_message,
**parameters,
)
self._returned_prompt_tokens = self.prompt_tokens(prompt)
self._returned_response_tokens = self.response_tokens(response)
log.debug("generated response", response=response.text)
response = response.text
if expected_response and expected_response.startswith("{"):
if response.startswith("```json") and response.endswith("```"):
response = response[7:-3].strip()
if right and response.startswith(right):
response = response[len(right) :].strip()
return response
# except PermissionDeniedError as e:
# self.log.error("generate error", e=e)
# emit("status", message="cohere API: Permission Denied", status="error")
# return ""
except Exception as e:
raise

View file

@ -12,6 +12,7 @@ class Defaults(pydantic.BaseModel):
@register()
class LMStudioClient(ClientBase):
auto_determine_prompt_template: bool = True
client_type = "lmstudio"
class Meta(ClientBase.Meta):

View file

@ -1,9 +1,8 @@
import json
import pydantic
import structlog
import tiktoken
from openai import AsyncOpenAI, PermissionDeniedError
from mistralai.async_client import MistralAsyncClient
from mistralai.exceptions import MistralAPIStatusException
from mistralai.models.chat_completion import ChatMessage
from talemate.client.base import ClientBase, ErrorAction
from talemate.client.registry import register
@ -25,6 +24,8 @@ SUPPORTED_MODELS = [
"mistral-large-latest",
]
JSON_OBJECT_RESPONSE_MODELS = SUPPORTED_MODELS
class Defaults(pydantic.BaseModel):
max_token_length: int = 16384
@ -41,7 +42,7 @@ class MistralAIClient(ClientBase):
conversation_retries = 0
auto_break_repetition_enabled = False
# TODO: make this configurable?
decensor_enabled = False
decensor_enabled = True
class Meta(ClientBase.Meta):
name_prefix: str = "MistralAI"
@ -104,7 +105,7 @@ class MistralAIClient(ClientBase):
def set_client(self, max_token_length: int = None):
if not self.mistralai_api_key:
self.client = AsyncOpenAI(api_key="sk-1111")
self.client = MistralAsyncClient(api_key="sk-1111")
log.error("No mistral.ai API key set")
if self.api_key_status:
self.api_key_status = False
@ -120,9 +121,7 @@ class MistralAIClient(ClientBase):
model = self.model_name
self.client = AsyncOpenAI(
api_key=self.mistralai_api_key, base_url="https://api.mistral.ai/v1/"
)
self.client = MistralAsyncClient(api_key=self.mistralai_api_key)
self.max_token_length = max_token_length or 16384
if not self.api_key_status:
@ -183,16 +182,23 @@ class MistralAIClient(ClientBase):
if not self.mistralai_api_key:
raise Exception("No mistral.ai API key set")
supports_json_object = self.model_name in JSON_OBJECT_RESPONSE_MODELS
right = None
expected_response = None
try:
_, right = prompt.split("\nStart your response with: ")
expected_response = right.strip()
if expected_response.startswith("{") and supports_json_object:
parameters["response_format"] = {"type": "json_object"}
except (IndexError, ValueError):
pass
human_message = {"role": "user", "content": prompt.strip()}
system_message = {"role": "system", "content": self.get_system_message(kind)}
system_message = self.get_system_message(kind)
messages = [
ChatMessage(role="system", content=system_message),
ChatMessage(role="user", content=prompt.strip()),
]
self.log.debug(
"generate",
@ -202,9 +208,9 @@ class MistralAIClient(ClientBase):
)
try:
response = await self.client.chat.completions.create(
response = await self.client.chat(
model=self.model_name,
messages=[system_message, human_message],
messages=messages,
**parameters,
)
@ -216,7 +222,11 @@ class MistralAIClient(ClientBase):
# older models don't support json_object response coersion
# and often like to return the response wrapped in ```json
# so we strip that out if the expected response is a json object
if expected_response and expected_response.startswith("{"):
if (
not supports_json_object
and expected_response
and expected_response.startswith("{")
):
if response.startswith("```json") and response.endswith("```"):
response = response[7:-3].strip()
@ -224,9 +234,14 @@ class MistralAIClient(ClientBase):
response = response[len(right) :].strip()
return response
except PermissionDeniedError as e:
except MistralAPIStatusException as e:
self.log.error("generate error", e=e)
emit("status", message="mistral.ai API: Permission Denied", status="error")
if e.http_status in [403, 401]:
emit(
"status",
message="mistral.ai API: Permission Denied",
status="error",
)
return ""
except Exception as e:
raise

View file

@ -1,3 +1,4 @@
import json
import os
import shutil
import tempfile
@ -155,11 +156,19 @@ class ModelPrompt:
except ValueError:
return None
models = list(
api.list_models(
filter=huggingface_hub.ModelFilter(model_name=model_name, author=author)
)
)
branch_name = "main"
# special popular cases
# bartowski
if author == "bartowski" and "exl2" in model_name:
# split model_name by exl2 and take the first part with "exl2" readded
# the second part is the branch name
model_name, branch_name = model_name.split("exl2_", 1)
model_name = f"{model_name}exl2"
models = list(api.list_models(model_name=model_name, author=author))
if not models:
return None
@ -167,9 +176,14 @@ class ModelPrompt:
model = models[0]
repo_id = f"{author}/{model_name}"
# Check README.md
with tempfile.TemporaryDirectory() as tmpdir:
readme_path = huggingface_hub.hf_hub_download(
repo_id=repo_id, filename="README.md", cache_dir=tmpdir
repo_id=repo_id,
filename="README.md",
cache_dir=tmpdir,
revision=branch_name,
)
if not readme_path:
return None
@ -180,6 +194,24 @@ class ModelPrompt:
if identifier(readme):
return f"{identifier.template_str}.jinja2"
# Check tokenizer_config.json
# "chat_template" key
with tempfile.TemporaryDirectory() as tmpdir:
config_path = huggingface_hub.hf_hub_download(
repo_id=repo_id,
filename="tokenizer_config.json",
cache_dir=tmpdir,
revision=branch_name,
)
if not config_path:
return None
with open(config_path) as f:
config = json.load(f)
for identifer_cls in TEMPLATE_IDENTIFIERS:
identifier = identifer_cls()
if identifier(config.get("chat_template", "")):
return f"{identifier.template_str}.jinja2"
model_prompt = ModelPrompt()
@ -197,6 +229,14 @@ class Llama2Identifier(TemplateIdentifier):
return "[INST]" in content and "[/INST]" in content
@register_template_identifier
class Llama3Identifier(TemplateIdentifier):
template_str = "Llama3"
def __call__(self, content: str):
return "<|start_header_id|>" in content and "<|end_header_id|>" in content
@register_template_identifier
class ChatMLIdentifier(TemplateIdentifier):
template_str = "ChatML"
@ -211,11 +251,42 @@ class ChatMLIdentifier(TemplateIdentifier):
{{ coercion_message }}
"""
return "<|im_start|>" in content and "<|im_end|>" in content
@register_template_identifier
class CommandRIdentifier(TemplateIdentifier):
template_str = "CommandR"
def __call__(self, content: str):
"""
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ system_message }}
{{ user_message }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|>
<|CHATBOT_TOKEN|>{{ coercion_message }}
"""
return (
"<|im_start|>system" in content
and "<|im_end|>" in content
and "<|im_start|>user" in content
and "<|im_start|>assistant" in content
"<|START_OF_TURN_TOKEN|>" in content
and "<|END_OF_TURN_TOKEN|>" in content
and "<|SYSTEM_TOKEN|>" not in content
)
@register_template_identifier
class CommandRPlusIdentifier(TemplateIdentifier):
template_str = "CommandRPlus"
def __call__(self, content: str):
"""
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ system_message }}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ user_message }}
<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{ coercion_message }}
"""
return (
"<|START_OF_TURN_TOKEN|>" in content
and "<|END_OF_TURN_TOKEN|>" in content
and "<|SYSTEM_TOKEN|>" in content
)

View file

@ -26,6 +26,8 @@ SUPPORTED_MODELS = [
"gpt-4-1106-preview",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
"gpt-4-turbo-2024-04-09",
"gpt-4-turbo",
]
JSON_OBJECT_RESPONSE_MODELS = [
@ -90,7 +92,7 @@ def num_tokens_from_messages(messages: list[dict], model: str = "gpt-3.5-turbo-0
class Defaults(pydantic.BaseModel):
max_token_length: int = 16384
model: str = "gpt-4-turbo-preview"
model: str = "gpt-4-turbo"
@register()
@ -113,7 +115,7 @@ class OpenAIClient(ClientBase):
requires_prompt_template: bool = False
defaults: Defaults = Defaults()
def __init__(self, model="gpt-4-turbo-preview", **kwargs):
def __init__(self, model="gpt-4-turbo", **kwargs):
self.model_name = model
self.api_key_status = None
self.config = load_config()

View file

@ -1,12 +1,13 @@
import urllib
import pydantic
import structlog
import urllib
from openai import AsyncOpenAI, NotFoundError, PermissionDeniedError
from talemate.client.base import ClientBase, ExtraField
from talemate.client.registry import register
from talemate.emit import emit
from talemate.config import Client as BaseClientConfig
from talemate.emit import emit
log = structlog.get_logger("talemate.client.openai_compat")

View file

@ -21,11 +21,13 @@ dotenv.load_dotenv()
runpod.api_key = load_config().get("runpod", {}).get("api_key", "")
TEXTGEN_IDENTIFIERS = ["textgen", "thebloke llms", "text-generation-webui"]
def is_textgen_pod(pod):
name = pod["name"].lower()
if "textgen" in name or "thebloke llms" in name:
if any(identifier in name for identifier in TEXTGEN_IDENTIFIERS):
return True
return False

View file

@ -13,6 +13,12 @@ log = structlog.get_logger("talemate.client.textgenwebui")
@register()
class TextGeneratorWebuiClient(ClientBase):
auto_determine_prompt_template: bool = True
finalizers: list[str] = [
"finalize_llama3",
"finalize_YI",
]
client_type = "textgenwebui"
class Meta(ClientBase.Meta):
@ -28,23 +34,42 @@ class TextGeneratorWebuiClient(ClientBase):
parameters["max_new_tokens"] = parameters["max_tokens"]
parameters["stop"] = parameters["stopping_strings"]
# Half temperature on -Yi- models
if self.model_name and self.is_yi_model():
parameters["smoothing_factor"] = 0.3
# also half the temperature
parameters["temperature"] = max(0.1, parameters["temperature"] / 2)
log.debug(
"applying temperature smoothing for Yi model",
)
def set_client(self, **kwargs):
self.client = AsyncOpenAI(base_url=self.api_url + "/v1", api_key="sk-1111")
def is_yi_model(self):
def finalize_llama3(self, parameters: dict, prompt: str) -> tuple[str, bool]:
if "<|eot_id|>" not in prompt:
return prompt, False
# llama3 instruct models need to add "<|eot_id|>", "<|end_of_text|>" to the stopping strings
parameters["stopping_strings"] += ["<|eot_id|>", "<|end_of_text|>"]
# also needs to add `skip_special_tokens`= False to the parameters
parameters["skip_special_tokens"] = False
log.debug("finalizing llama3 instruct parameters", parameters=parameters)
if prompt.endswith("<|end_header_id|>"):
# append two linebreaks
prompt += "\n\n"
log.debug("adjusting llama3 instruct prompt: missing linebreaks")
return prompt, True
def finalize_YI(self, parameters: dict, prompt: str) -> tuple[str, bool]:
model_name = self.model_name.lower()
# regex match for yi encased by non-word characters
if not bool(re.search(r"[\-_]yi[\-_]", model_name)):
return prompt, False
return bool(re.search(r"[\-_]yi[\-_]", model_name))
parameters["smoothing_factor"] = 0.1
# also half the temperature
parameters["temperature"] = max(0.1, parameters["temperature"] / 2)
log.debug(
"finalizing YI parameters",
parameters=parameters,
)
return prompt, True
async def get_model_name(self):
async with httpx.AsyncClient() as client:

View file

@ -1,4 +1,5 @@
from .base import TalemateCommand
from .cmd_autocomplete import *
from .cmd_characters import *
from .cmd_debug_tools import *
from .cmd_dialogue import *

View file

@ -0,0 +1,26 @@
from talemate.commands.base import TalemateCommand
from talemate.commands.manager import register
from talemate.emit import emit
__all__ = [
"CmdAutocompleteDialogue",
]
@register
class CmdAutocompleteDialogue(TalemateCommand):
"""
Command class for the 'autocomplete_dialogue' command
"""
name = "autocomplete_dialogue"
description = "Generate dialogue for an AI selected actor"
aliases = ["acdlg"]
async def run(self):
input = self.args[0]
creator = self.scene.get_helper("creator").agent
character = self.scene.get_player_character()
await creator.autocomplete_dialogue(input, character, emit_signal=True)

View file

@ -1,13 +1,13 @@
import copy
import datetime
import os
import copy
from typing import TYPE_CHECKING, ClassVar, Dict, Optional, TypeVar, Union, Any
from typing_extensions import Annotated
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, TypeVar, Union
import pydantic
import structlog
import yaml
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from talemate.agents.registry import get_agent_class
from talemate.client.registry import get_client_class
@ -140,6 +140,10 @@ class AnthropicConfig(BaseModel):
api_key: Union[str, None] = None
class CohereConfig(BaseModel):
api_key: Union[str, None] = None
class RunPodConfig(BaseModel):
api_key: Union[str, None] = None
@ -322,6 +326,8 @@ class Config(BaseModel):
anthropic: AnthropicConfig = AnthropicConfig()
cohere: CohereConfig = CohereConfig()
runpod: RunPodConfig = RunPodConfig()
chromadb: ChromaDB = ChromaDB()

View file

@ -36,6 +36,8 @@ ConfigSaved = signal("config_saved")
ImageGenerated = signal("image_generated")
AutocompleteSuggestion = signal("autocomplete_suggestion")
handlers = {
"system": SystemMessage,
"narrator": NarratorMessage,
@ -63,4 +65,5 @@ handlers = {
"config_saved": ConfigSaved,
"status": StatusMessage,
"image_generated": ImageGenerated,
"autocomplete_suggestion": AutocompleteSuggestion,
}

View file

@ -1,13 +1,14 @@
import os
import importlib
import asyncio
import nest_asyncio
import structlog
import pydantic
import importlib
import os
from typing import TYPE_CHECKING, Coroutine
import nest_asyncio
import pydantic
import structlog
from RestrictedPython import compile_restricted, safe_globals
from RestrictedPython.Eval import default_guarded_getiter,default_guarded_getitem
from RestrictedPython.Guards import guarded_iter_unpack_sequence,safer_getattr
from RestrictedPython.Eval import default_guarded_getitem, default_guarded_getiter
from RestrictedPython.Guards import guarded_iter_unpack_sequence, safer_getattr
if TYPE_CHECKING:
from talemate.tale_mate import Scene
@ -20,9 +21,12 @@ nest_asyncio.apply()
DEV_MODE = True
def compile_scene_module(module_code:str, **kwargs):
def compile_scene_module(module_code: str, **kwargs):
# Compile the module code using RestrictedPython
compiled_code = compile_restricted(module_code, filename='<scene instructions>', mode='exec')
compiled_code = compile_restricted(
module_code, filename="<scene instructions>", mode="exec"
)
# Create a restricted globals dictionary
restricted_globals = safe_globals.copy()
@ -30,62 +34,64 @@ def compile_scene_module(module_code:str, **kwargs):
# Add custom variables, functions, or objects to the restricted globals
restricted_globals.update(kwargs)
restricted_globals['__name__'] = '__main__'
restricted_globals['__metaclass__'] = type
restricted_globals['_getiter_'] = default_guarded_getiter
restricted_globals['_getitem_'] = default_guarded_getitem
restricted_globals['_iter_unpack_sequence_'] = guarded_iter_unpack_sequence
restricted_globals['getattr'] = safer_getattr
restricted_globals["__name__"] = "__main__"
restricted_globals["__metaclass__"] = type
restricted_globals["_getiter_"] = default_guarded_getiter
restricted_globals["_getitem_"] = default_guarded_getitem
restricted_globals["_iter_unpack_sequence_"] = guarded_iter_unpack_sequence
restricted_globals["getattr"] = safer_getattr
restricted_globals["_write_"] = lambda x: x
restricted_globals["hasattr"] = hasattr
# Execute the compiled code with the restricted globals
exec(compiled_code, restricted_globals, safe_locals)
return safe_locals.get("game")
class GameInstructionsMixin:
"""
Game instructions mixin for director agent.
This allows Talemate scenarios to hook into the python api for more sophisticated
gameplate mechanics and direct exposure to AI functionality.
"""
@property
def scene_module_path(self):
return os.path.join(self.scene.save_dir, "game.py")
async def scene_has_instructions(self, scene: "Scene") -> bool:
"""Returns True if the scene has instructions."""
return await self.scene_has_module(scene) or await self.scene_has_template_instructions(scene)
return await self.scene_has_module(
scene
) or await self.scene_has_template_instructions(scene)
async def run_scene_instructions(self, scene: "Scene"):
"""
runs the game/__init__.py of the scene
"""
if await self.scene_has_module(scene):
await self.run_scene_module(scene)
else:
return await self.run_scene_template_instructions(scene)
# SCENE TEMPLATE INSTRUCTIONS SUPPORT
async def scene_has_template_instructions(self, scene: "Scene") -> bool:
"""Returns True if the scene has an instructions template."""
instructions_template_path = os.path.join(scene.template_dir, "instructions.jinja2")
instructions_template_path = os.path.join(
scene.template_dir, "instructions.jinja2"
)
return os.path.exists(instructions_template_path)
async def run_scene_template_instructions(self, scene: "Scene"):
client = self.client
game_state = scene.game_state
if not await self.scene_has_template_instructions(self.scene):
return
log.info("Running scene instructions from jinja2 template", scene=scene)
with PrependTemplateDirectories([scene.template_dir]):
prompt = Prompt.get(
@ -105,60 +111,59 @@ class GameInstructionsMixin:
instructions=instructions,
)
return instructions
# SCENE PYTHON INSTRUCTIONS SUPPORT
async def run_scene_module(self, scene:"Scene"):
async def run_scene_module(self, scene: "Scene"):
"""
runs the game/__init__.py of the scene
"""
if not await self.scene_has_module(scene):
return
await self.load_scene_module(scene)
log.info("Running scene instructions from python module", scene=scene)
with OpenScopedContext(self.scene, self.client):
with PrependTemplateDirectories(self.scene.template_dir):
scene._module()
if DEV_MODE:
# delete the module so it can be reloaded
# on the next run
del scene._module
async def load_scene_module(self, scene:"Scene"):
async def load_scene_module(self, scene: "Scene"):
"""
loads the game.py of the scene
"""
if not await self.scene_has_module(scene):
return
if hasattr(scene, "_module"):
log.warning("Scene already has a module loaded")
return
# file path to the game/__init__.py file of the scene
module_path = self.scene_module_path
# read thje file into _module property
with open(module_path, "r") as f:
module_code = f.read()
scene._module = GameInstructionScope(
agent=self,
agent=self,
log=log,
scene=scene,
module_function=compile_scene_module(module_code)
scene=scene,
module_function=compile_scene_module(module_code),
)
async def scene_has_module(self, scene:"Scene"):
async def scene_has_module(self, scene: "Scene"):
"""
checks if the scene has a game.py
"""
return os.path.exists(self.scene_module_path)
return os.path.exists(self.scene_module_path)

View file

@ -1,17 +1,19 @@
from typing import TYPE_CHECKING, Coroutine, Callable, Any
import asyncio
import nest_asyncio
import contextvars
from typing import TYPE_CHECKING, Any, Callable, Coroutine
import nest_asyncio
import structlog
from talemate.emit import emit
from talemate.client.base import ClientBase
from talemate.instance import get_agent, AGENTS
from talemate.agents.base import Agent
from talemate.client.base import ClientBase
from talemate.emit import emit
from talemate.instance import AGENTS, get_agent
from talemate.prompts.base import Prompt
if TYPE_CHECKING:
from talemate.tale_mate import Scene, Character
from talemate.game.state import GameState
from talemate.tale_mate import Character, Scene
__all__ = [
"OpenScopedContext",
@ -28,7 +30,8 @@ nest_asyncio.apply()
log = structlog.get_logger("talemate.game.scope")
def run_async(coro:Coroutine):
def run_async(coro: Coroutine):
"""
runs a coroutine
"""
@ -37,155 +40,153 @@ def run_async(coro:Coroutine):
class ScopedContext:
def __init__(self, scene:"Scene" = None, client:ClientBase = None):
def __init__(self, scene: "Scene" = None, client: ClientBase = None):
self.scene = scene
self.client = client
scoped_context = contextvars.ContextVar("scoped_context", default=ScopedContext())
class OpenScopedContext:
def __init__(self, scene:"Scene", client:ClientBase):
def __init__(self, scene: "Scene", client: ClientBase):
self.scene = scene
self.context = ScopedContext(
scene = scene,
client = client
)
self.context = ScopedContext(scene=scene, client=client)
def __enter__(self):
self.token = scoped_context.set(
self.context
)
self.token = scoped_context.set(self.context)
def __exit__(self, *args):
scoped_context.reset(self.token)
class ObjectScope:
"""
Defines a method for getting the scoped object
"""
exposed_properties = []
exposed_methods = []
def __init__(self, get_scoped_object:Callable):
def __init__(self, get_scoped_object: Callable):
self.scope_object(get_scoped_object)
def __getattr__(self, name:str):
def __getattr__(self, name: str):
if name in self.scoped_properties:
return self.scoped_properties[name]()
return super().__getattr__(name)
def scope_object(self, get_scoped_object:Callable):
def scope_object(self, get_scoped_object: Callable):
self.scoped_properties = {}
for prop in self.exposed_properties:
self.scope_property(prop, get_scoped_object)
for method in self.exposed_methods:
self.scope_method(method, get_scoped_object)
def scope_property(self, prop:str, get_scoped_object:Callable):
def scope_property(self, prop: str, get_scoped_object: Callable):
self.scoped_properties[prop] = lambda: getattr(get_scoped_object(), prop)
def scope_method(self, method:str, get_scoped_object:Callable):
def scope_method(self, method: str, get_scoped_object: Callable):
def fn(*args, **kwargs):
_fn = getattr(get_scoped_object(), method)
# if coroutine, run it in the event loop
if asyncio.iscoroutinefunction(_fn):
rv = run_async(
_fn(*args, **kwargs)
)
rv = run_async(_fn(*args, **kwargs))
elif callable(_fn):
rv = _fn(*args, **kwargs)
else:
rv = _fn
return rv
fn.__name__ = method
#log.debug("Setting", self, method, "to", fn.__name__)
# log.debug("Setting", self, method, "to", fn.__name__)
setattr(self, method, fn)
class ClientScope(ObjectScope):
"""
Wraps the client with certain exposed
methods that can be used in game logic implementations
through the scene's game.py file.
Exposed:
- send_prompt
"""
exposed_properties = [
"send_prompt"
]
exposed_properties = ["send_prompt"]
def __init__(self):
super().__init__(lambda: scoped_context.get().client)
def render_and_request(self, template_name:str, kind:str="create", dedupe_enabled:bool=True, **kwargs):
"""
def render_and_request(
self,
template_name: str,
kind: str = "create",
dedupe_enabled: bool = True,
**kwargs,
):
"""
Renders a prompt and sends it to the client
"""
prompt = Prompt.get(template_name, kwargs)
prompt.client = scoped_context.get().client
prompt.dedupe_enabled = dedupe_enabled
return run_async(prompt.send(scoped_context.get().client, kind))
def query_text_eval(self, query: str, text: str):
world_state = get_agent("world_state")
query = f"{query} Answer with a yes or no."
response = run_async(
world_state.analyze_text_and_answer_question(text=text, query=query, short=True)
world_state.analyze_text_and_answer_question(
text=text, query=query, short=True
)
)
return response.strip().lower().startswith("y")
class AgentScope(ObjectScope):
"""
Wraps agent calls with certain exposed
methods that can be used in game logic implementations
Exposed:
- action: calls an agent action
- config: returns the agent's configuration
"""
def __init__(self, agent:Agent):
def __init__(self, agent: Agent):
self.exposed_properties = [
"sanitized_action_config",
]
self.exposed_methods = []
# loop through all methods on agent and add them to the scope
# if the function has `exposed` attribute set to True
for key in dir(agent):
value = getattr(agent, key)
if callable(value) and hasattr(value, "exposed") and value.exposed:
self.exposed_methods.append(key)
# log.debug("AgentScope", agent=agent, exposed_properties=self.exposed_properties, exposed_methods=self.exposed_methods)
super().__init__(lambda: agent)
self.config = lambda: agent.sanitized_action_config
class GameStateScope(ObjectScope):
exposed_methods = [
"set_var",
"has_var",
@ -193,17 +194,17 @@ class GameStateScope(ObjectScope):
"get_or_set_var",
"unset_var",
]
def __init__(self):
super().__init__(lambda: scoped_context.get().scene.game_state)
class LogScope:
class LogScope:
"""
Wrapper for log calls
"""
def __init__(self, log:object):
def __init__(self, log: object):
self.info = log.info
self.error = log.error
self.debug = log.debug
@ -222,23 +223,28 @@ class CharacterScope(ObjectScope):
"details",
"is_player",
]
exposed_methods = [
"update",
"set_detail",
"set_base_attribute",
"rename",
]
class SceneScope(ObjectScope):
"""
Wraps scene calls with certain exposed
methods that can be used in game logic implementations
"""
exposed_properties = [
"name",
"title",
]
exposed_methods = [
"context",
"context_history",
@ -246,19 +252,20 @@ class SceneScope(ObjectScope):
"npc_character_names",
"restore",
"set_content_context",
"set_title",
]
def __init__(self):
super().__init__(lambda: scoped_context.get().scene)
def get_character(self, name:str) -> "CharacterScope":
def get_character(self, name: str) -> "CharacterScope":
"""
returns a character by name
"""
character = scoped_context.get().scene.get_character(name)
if character:
return CharacterScope(lambda: character)
def get_player_character(self) -> "CharacterScope":
"""
returns the player character
@ -266,30 +273,32 @@ class SceneScope(ObjectScope):
character = scoped_context.get().scene.get_player_character()
if character:
return CharacterScope(lambda: character)
def history(self):
return [h for h in scoped_context.get().scene.history]
class GameInstructionScope:
def __init__(self, agent:Agent, log:object, scene:"Scene", module_function:callable):
def __init__(
self, agent: Agent, log: object, scene: "Scene", module_function: callable
):
self.game_state = GameStateScope()
self.client = ClientScope()
self.agents = type('', (), {})()
self.agents = type("", (), {})()
self.scene = SceneScope()
self.wait = run_async
self.log = LogScope(log)
self.module_function = module_function
for key, agent in AGENTS.items():
setattr(self.agents, key, AgentScope(agent))
def __call__(self):
self.module_function(self)
def emit_status(self, status: str, message: str, **kwargs):
if kwargs:
emit("status", status=status, message=message, data=kwargs)
else:
emit("status", status=status, message=message)
emit("status", status=status, message=message)

View file

@ -73,6 +73,6 @@ class GameState(pydantic.BaseModel):
if not self.has_var(key):
self.set_var(key, value, commit=commit)
return self.get_var(key)
def unset_var(self, key: str):
self.variables.pop(key, None)
self.variables.pop(key, None)

View file

@ -125,9 +125,9 @@ async def load_scene_from_character_card(scene, file_path):
character.base_attributes = {
k.lower(): v for k, v in character.base_attributes.items()
}
character.dialogue_instructions = await creator.determine_character_dialogue_instructions(
character
character.dialogue_instructions = (
await creator.determine_character_dialogue_instructions(character)
)
# any values that are lists should be converted to strings joined by ,
@ -181,6 +181,7 @@ async def load_scene_from_data(
scene.experimental = scene_data.get("experimental", False)
scene.help = scene_data.get("help", "")
scene.restore_from = scene_data.get("restore_from", "")
scene.title = scene_data.get("title", "")
# reset = True

View file

@ -14,7 +14,7 @@ import random
import re
import uuid
from contextvars import ContextVar
from typing import Any
from typing import Any, Tuple
import jinja2
import nest_asyncio
@ -34,8 +34,6 @@ from talemate.util import (
remove_extra_linebreaks,
)
from typing import Tuple
__all__ = [
"Prompt",
"LoopedPrompt",
@ -273,10 +271,17 @@ class Prompt:
return prompt
@classmethod
async def request(cls, uid: str, client: Any, kind: str, vars: dict = None):
async def request(
cls, uid: str, client: Any, kind: str, vars: dict = None, **kwargs
):
if "decensor" not in vars:
vars.update(decensor=client.decensor_enabled)
prompt = cls.get(uid, vars)
# kwargs update prompt class attributes
for key, value in kwargs.items():
setattr(prompt, key, value)
return await prompt.send(client, kind)
@property
@ -822,14 +827,9 @@ class Prompt:
response = self.prepared_response.rstrip() + pad + response.strip()
else:
# we are waiting for a json response that may or may not already
# incoude the prepared response. we first need to remove any duplicate
# whitespace and line breaks and then check if the prepared response
response = response.replace("\n", " ")
response = re.sub(r"\s+", " ", response)
if not response.lower().startswith(self.prepared_response.lower()):
# awaiting json response, if the response does not start with a {
# it means its likely a coerced response and we need to prepend the prepared response
if not response.lower().startswith("{"):
pad = " " if self.pad_prepended_response else ""
response = self.prepared_response.rstrip() + pad + response.strip()

View file

@ -0,0 +1,25 @@
{% block rendered_context -%}
<|SECTION:CONTEXT|>
{%- with memory_query=scene.snapshot() -%}
{% include "extra-context.jinja2" %}
{% endwith %}
<|CLOSE_SECTION|>
{% endblock -%}
<|SECTION:SCENE|>
{% for scene_context in scene.context_history(budget=min(2048, max_tokens-300-count_tokens(self.rendered_context())), min_dialogue=20, sections=False) -%}
{{ scene_context }}
{% endfor %}
<|CLOSE_SECTION|>
<|SECTION:TASK|>
Continue {{ character.name }}'s unfinished line in this screenplay.
Your response MUST only be the new parts of the dialogue, not the entire line.
Partial line: {{ character.name }}: {{ input }}
{% if not can_coerce -%}
Continuation:
<|CLOSE_SECTION|>
{%- else -%}
<|CLOSE_SECTION|>
{{ bot_token }}{{ input }}
{%- endif -%}

View file

@ -10,5 +10,6 @@ By default all actors are given the following instructions for their character(s
Dialogue instructions: "Use an informal and colloquial register with a conversational tone. Overall, {{ character.name }}'s dialog is informal, conversational, natural, and spontaneous, with a sense of immediacy."
However you can override this default instruction by providing your own instructions below.
Keep the format similar and stick to one paragraph.
<|CLOSE_SECTION|>
{{ bot_token }}Dialogue instructions:

View file

@ -23,10 +23,10 @@ Treat updates as absolute, the new character sheet will replace the old one.
Alteration instructions: {{ alteration_instructions }}
{% endif %}
Narration style should be that of a 90s point and click adventure game. You are omniscient and can describe the scene in detail.
Use an informal and colloquial register with a conversational tone. Overall, the narrative is Informal, conversational, natural, and spontaneous, with a sense of immediacy.
You must only generate attributes for {{ name }}. You are omniscient and can describe the character in detail.
Example:
Name: <character name>

View file

@ -1,5 +1,6 @@
from dataclasses import dataclass, field
import re
from dataclasses import dataclass, field
import isodate
_message_id = 0
@ -32,7 +33,7 @@ class SceneMessage:
source: str = ""
hidden: bool = False
typ = "scene"
def __str__(self):
@ -138,7 +139,7 @@ class NarratorMessage(SceneMessage):
class DirectorMessage(SceneMessage):
action: str = "actor_instruction"
typ = "director"
@property
def transformed_message(self):
return self.message.replace("Director instructs ", "")
@ -148,51 +149,58 @@ class DirectorMessage(SceneMessage):
if self.action == "actor_instruction":
return self.transformed_message.split(":", 1)[0]
return ""
@property
def dialogue(self):
if self.action == "actor_instruction":
return self.transformed_message.split(":", 1)[1]
return self.message
@property
def instructions(self):
if self.action == "actor_instruction":
return self.dialogue.replace('"','').replace("To progress the scene, i want you to ", "").strip()
return (
self.dialogue.replace('"', "")
.replace("To progress the scene, i want you to ", "")
.strip()
)
return self.message
@property
def as_inner_monologue(self):
# instructions may be written referencing the character as you, your etc.,
# so we need to replace those to fit a first person perspective
# first we lowercase
instructions = self.instructions.lower()
if not self.character_name:
return instructions
# then we replace yourself with myself using regex, taking care of word boundaries
instructions = re.sub(r"\byourself\b", "myself", instructions)
# then we replace your with my using regex, taking care of word boundaries
instructions = re.sub(r"\byour\b", "my", instructions)
# then we replace you with i using regex, taking care of word boundaries
instructions = re.sub(r"\byou\b", "i", instructions)
return f"{self.character_name} thinks: I should {instructions}"
@property
def as_story_progression(self):
return f"{self.character_name}'s next action: {self.instructions}"
def __dict__(self):
rv = super().__dict__()
if self.action:
rv["action"] = self.action
return rv
def __str__(self):
"""
The director message is a special case and needs to be transformed
@ -212,6 +220,7 @@ class DirectorMessage(SceneMessage):
else:
return f"# {self.as_story_progression}"
@dataclass
class TimePassageMessage(SceneMessage):
ts: str = "PT0S"
@ -238,7 +247,9 @@ class ReinforcementMessage(SceneMessage):
def __str__(self):
question, _ = self.source.split(":", 1)
return f"# Internal notes for {self.character_name} - {question}: {self.message}"
return (
f"# Internal notes for {self.character_name} - {question}: {self.message}"
)
def as_format(self, format: str, **kwargs) -> str:
if format == "movie_script":

View file

@ -389,7 +389,7 @@ class WebsocketHandler(Receiver):
character = emission.message_object.source
else:
character = ""
director = instance.get_agent("director")
direction_mode = director.actor_direction_mode
@ -541,6 +541,14 @@ class WebsocketHandler(Receiver):
}
)
def handle_autocomplete_suggestion(self, emission: Emission):
self.queue_put(
{
"type": "autocomplete_suggestion",
"message": emission.message,
}
)
def handle_audio_queue(self, emission: Emission):
self.queue_put(
{

View file

@ -265,12 +265,12 @@ class Character:
orig_name = self.name
self.name = new_name
if orig_name.lower() == "you":
# we dont want to replace "you" in the description
# or anywhere else so we can just return here
return
return
if self.description:
self.description = self.description.replace(f"{orig_name}", self.name)
for k, v in self.base_attributes.items():
@ -756,6 +756,7 @@ class Scene(Emitter):
self.static_tokens = 0
self.max_tokens = 2048
self.next_actor = None
self.title = ""
self.experimental = False
self.help = ""
@ -898,7 +899,13 @@ class Scene(Emitter):
def set_intro(self, intro: str):
self.intro = intro
def set_name(self, name: str):
self.name = name
def set_title(self, title: str):
self.title = title
def set_content_context(self, content_context: str):
self.context = content_context
@ -1367,13 +1374,21 @@ class Scene(Emitter):
if isinstance(message, DirectorMessage):
if not keep_director:
continue
if not message.character_name:
# skip director messages that are not character specific
# TODO: we may want to include these in the future
continue
elif isinstance(keep_director, str) and message.source != keep_director:
continue
if count_tokens(parts_dialogue) + count_tokens(message) > budget_dialogue:
break
parts_dialogue.insert(0, message.as_format(conversation_format, mode=actor_direction_mode))
parts_dialogue.insert(
0, message.as_format(conversation_format, mode=actor_direction_mode)
)
# collect context, ignore where end > len(history) - count
@ -1599,6 +1614,7 @@ class Scene(Emitter):
self.name,
status="started",
data={
"title": self.title or self.name,
"environment": self.environment,
"scene_config": self.scene_config,
"player_character_name": (

View file

@ -890,10 +890,10 @@ def ensure_dialog_format(line: str, talking_character: str = None) -> str:
line = line[len(talking_character) + 1 :].lstrip()
lines = []
has_asterisks = "*" in line
has_quotes = '"' in line
default_wrap = None
if has_asterisks and not has_quotes:
default_wrap = '"'
@ -925,7 +925,7 @@ def ensure_dialog_format(line: str, talking_character: str = None) -> str:
return line
def ensure_dialog_line_format(line: str, default_wrap:str=None) -> str:
def ensure_dialog_line_format(line: str, default_wrap: str = None) -> str:
"""
a Python function that standardizes the formatting of dialogue and action/thought
descriptions in text strings. This function is intended for use in a text-based
@ -944,13 +944,13 @@ def ensure_dialog_line_format(line: str, default_wrap:str=None) -> str:
line = line.strip()
line = line.replace('"*', '"').replace('*"', '"')
# if the line ends with a whitespace followed by a classifier, strip both from the end
# as this indicates the remnants of a partial segment that was removed.
if line.endswith(" *") or line.endswith(' "'):
line = line[:-2]
if "*" not in line and '"' not in line and default_wrap and line:
# if the line is not wrapped in either asterisks or quotes, wrap it in the default
# wrap, if specified - when it's specialized it means the line was split and we
@ -997,9 +997,9 @@ def ensure_dialog_line_format(line: str, default_wrap:str=None) -> str:
else:
if segment_open is None and c and c != " ":
if last_classifier == '"':
segment_open = '*'
segment_open = "*"
segment = f"{segment_open}{c}"
elif last_classifier == '*':
elif last_classifier == "*":
segment_open = '"'
segment = f"{segment_open}{c}"
else:

2
start-local.bat Normal file
View file

@ -0,0 +1,2 @@
start cmd /k "cd talemate_frontend && npm run serve -- --host 127.0.0.1 --port 8080"
start cmd /k "cd talemate_env\Scripts && activate && cd ../../ && python src\talemate\server\run.py runserver --host 127.0.0.1 --port 5050"

View file

@ -1,12 +1,12 @@
{
"name": "talemate_frontend",
"version": "0.22.0",
"version": "0.23.0",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "talemate_frontend",
"version": "0.22.0",
"version": "0.23.0",
"dependencies": {
"@mdi/font": "7.4.47",
"core-js": "^3.8.3",

View file

@ -1,6 +1,6 @@
{
"name": "talemate_frontend",
"version": "0.22.0",
"version": "0.23.0",
"private": true,
"scripts": {
"serve": "vue-cli-service serve",

View file

@ -157,6 +157,23 @@
</v-row>
</div>
<!-- COHERE API -->
<div v-if="applicationPageSelected === 'cohere_api'">
<v-alert color="white" variant="text" icon="mdi-api" density="compact">
<v-alert-title>Cohere</v-alert-title>
<div class="text-grey">
Configure your Cohere API key here. You can get one from <a href="https://dashboard.cohere.com/api-keys" target="_blank">https://dashboard.cohere.com/api-keys</a>
</div>
</v-alert>
<v-divider class="mb-2"></v-divider>
<v-row>
<v-col cols="12">
<v-text-field type="password" v-model="app_config.cohere.api_key"
label="Cohere API Key"></v-text-field>
</v-col>
</v-row>
</div>
<!-- ELEVENLABS API -->
<div v-if="applicationPageSelected === 'elevenlabs_api'">
<v-alert color="white" variant="text" icon="mdi-api" density="compact">
@ -279,6 +296,7 @@ export default {
{title: 'OpenAI', icon: 'mdi-api', value: 'openai_api'},
{title: 'mistral.ai', icon: 'mdi-api', value: 'mistralai_api'},
{title: 'Anthropic', icon: 'mdi-api', value: 'anthropic_api'},
{title: 'Cohere', icon: 'mdi-api', value: 'cohere_api'},
{title: 'ElevenLabs', icon: 'mdi-api', value: 'elevenlabs_api'},
{title: 'RunPod', icon: 'mdi-api', value: 'runpod_api'},
],

View file

@ -51,7 +51,7 @@
<v-card-text>
<div class="text-caption" v-if="!client.data.has_prompt_template">No matching LLM prompt template found. Using default.</div>
<pre>{{ client.data.prompt_template_example }}</pre>
<div class="prompt-template-preview">{{ client.data.prompt_template_example }}</div>
</v-card-text>
<v-card-actions>
<v-btn @click.stop="determineBestTemplate" prepend-icon="mdi-web-box">Determine via HuggingFace</v-btn>
@ -250,4 +250,13 @@ export default {
this.registerMessageHandler(this.handleMessage);
},
}
</script>
</script>
<style scoped>
.prompt-template-preview {
white-space: pre-wrap;
font-family: monospace;
font-size: 0.8rem;
}
</style>

View file

@ -140,6 +140,16 @@ export default {
this.setWaitingForInput(false);
},
messageTypeIsSceneMessage(type) {
return ![
'request_input',
'client_status',
'agent_status',
'status',
'autocomplete_suggestion'
].includes(type);
},
handleMessage(data) {
var i;
@ -198,7 +208,7 @@ export default {
action: data.action
}
);
} else if (data.type != 'request_input' && data.type != 'client_status' && data.type != 'agent_status' && data.type != 'status') {
} else if (this.messageTypeIsSceneMessage(data.type)) {
this.messages.push({ id: data.id, type: data.type, text: data.message, color: data.color, character: data.character, status:data.status, ts:data.ts }); // Add color property to the message
} else if (data.type === 'status' && data.data && data.data.as_scene_message === true) {

View file

@ -50,6 +50,15 @@
<v-icon class="ml-1 mr-3" v-else-if="isWaitingForInput()">mdi-keyboard</v-icon>
<v-icon class="ml-1 mr-3" v-else>mdi-circle-outline</v-icon>
<v-tooltip v-if="isWaitingForInput()" location="top" text="Request autocomplete suggestion for your input. [Ctrl+Enter while typing]">
<template v-slot:activator="{ props }">
<v-btn :disabled="messageInput.length < 5" class="hotkey mr-3" v-bind="props" @click="requestAutocompleteSuggestion" color="primary" icon>
<v-icon>mdi-auto-fix</v-icon>
</v-btn>
</template>
</v-tooltip>
<v-divider vertical></v-divider>
@ -372,6 +381,7 @@ export default {
inactiveCharacters: Array,
activeCharacters: Array,
playerCharacterName: String,
messageInput: String,
},
computed: {
deactivatableCharacters: function() {
@ -667,6 +677,10 @@ export default {
this.sendHotButtonMessage(command)
},
requestAutocompleteSuggestion() {
this.getWebsocket().send(JSON.stringify({ type: 'interact', text: `!acdlg:${this.messageInput}` }));
},
handleMessage(data) {
if (data.type === "command_status") {

View file

@ -86,9 +86,13 @@
<!-- app bar -->
<v-app-bar app>
<v-app-bar-nav-icon @click="toggleNavigation('game')"><v-icon>mdi-script</v-icon></v-app-bar-nav-icon>
<v-app-bar-nav-icon size="x-small" @click="toggleNavigation('game')">
<v-icon v-if="sceneDrawer">mdi-arrow-collapse-left</v-icon>
<v-icon v-else>mdi-arrow-collapse-right</v-icon>
</v-app-bar-nav-icon>
<v-toolbar-title v-if="scene.name !== undefined">
{{ scene.name || 'Untitled Scenario' }}
{{ scene.title || 'Untitled Scenario' }}
<span v-if="scene.saved === false" class="text-red">*</span>
<v-chip size="x-small" v-if="scene.environment === 'creative'" class="ml-2"><v-icon text="Creative" size="14"
class="mr-1">mdi-palette-outline</v-icon>Creative Mode</v-chip>
@ -107,6 +111,9 @@
Talemate
</v-toolbar-title>
<v-spacer></v-spacer>
<v-app-bar-nav-icon v-if="sceneActive" @click="returnToStartScreen()"><v-icon>mdi-home</v-icon></v-app-bar-nav-icon>
<VisualQueue ref="visualQueue" />
<v-app-bar-nav-icon @click="toggleNavigation('debug')"><v-icon>mdi-bug</v-icon></v-app-bar-nav-icon>
<v-app-bar-nav-icon @click="openAppConfig()"><v-icon>mdi-cog</v-icon></v-app-bar-nav-icon>
@ -125,6 +132,7 @@
<SceneTools
@open-world-state-manager="onOpenWorldStateManager"
:messageInput="messageInput"
:playerCharacterName="getPlayerCharacterName()"
:passiveCharacters="passiveCharacters"
:inactiveCharacters="inactiveCharacters"
@ -345,6 +353,7 @@ export default {
if (data.type == "scene_status") {
this.scene = {
name: data.name,
title: data.data.title,
environment: data.data.environment,
scene_time: data.data.scene_time,
saved: data.data.saved,
@ -372,6 +381,23 @@ export default {
return;
}
if (data.type === 'autocomplete_suggestion') {
const completion = data.message;
// append completion to messageInput, add a space if
// neither messageInput ends with a space nor completion starts with a space
// unless completion starts with !, ., or ?
const completionStartsWithSentenceEnd = completion.startsWith('!') || completion.startsWith('.') || completion.startsWith('?') || completion.startsWith(')') || completion.startsWith(']') || completion.startsWith('}') || completion.startsWith('"') || completion.startsWith("'") || completion.startsWith("*") || completion.startsWith(",")
if (this.messageInput.endsWith(' ') || completion.startsWith(' ') || completionStartsWithSentenceEnd) {
this.messageInput += completion;
} else {
this.messageInput += ' ' + completion;
}
}
if (data.type === 'request_input') {
this.waitingForInput = true;
@ -409,7 +435,14 @@ export default {
}
},
sendMessage() {
sendMessage(event) {
// if ctrl+enter is pressed, request autocomplete
if (event.ctrlKey && event.key === 'Enter') {
this.websocket.send(JSON.stringify({ type: 'interact', text: `!acdlg: ${this.messageInput}` }));
return;
}
if (!this.inputDisabled) {
this.websocket.send(JSON.stringify({ type: 'interact', text: this.messageInput }));
this.messageInput = '';
@ -447,6 +480,16 @@ export default {
else if (navigation == "debug")
this.debugDrawer = !this.debugDrawer;
},
returnToStartScreen() {
if(this.sceneActive && !this.scene.saved) {
let confirm = window.confirm("Are you sure you want to return to the start screen? You will lose any unsaved progress.");
if(!confirm)
return;
}
// reload
document.location.reload();
},
getClients() {
if (!this.$refs.aiClient) {
return [];

View file

@ -0,0 +1,2 @@
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ system_message }}
{{ user_message }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{ coercion_message }}

View file

@ -0,0 +1 @@
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ system_message }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ user_message }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{ coercion_message }}

View file

@ -0,0 +1,7 @@
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{{ system_message }}<|eot_id|><|start_header_id|>user<|end_header_id|>
{{ user_message }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{{ coercion_message }}

View file

@ -0,0 +1,7 @@
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{{ system_message }}<|eot_id|><|start_header_id|>user<|end_header_id|>
{{ user_message }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{{ coercion_message }}

View file

@ -0,0 +1 @@
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ system_message }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ user_message }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{ coercion_message }}

View file

@ -0,0 +1,2 @@
<BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ system_message }}
{{ user_message }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{ coercion_message }}