prima.cpp/common/profiler.cpp

2864 lines
98 KiB
C++

#include "log.h"
#include "profiler.h"
#include "ggml.h"
#include "ggml-backend.h"
#include "llama.h"
#include <sys/stat.h>
#if defined(_WIN32) || defined(_WIN64)
#include <windows.h>
#elif defined(__linux__)
#include <unistd.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <dirent.h>
#elif defined(__APPLE__) && defined(__MACH__)
#include <sys/sysctl.h>
#include <sys/param.h>
#include <sys/mount.h>
#include <mach/mach.h>
#include <unistd.h>
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#include <cuda_runtime.h>
#endif
#include <algorithm>
#include <cmath>
#include <chrono>
#include <fstream>
#include <string>
#include <cstring>
#include <sstream>
#include <sys/types.h>
#include <vector>
#include <inttypes.h>
#include <thread>
#include <random>
#include <regex>
#include <unordered_map>
#include <dirent.h>
static int gcd_int(int a, int b) {
while (b != 0) {
int t = b;
b = a % b;
a = t;
}
return a;
}
static size_t get_page_size() {
size_t page_size = 0;
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
page_size = si.dwPageSize;
#elif defined(__APPLE__) || defined(__linux__)
page_size = sysconf(_SC_PAGESIZE);
#endif
return page_size;
}
static const char * get_uname_os() {
std::unique_ptr<FILE, decltype(&pclose)> pipe(popen("uname -o", "r"), pclose);
if (!pipe) {
return "Unknown";
}
static char buffer[16];
if (fgets(buffer, sizeof(buffer), pipe.get()) != nullptr) {
buffer[strcspn(buffer, "\n")] = '\0';
return buffer;
}
return "Unknown";
}
const char * device_name() {
static char device_name[256];
#if defined(_WIN32) || defined(_WIN64)
DWORD size = sizeof(device_name);
if (GetComputerNameA(device_name, &size) == 0) {
strncpy(device_name, "Unknown Windows Device", sizeof(device_name));
}
#elif defined(__linux__)
const char * os = get_uname_os();
if (strstr(os, "Android") != nullptr) {
std::unique_ptr<FILE, decltype(&pclose)> pipe(popen("getprop ro.product.model", "r"), pclose);
if (pipe) {
if (fgets(device_name, sizeof(device_name), pipe.get()) != nullptr) {
device_name[strcspn(device_name, "\n")] = '\0';
return device_name;
}
}
strncpy(device_name, "Unknown Device", sizeof(device_name));
} else {
if (gethostname(device_name, sizeof(device_name)) != 0) {
strncpy(device_name, "Unknown Device", sizeof(device_name));
}
}
#elif defined(__APPLE__) && defined(__MACH__)
if (gethostname(device_name, sizeof(device_name)) != 0) {
strncpy(device_name, "Unknown Mac Device", sizeof(device_name));
}
#else
strncpy(device_name, "Unknown Device", sizeof(device_name));
#endif
return device_name;
}
const char * device_os() {
#ifdef _WIN32
return "Windows";
#elif __linux__
// const char * os = get_uname_os();
// if (strstr(os, "Android") != nullptr) {
// return "Android";
// }
return "Linux";
#elif __APPLE__ || __MACH__
return "macOS";
#endif
}
uint32_t device_cpu_cores() {
unsigned int core_count = 1; // default to 1 in case of failure
#if defined(_WIN32) || defined(_WIN64)
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
core_count = sysinfo.dwNumberOfProcessors;
#elif defined(__linux__)
core_count = sysconf(_SC_NPROCESSORS_ONLN);
#elif defined(__APPLE__) && defined(__MACH__)
int mib[4];
size_t len = sizeof(core_count);
mib[0] = CTL_HW;
mib[1] = HW_AVAILCPU;
if (sysctl(mib, 2, &core_count, &len, NULL, 0) != 0 || core_count < 1) {
mib[1] = HW_NCPU; // total number of cpus
if (sysctl(mib, 2, &core_count, &len, NULL, 0) != 0 || core_count < 1) {
core_count = 1; // default to 1 if sysctl fails
}
}
#endif
return core_count;
}
static float device_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t, enum profiler_backend_type btype, int n_threads) {
int n_repeat = 1;
int n_embd = std::min(llama_n_embd(model), 4096);
// simulate small tensor calculation on cpu
if (btype == PROFILER_BACKEND_TYPE_CPU) n_embd /= 8;
// ensure that the block sizes of the tensors are compatible
int bs0 = ggml_blck_size(src0t);
int bs1 = ggml_blck_size(src1t);
int gcd = gcd_int(bs0, bs1);
int lcm = bs0 / gcd * bs1;
if (n_embd % bs0 != 0 || n_embd % bs1 != 0) {
if (n_embd < lcm) {
n_embd = 2 * lcm;
} else {
n_embd = 2 * (n_embd / lcm) * lcm;
}
}
std::vector<float> matrix_A(n_embd * n_embd, 1.0f);
std::vector<float> matrix_B(n_embd * n_embd, 1.0f / n_embd);
ggml_backend_t backend = NULL;
switch (btype) {
case PROFILER_BACKEND_TYPE_CPU:
backend = ggml_backend_cpu_init();
break;
case PROFILER_BACKEND_TYPE_METAL:
#ifdef GGML_USE_METAL
backend = ggml_backend_metal_init();
#endif
break;
case PROFILER_BACKEND_TYPE_CUDA:
#ifdef GGML_USE_CUDA
backend = ggml_backend_cuda_init(0);
#endif
break;
}
if (!backend) {
LOG_INF("%s: ggml backend init failed\n", __func__);
return 0.0f;
}
struct ggml_init_params params = {
/*.mem_size =*/ 2 * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, src0t, n_embd, n_embd);
struct ggml_tensor * tensor_b = ggml_new_tensor_2d(ctx, src1t, n_embd, n_embd);
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
ggml_backend_tensor_set(tensor_a, matrix_A.data(), 0, ggml_nbytes(tensor_a));
ggml_backend_tensor_set(tensor_b, matrix_B.data(), 0, ggml_nbytes(tensor_b));
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx_cgraph = NULL;
struct ggml_tensor * cur = NULL;
{
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead() * (n_repeat + 2) + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx_cgraph = ggml_init(params0);
gf = ggml_new_graph(ctx_cgraph);
cur = ggml_mul_mat(ctx_cgraph, tensor_a, tensor_b);
for (int i = 0; i < n_repeat - 1; i++) {
cur = ggml_mul_mat(ctx_cgraph, tensor_a, cur);
}
ggml_build_forward_expand(gf, cur);
}
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
// use scheduler
std::vector<ggml_backend_buffer_type_t> backend_buft;
std::vector<ggml_backend_t> backends = {backend};
if (!ggml_backend_is_cpu(backend)) {
backends.push_back(ggml_backend_cpu_init());
}
for (ggml_backend_t bak : backends) {
if (ggml_backend_is_cpu(bak)) {
backend_buft.push_back(ggml_backend_cpu_buffer_type());
} else {
backend_buft.push_back(ggml_backend_get_default_buffer_type(bak));
}
}
ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backend_buft.data(), backends.size(), 256, false);
bool ok = ggml_backend_sched_reserve(sched, gf);
if (!ok) {
LOG_INF("%s: failed to allocate compute buffers\n", __func__);
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
return 0.0f;
}
ggml_backend_sched_reset(sched);
ggml_backend_sched_alloc_graph(sched, gf);
// warm-up
ggml_backend_graph_compute(backend, gf);
const int64_t t_start = ggml_time_us();
ggml_backend_graph_compute(backend, gf);
const int64_t t_end = ggml_time_us();
double elapsed_seconds = ((double)t_end - (double)t_start) / 1e6; // convert to seconds
double flops = (2.0 * (double)n_embd * (double)n_embd * (double)n_embd * n_repeat) / elapsed_seconds / 1e9; // convert to GFLOPS
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
return (float)flops;
}
float device_cpu_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t, int n_threads) {
return device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_CPU, n_threads);
}
float device_metal_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t) {
float flops = 0.0f;
#ifdef GGML_USE_METAL
flops = device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_METAL, 4);
#endif
(void)model;
(void)src0t;
(void)src1t;
return flops;
}
float device_cuda_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t) {
float flops = 0.0f;
#ifdef GGML_USE_CUDA
flops = device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_CUDA, 4);
#endif
(void)model;
(void)src0t;
(void)src1t;
return flops;
}
float device_inp_embd_delay(struct llama_model * model, enum ggml_type src0t, int n_tokens, int n_threads) {
const int n_vocab = llama_n_vocab(model);
const int n_embd = llama_n_embd(model);
ggml_backend_t backend = ggml_backend_cpu_init();
if (!backend) {
LOG_INF("%s: ggml backend init failed\n", __func__);
return 0.0f;
}
size_t ctx_size = 0;
ctx_size += 2 * ggml_tensor_overhead(); // tensors
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * tok_embd = ggml_new_tensor_2d(ctx, src0t, n_embd, n_vocab);
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
std::vector<int32_t> matrix_A(n_tokens);
for (int i = 0; i < n_tokens; ++i) {
matrix_A[i] = i % n_vocab;
}
const size_t embd_size = n_vocab * n_embd;
void * matrix_B = nullptr;
// quantization and dequantization functions
ggml_type_traits_t qfns = ggml_internal_get_type_traits(src0t);
if (!qfns.from_float || !qfns.to_float) {
LOG_INF("Unsupported or uninitialized quantization type: %d\n", src0t);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
return 0.0f;
}
switch (src0t) {
case GGML_TYPE_F32: {
matrix_B = malloc(embd_size * sizeof(float));
float * matrix_B_f32 = static_cast<float *>(matrix_B);
for (size_t i = 0; i < embd_size; ++i) {
matrix_B_f32[i] = static_cast<float>(rand() / RAND_MAX);
}
break;
}
case GGML_TYPE_F16: {
matrix_B = malloc(embd_size * sizeof(ggml_fp16_t));
std::vector<float> temp_f32(embd_size);
for (size_t i = 0; i < embd_size; ++i) {
temp_f32[i] = static_cast<float>(rand() / RAND_MAX);
}
ggml_fp32_to_fp16_row(temp_f32.data(), static_cast<ggml_fp16_t *>(matrix_B), embd_size);
break;
}
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q8_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ1_M:
matrix_B = malloc((embd_size / ggml_blck_size(src0t) * ggml_type_size(src0t))); // The quantization block sizes are inconsistent for different quantization methods
break;
default:
LOG_INF("Unsupported type: %d\n", src0t);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
return 0.0f;
}
ggml_backend_tensor_set(inp_tokens, matrix_A.data(), 0, ggml_nbytes(inp_tokens));
ggml_backend_tensor_set(tok_embd, matrix_B, 0, ggml_nbytes(tok_embd));
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx_cgraph = NULL;
{
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead() * 3 + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx_cgraph = ggml_init(params0);
gf = ggml_new_graph(ctx_cgraph);
struct ggml_tensor * cur = ggml_get_rows(ctx_cgraph, tok_embd, inp_tokens);
ggml_build_forward_expand(gf, cur);
}
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
// warm-up
ggml_backend_graph_compute(backend, gf);
const int64_t t_start = ggml_time_us();
ggml_backend_graph_compute(backend, gf);
const int64_t t_end = ggml_time_us();
double elapsed_ms = ((double)t_end - (double)t_start) / 1e3; // convert to ms
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
return (float)elapsed_ms;
}
static bool device_is_docker_container() {
#if defined(__linux__)
struct stat buffer;
if (stat("/.dockerenv", &buffer) == 0) {
return true;
}
std::ifstream cgroup_file("/proc/1/cgroup");
std::string line;
while (std::getline(cgroup_file, line)) {
if (line.find("docker") != std::string::npos ||
line.find("containerd") != std::string::npos) {
return true;
}
}
cgroup_file.close();
#endif
return false;
}
static int is_uma_arch() {
#if defined(__APPLE__) && defined(__MACH__)
int is_arm64 = 0;
size_t size = sizeof(is_arm64);
// check whether it is Apple Silicon (ARM64)
if (sysctlbyname("hw.optional.arm64", &is_arm64, &size, NULL, 0) != 0) {
return 0;
}
return is_arm64;
#else
return 0;
#endif
}
static uint64_t device_host_physical_memory(bool available) {
uint64_t memory = 0;
#if defined(_WIN32) || defined(_WIN64)
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
GlobalMemoryStatusEx(&status);
if (available) {
memory = status.ullAvailPhys;
} else {
memory = status.ullTotalPhys;
}
#elif defined(__linux__)
if (available) {
// read available memory from /proc/meminfo
std::ifstream meminfo("/proc/meminfo");
std::string line;
if (meminfo.is_open()) {
while (std::getline(meminfo, line)) {
if (line.find("MemAvailable:") == 0) {
std::istringstream iss(line);
std::string key;
uint64_t kb;
iss >> key >> kb;
memory = kb * 1024 * 0.8;
break;
}
}
meminfo.close();
}
} else {
// get total memory using sysinfo
struct sysinfo info;
if (sysinfo(&info) == 0) {
memory = info.totalram * info.mem_unit;
}
}
#elif defined(__APPLE__) && defined(__MACH__)
mach_port_t host = mach_host_self();
vm_statistics64_data_t vm_stats;
mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
uint64_t total_memory = 0;
size_t len = sizeof(total_memory);
int mib[2] = {CTL_HW, HW_MEMSIZE};
if (sysctl(mib, 2, &total_memory, &len, NULL, 0) != 0) {
LOG_INF("sysctl failed\n");
return 0;
}
if (available) {
if (host_statistics64(host, HOST_VM_INFO64, (host_info64_t)&vm_stats, &count) == KERN_SUCCESS) {
size_t page_size = get_page_size();
memory = (vm_stats.free_count + vm_stats.inactive_count + vm_stats.purgeable_count) * page_size;
// active pages compression has higher priority than releasing the clean mmap-ed pages
// some of the active pages can be compressed to save memory for our mmap-ed model weights
if (is_uma_arch()) {
// assume 10% of active pages can be compressed on macOS UMA (an empirical value)
// because GPU is more likely to use the inactive memory
memory += vm_stats.active_count * 0.1 * page_size;
} else {
// assume 50% of active pages can be compressed on macOS NUMA (an empirical value)
memory += vm_stats.active_count * 0.5 * page_size;
}
if (!is_uma_arch()) {
memory += (vm_stats.speculative_count + vm_stats.compressor_page_count) * page_size;
} else {
// #ifndef GGML_USE_METAL
// memory += vm_stats.speculative_count * page_size;
// #endif
}
} else {
LOG_INF("host_statistics64 failed\n");
}
} else {
memory = total_memory;
}
#endif
return memory;
}
static uint64_t read_value_from_file(const char * path) {
std::ifstream file(path);
if (!file.is_open()) {
return 0;
}
std::string line;
if (!std::getline(file, line)) {
return 0;
}
try {
return std::stoull(line);
} catch (...) {
return 0;
}
}
static std::unordered_map<std::string, uint64_t> read_memory_stat() {
std::unordered_map<std::string, uint64_t> stats;
std::ifstream file("/sys/fs/cgroup/memory.stat");
if (!file.is_open()) {
return stats;
}
std::string line;
while (std::getline(file, line)) {
size_t space_pos = line.find(' ');
if (space_pos != std::string::npos) {
std::string key = line.substr(0, space_pos);
std::string val_str = line.substr(space_pos + 1);
try {
uint64_t val = std::stoull(val_str);
stats[key] = val;
} catch (...) {
return stats;
}
}
}
return stats;
}
static uint64_t device_cgroup_physical_memory(bool available) {
const char * file_path = nullptr;
bool is_cgroup_v2 = false;
{
std::ifstream cgroup_file("/proc/cgroups");
if (cgroup_file.is_open()) {
std::string line;
while (std::getline(cgroup_file, line)) {
if (line.find("0") != std::string::npos) {
is_cgroup_v2 = true;
break;
}
}
}
}
if (!available) {
if (is_cgroup_v2) {
file_path = "/sys/fs/cgroup/memory.max";
} else {
file_path = "/sys/fs/cgroup/memory/memory.limit_in_bytes";
}
return read_value_from_file(file_path);
} else {
if (is_cgroup_v2) {
uint64_t mem_max = read_value_from_file("/sys/fs/cgroup/memory.max");
uint64_t mem_current = read_value_from_file("/sys/fs/cgroup/memory.current");
if (mem_max == UINT64_MAX) {
mem_max = device_host_physical_memory(false);
}
uint64_t mem_low = read_value_from_file("/sys/fs/cgroup/memory.low");
auto stats = read_memory_stat();
uint64_t slab_reclaimable = 0;
uint64_t mmap_file = 0;
if (stats.find("slab_reclaimable") != stats.end()) {
slab_reclaimable = stats["slab_reclaimable"];
}
if (stats.find("file") != stats.end()) {
mmap_file = stats["file"];
}
uint64_t available_memory = mem_max - mem_current;
if (mem_low > 0 && available_memory < mem_low) {
available_memory = mem_low;
}
available_memory += slab_reclaimable * 0.5 + mmap_file * 0.5;
return available_memory < mem_max ? available_memory : mem_max;
} else {
LOG_WRN("Using cgroup v1, the available memory could be error, will be addressed later\n");
uint64_t mem_limit = read_value_from_file("/sys/fs/cgroup/memory/memory.limit_in_bytes");
uint64_t mem_usage = read_value_from_file("/sys/fs/cgroup/memory/memory.usage_in_bytes");
return mem_limit - mem_usage > 0 ? mem_limit - mem_usage : 0;
}
}
}
uint64_t device_physical_memory(bool available) {
if (device_is_docker_container()) {
return device_cgroup_physical_memory(available);
} else {
return device_host_physical_memory(available);
}
}
static uint64_t device_host_swap_memory(bool available) {
uint64_t swap_memory = 0;
#if defined(_WIN32) || defined(_WIN64)
PERFORMANCE_INFORMATION performance_info;
performance_info.cb = sizeof(performance_info);
if (GetPerformanceInfo(&performance_info, sizeof(performance_info))) {
if (available) {
swap_memory = (performance_info.PageFileTotal - performance_info.PageFileUsage) * performance_info.PageSize;
} else {
swap_memory = performance_info.PageFileTotal * performance_info.PageSize;
}
}
#elif defined(__linux__)
std::ifstream meminfo("/proc/meminfo");
std::string line;
uint64_t total_swap = 0;
uint64_t free_swap = 0;
if (meminfo.is_open()) {
while (std::getline(meminfo, line)) {
if (line.find("SwapTotal:") == 0) {
std::istringstream iss(line);
std::string key;
uint64_t kb;
iss >> key >> kb;
total_swap = kb * 1024;
} else if (line.find("SwapFree:") == 0) {
std::istringstream iss(line);
std::string key;
uint64_t kb;
iss >> key >> kb;
free_swap = kb * 1024;
}
}
meminfo.close();
}
if (available) {
swap_memory = free_swap;
} else {
swap_memory = total_swap;
}
#elif defined(__APPLE__) && defined(__MACH__)
int mib[2] = {CTL_VM, VM_SWAPUSAGE};
struct xsw_usage swap;
size_t len = sizeof(swap);
if (sysctl(mib, 2, &swap, &len, NULL, 0) == 0) {
if (available) {
swap_memory = swap.xsu_avail;
} else {
swap_memory = swap.xsu_total;
}
}
#endif
return swap_memory;
}
static uint64_t device_cgroup_swap_memory(bool available) {
if (available) return 0;
#if defined(__linux__)
const char * file_path = nullptr;
uint64_t swap_limit = 0;
std::ifstream cgroup_file("/proc/cgroups");
bool is_cgroup_v2 = false;
if (cgroup_file.is_open()) {
std::string line;
while (std::getline(cgroup_file, line)) {
if (line.find("0") != std::string::npos) {
is_cgroup_v2 = true;
break;
}
}
cgroup_file.close();
}
if (is_cgroup_v2) {
file_path = "/sys/fs/cgroup/memory.swap.max";
} else {
file_path = "/sys/fs/cgroup/memory/memory.memsw.limit_in_bytes";
}
std::ifstream mem_swap_file(file_path);
if (mem_swap_file.is_open()) {
std::string line;
if (std::getline(mem_swap_file, line)) {
try {
swap_limit = std::stoull(line);
} catch (const std::exception &e) {
swap_limit = 0;
}
}
mem_swap_file.close();
}
return swap_limit;
#else
return 0; // Unsupported on non-Linux platforms
#endif
}
uint64_t device_swap_memory(bool available) {
if (device_is_docker_container()) {
return device_cgroup_swap_memory(available);
} else {
return device_host_swap_memory(available);
}
}
static std::string get_default_device_path() {
#ifdef __linux__
// find the first block device under /sys/block
const std::string block_path = "/sys/block/";
DIR * dir = opendir(block_path.c_str());
if (!dir) {
LOG_INF("Unable to open %s\n", block_path.c_str());
return "";
}
struct dirent * entry;
while ((entry = readdir(dir)) != nullptr) {
if (entry->d_name[0] != '.') { // ignore hidden files/directories
std::string device = entry->d_name;
closedir(dir);
return "/dev/" + device;
}
}
closedir(dir);
LOG_INF("No block devices found in %s\n", block_path.c_str());
return "";
#elif __APPLE__
// use the root device as a default
return "/";
#elif _WIN32
// use the default drive (usually C:)
char volume_name[MAX_PATH];
if (GetVolumeInformation("C:\\", volume_name, sizeof(volume_name), NULL, NULL, NULL, NULL, 0)) {
return "C:\\";
} else {
LOG_INF("Failed to determine default volume\n");
return "";
}
#else
LOG_INF("Unsupported platform\n");
return "";
#endif
}
static size_t get_default_readahead_size() {
const std::string device_path = get_default_device_path();
#ifdef __linux__
std::string device = device_path.empty() ? get_default_device_path() : device_path;
if (device.empty()) return 0;
// read from sysfs
std::string sysfs_path = "/sys/block/" + device.substr(device.find_last_of("/") + 1) + "/queue/read_ahead_kb";
std::ifstream file(sysfs_path);
if (file.is_open()) {
size_t read_ahead_kb;
file >> read_ahead_kb;
file.close();
return read_ahead_kb * 1024; // convert to bytes
} else {
return 0;
}
#elif __APPLE__
// use statfs to determine default block size
struct statfs stats;
std::string path = device_path.empty() ? "/" : device_path;
if (statfs(path.c_str(), &stats) == 0) {
return stats.f_iosize; // return in bytes
} else {
LOG_INF("statfs failed\n");
return 0;
}
#elif _WIN32
// use GetDiskFreeSpace to get default cluster size
std::string drive = device_path.empty() ? "C:\\" : device_path;
DWORD sectorsPerCluster, bytesPerSector, numberOfFreeClusters, totalNumberOfClusters;
if (GetDiskFreeSpace(drive.c_str(), &sectorsPerCluster, &bytesPerSector, &numberOfFreeClusters, &totalNumberOfClusters)) {
return sectorsPerCluster * bytesPerSector; // return in bytes
} else {
LOG_INF("GetDiskFreeSpace failed\n");
return 0;
}
#else
LOG_INF("Unsupported platform\n");
return 0;
#endif
}
static std::vector<std::string> split(const std::string & str, char delimiter) {
std::vector<std::string> tokens;
std::stringstream ss(str);
std::string token;
while (std::getline(ss, token, delimiter)) {
tokens.push_back(token);
}
return tokens;
}
static bool path_exist_in_env(const std::string & path, const std::string & env_path) {
auto paths = split(env_path, ':');
return std::find(paths.begin(), paths.end(), path) != paths.end();
}
static bool path_exist_in_fs(const std::string & path) {
struct stat info;
return (stat(path.c_str(), &info) == 0 && (info.st_mode & S_IFDIR));
}
static void check_env_path() {
const char * cur_env_path = std::getenv("PATH");
std::string update_env_path = cur_env_path ? cur_env_path : "";
std::vector<std::string> paths_to_check = {"/opt/homebrew/bin", "/usr/local/bin"};
for (const auto & path : paths_to_check) {
if (!path_exist_in_env(path, update_env_path) && path_exist_in_fs(path)) {
if (!update_env_path.empty() && update_env_path.back() != ':') {
update_env_path += ':';
}
update_env_path += path;
LOG_INF("add missing path: %s, current env path: %s\n", path.c_str(), update_env_path.c_str());
}
}
setenv("PATH", update_env_path.c_str(), 1);
}
static void external_fio_impl(float * read_bw, float * write_bw, bool op_rand, int n_threads) {
pid_t pid = getpid(); // avoid conflict with other processes
std::string test_file = "fio_test_" + std::to_string(pid);
std::string output_file = "fio_output_" + std::to_string(pid) + ".log";
std::string conf_file = "config_" + std::to_string(pid) + ".fio";
const char * fio_conf_template = R"(
[global]
ioengine=%s
direct=1
time_based=1
runtime=1
size=1G
group_reporting=1
iodepth=1
[write-job]
rw=%s
bs=%s
filename=%s
numjobs=%d
[read-job]
startdelay=1.5
rw=%s
bs=%s
filename=%s
numjobs=%d
)";
size_t page_size = get_page_size();
if (page_size == 0) {
LOG_INF("Unable to get system page size, use 4KB by default\n");
page_size = 4 * 1024;
}
// format the page size as a readable string (e.g., "16k" or "4k")
char page_size_str[8];
if (page_size >= 1024) {
snprintf(page_size_str, sizeof(page_size_str), "%zuk", page_size / 1024);
} else {
snprintf(page_size_str, sizeof(page_size_str), "%zu", page_size);
}
size_t readahead_size = get_default_readahead_size();
if (readahead_size == 0) {
LOG_INF("Unable to get system readahead size, use 128KB by default\n");
readahead_size = 128 * 1024;
}
// format the readahead size as a readable string (e.g., "128k" or "1m")
char readahead_str[8];
if (readahead_size >= 1024 * 1024) {
snprintf(readahead_str, sizeof(readahead_str), "%zuM", readahead_size / 1024 / 1024);
} else if (readahead_size >= 1024) {
snprintf(readahead_str, sizeof(readahead_str), "%zuk", readahead_size / 1024);
} else {
snprintf(readahead_str, sizeof(readahead_str), "%zu", readahead_size);
}
const char * read_type = op_rand ? "randread" : "read";
const char * write_type = op_rand ? "randwrite" : "write";
const char * block_size = op_rand ? page_size_str : readahead_str;
const char * ioengine = "posixaio";
check_env_path(); // ensure the fio bin file can be found
int num_try = 0;
int ret;
while (num_try < 2) {
char fio_conf[1024];
snprintf(fio_conf, sizeof(fio_conf), fio_conf_template, ioengine,
read_type, block_size, test_file.c_str(), n_threads,
write_type, block_size, test_file.c_str(), n_threads);
std::ofstream conf(conf_file.c_str());
if (!conf) {
LOG_INF("Error: Unable to create configuration file\n");
return;
}
conf << fio_conf;
conf.close();
std::string command = "fio " + conf_file + " > " + output_file + " 2>&1";
ret = std::system(command.c_str());
num_try += 1;
if (ret != 0) {
LOG_WRN("Engine posixaio not loadable, retrying with sync engine\n");
ioengine = "sync";
} else {
num_try = 2;
}
}
if (ret != 0) {
throw std::runtime_error("Engine posixaio and sync not loadable, fio test failed\n");
}
// parse fio output
std::ifstream result(output_file.c_str());
if (!result) {
LOG_INF("Error: Failed to open fio output file\n");
return;
}
*read_bw = 0.0f;
*write_bw = 0.0f;
std::string line;
std::regex read_regex(R"(READ: bw=([0-9.]+)([a-zA-Z/]+))");
std::regex write_regex(R"(WRITE: bw=([0-9.]+)([a-zA-Z/]+))");
std::smatch match;
while (std::getline(result, line)) {
if (std::regex_search(line, match, read_regex)) {
float value = std::stof(match[1]);
std::string unit = match[2];
if (unit == "MiB/s") {
*read_bw = value * 1024.0f * 1024.0f / 1e9; // convert MiB/s to GB/s
} else if (unit == "MB/s") {
*read_bw = value / 1000.0f; // convert MB/s to GB/s
}
} else if (std::regex_search(line, match, write_regex)) {
float value = std::stof(match[1]);
std::string unit = match[2];
if (unit == "MiB/s") {
*write_bw = value * 1024.0f * 1024.0f / 1e9; // convert MiB/s to GB/s
} else if (unit == "MB/s") {
*write_bw = value / 1000.0f; // convert MB/s to GB/s
}
}
}
// clean up temporary files
std::remove(test_file.c_str());
std::remove(conf_file.c_str());
std::remove(output_file.c_str());
}
void device_disk_rnd_bw(float * read_rnd_bw, float * write_rnd_bw, int n_threads) {
external_fio_impl(read_rnd_bw, write_rnd_bw, true, n_threads);
}
void device_disk_seq_bw(float * read_seq_bw, float * write_seq_bw, int n_threads) {
external_fio_impl(read_seq_bw, write_seq_bw, false, n_threads);
}
float device_memory_bw(int n_thread) {
// simulate large model weights, set to 100 MiB
size_t buffer_size = 100L * 1024 * 1024;
std::vector<char> data(buffer_size);
std::fill(data.begin(), data.end(), 1); // initialize data to avoid lazy loading
std::vector<double> results(n_thread);
// memory bandwidth test function
auto memory_bw_test = [](char * data, size_t total_size, size_t block_size, double & result) {
size_t n_iters = total_size / block_size;
volatile char temp = 0; // volatile to prevent compiler optimization
auto start = std::chrono::high_resolution_clock::now();
for (size_t i = 0; i < n_iters; i++) {
// simulate block-wise sequential access
size_t offset = i * block_size;
for (size_t j = 0; j < block_size; j += 64) {
temp += data[offset + j];
}
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = end - start;
result = total_size / elapsed.count() / 1e9; // GB/s
(void)temp;
};
std::vector<std::thread> thread_pool;
for (int i = 0; i < n_thread; ++i) {
thread_pool.emplace_back(
memory_bw_test,
data.data(),
buffer_size / n_thread,
MEM_TEST_BLOCK_SIZE,
std::ref(results[i])
);
}
for (auto & t : thread_pool) {
t.join();
}
double bandwidth = std::accumulate(results.begin(), results.end(), 0.0);
return static_cast<float>(bandwidth);
}
static float device_read_vram_bw(enum profiler_backend_type btype) {
const int n_embd = 8192;
std::vector<float> matrix_A(n_embd * n_embd, 1.0f);
ggml_backend_t backend = NULL;
switch (btype) {
case PROFILER_BACKEND_TYPE_METAL:
#ifdef GGML_USE_METAL
backend = ggml_backend_metal_init();
#endif
break;
case PROFILER_BACKEND_TYPE_CUDA:
#ifdef GGML_USE_CUDA
backend = ggml_backend_cuda_init(0);
#endif
break;
case PROFILER_BACKEND_TYPE_CPU:
break;
}
if (!backend) {
LOG_INF("%s: ggml backend init failed\n", __func__);
return 0.0f;
}
struct ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
tensor_a->op = GGML_OP_READ;
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
ggml_backend_tensor_set(tensor_a, matrix_A.data(), 0, ggml_nbytes(tensor_a));
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx_cgraph = NULL;
{
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead() + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx_cgraph = ggml_init(params0);
gf = ggml_new_graph(ctx_cgraph);
ggml_build_forward_expand(gf, tensor_a);
}
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
const int64_t t_start = ggml_time_us();
ggml_backend_graph_compute(backend, gf);
const int64_t t_end = ggml_time_us();
double elapsed_s = ((double)t_end - (double)t_start) / 1e6;
size_t total_bytes = n_embd * n_embd * sizeof(float);
float bandwidth = (total_bytes / elapsed_s) / 1e9; // GB/s
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
return bandwidth;
}
float device_metal_read_vram_bw() {
float bw = 0.0f;
#ifdef GGML_USE_METAL
bw = device_read_vram_bw(PROFILER_BACKEND_TYPE_METAL);
#endif
return bw;
}
float device_cuda_read_vram_bw() {
float bw = 0.0f;
#ifdef GGML_USE_CUDA
bw = device_read_vram_bw(PROFILER_BACKEND_TYPE_CUDA);
#endif
return bw;
}
// return ggml_cpy delay in kvcache in ms
static float device_mem_copy(struct llama_model * model, enum profiler_backend_type btype, int n_threads) {
const int64_t n_embd_k_gqa = llama_model_n_embd_k_gqa(model);
const int64_t n_embd_v_gqa = llama_model_n_embd_v_gqa(model);
std::vector<float> src_mat_k(n_embd_k_gqa, 1.0f);
std::vector<float> src_mat_v(n_embd_v_gqa, 1.0f);
std::vector<float> dst_mat_k(n_embd_k_gqa, 0.0f);
std::vector<float> dst_mat_v(n_embd_v_gqa, 0.0f);
ggml_backend_t backend = NULL;
switch (btype) {
case PROFILER_BACKEND_TYPE_CPU:
backend = ggml_backend_cpu_init();
break;
case PROFILER_BACKEND_TYPE_METAL:
#ifdef GGML_USE_METAL
backend = ggml_backend_metal_init();
#endif
break;
case PROFILER_BACKEND_TYPE_CUDA:
#ifdef GGML_USE_CUDA
backend = ggml_backend_cuda_init(0);
#endif
break;
}
if (!backend) {
LOG_INF("%s: ggml backend init failed\n", __func__);
return 0.0f;
}
size_t ctx_size = 0;
ctx_size += 4 * ggml_tensor_overhead(); // tensors
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_tensor * src_tensor_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_k_gqa);
struct ggml_tensor * src_tensor_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_v_gqa);
struct ggml_tensor * dst_tensor_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_k_gqa);
struct ggml_tensor * dst_tensor_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_v_gqa);
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
ggml_backend_tensor_set(src_tensor_k, src_mat_k.data(), 0, ggml_nbytes(src_tensor_k));
ggml_backend_tensor_set(src_tensor_v, src_mat_v.data(), 0, ggml_nbytes(src_tensor_v));
ggml_backend_tensor_set(dst_tensor_k, dst_mat_k.data(), 0, ggml_nbytes(dst_tensor_k));
ggml_backend_tensor_set(dst_tensor_v, dst_mat_v.data(), 0, ggml_nbytes(dst_tensor_v));
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx_cgraph = NULL;
{
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead() * 4 + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx_cgraph = ggml_init(params0);
gf = ggml_new_graph(ctx_cgraph);
ggml_build_forward_expand(gf, ggml_cpy(ctx_cgraph, src_tensor_k, dst_tensor_k));
ggml_build_forward_expand(gf, ggml_cpy(ctx_cgraph, src_tensor_v, dst_tensor_v));
}
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
// warm-up
ggml_backend_graph_compute(backend, gf);
const int64_t t_start = ggml_time_us();
ggml_backend_graph_compute(backend, gf);
const int64_t t_end = ggml_time_us();
double elapsed_ms = ((double)t_end - (double)t_start) / 1e3; // ms
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
return (float)elapsed_ms;
}
float device_cpu_mem_copy(struct llama_model * model, int n_threads) {
return device_mem_copy(model, PROFILER_BACKEND_TYPE_CPU, n_threads);
}
float device_metal_mem_copy(struct llama_model * model) {
float delay = 0.0f;
#ifdef GGML_USE_METAL
delay = device_mem_copy(model, PROFILER_BACKEND_TYPE_METAL, 4);
#endif
(void)model;
return delay;
}
float device_cuda_mem_copy(struct llama_model * model) {
float delay = 0.0f;
#ifdef GGML_USE_CUDA
delay = device_mem_copy(model, PROFILER_BACKEND_TYPE_CUDA, 4);
#endif
(void)model;
return delay;
}
int device_has_metal(void) {
return ggml_cpu_has_metal();
}
int device_has_cuda(void) {
return ggml_cpu_has_cuda();
}
int device_has_vulkan(void) {
return ggml_cpu_has_vulkan();
}
int device_has_kompute(void) {
return ggml_cpu_has_kompute();
}
int device_has_gpublas(void) {
return ggml_cpu_has_gpublas();
}
int device_has_blas(void) {
return ggml_cpu_has_blas();
}
int device_has_sycl(void) {
return ggml_cpu_has_sycl();
}
void device_get_props(struct llama_model * model, int device, struct ggml_backend_dev_props * props) {
ggml_backend_buffer_type_t buft_type;
if (device == -1) { // type cpu
buft_type = ggml_backend_cpu_buffer_type();
} else { // type gpu
buft_type = llama_dev_buffer_type(model, device);
}
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft_type);
ggml_backend_dev_get_props(dev, props);
}
static float device_compute_delay(struct device_info & dev_info, int n_layers, const struct llama_context_params cparams) {
struct model_flops n_flops = dev_info.model_flops;
struct cpu_props cpu = dev_info.cpu_props;
int n_gpu_layers = std::min(static_cast<int>(cparams.n_gpu_layers), n_layers);
double gpu_latency_per_layer = 0.0f;
double cpu_latency_per_layer = 0.0f;
#ifdef GGML_USE_CUDA
struct gpu_props gpu = dev_info.gpu_props;
gpu_latency_per_layer += (double)n_flops.layer_f32_f32 / ((double)gpu.cuda_flops_f32_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_f16_f32 / ((double)gpu.cuda_flops_f16_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q2k_f32 / ((double)gpu.cuda_flops_q2k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q4k_f32 / ((double)gpu.cuda_flops_q4k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q5k_f32 / ((double)gpu.cuda_flops_q5k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q6k_f32 / ((double)gpu.cuda_flops_q6k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq2xxs_f32 / ((double)gpu.cuda_flops_iq2xxs_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q50_f32 / ((double)gpu.cuda_flops_q50_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q80_f32 / ((double)gpu.cuda_flops_q80_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq1s_f32 / ((double)gpu.cuda_flops_iq1s_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq4nl_f32 / ((double)gpu.cuda_flops_iq4nl_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq1m_f32 / ((double)gpu.cuda_flops_iq1m_f32 + EPS) / 1e9;
#elif GGML_USE_METAL
struct gpu_props gpu = dev_info.gpu_props;
gpu_latency_per_layer += (double)n_flops.layer_f32_f32 / ((double)gpu.metal_flops_f32_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_f16_f32 / ((double)gpu.metal_flops_f16_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q2k_f32 / ((double)gpu.metal_flops_q2k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q4k_f32 / ((double)gpu.metal_flops_q4k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q5k_f32 / ((double)gpu.metal_flops_q5k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q6k_f32 / ((double)gpu.metal_flops_q6k_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq2xxs_f32 / ((double)gpu.metal_flops_iq2xxs_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q50_f32 / ((double)gpu.metal_flops_q50_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_q80_f32 / ((double)gpu.metal_flops_q80_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq1s_f32 / ((double)gpu.metal_flops_iq1s_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq4nl_f32 / ((double)gpu.metal_flops_iq4nl_f32 + EPS) / 1e9;
gpu_latency_per_layer += (double)n_flops.layer_iq1m_f32 / ((double)gpu.metal_flops_iq1m_f32 + EPS) / 1e9;
#endif
cpu_latency_per_layer += (double)n_flops.layer_f32_f32 / ((double)cpu.flops_f32_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_f16_f32 / ((double)cpu.flops_f16_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_q2k_f32 / ((double)cpu.flops_q2k_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_q4k_f32 / ((double)cpu.flops_q4k_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_q5k_f32 / ((double)cpu.flops_q5k_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_q6k_f32 / ((double)cpu.flops_q6k_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_iq2xxs_f32 / ((double)cpu.flops_iq2xxs_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_q50_f32 / ((double)cpu.flops_q50_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_q80_f32 / ((double)cpu.flops_q80_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_iq1s_f32 / ((double)cpu.flops_iq1s_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_iq4nl_f32 / ((double)cpu.flops_iq4nl_f32 + EPS) / 1e9;
cpu_latency_per_layer += (double)n_flops.layer_iq1m_f32 / ((double)cpu.flops_iq1m_f32 + EPS) / 1e9;
double total_latency = 0.0f;
#if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA)
total_latency += gpu_latency_per_layer * n_gpu_layers;
total_latency += cpu_latency_per_layer * (n_layers - n_gpu_layers);
#else
(void)n_gpu_layers;
(void)gpu_latency_per_layer;
total_latency += cpu_latency_per_layer * n_layers;
#endif
total_latency += (double)n_flops.output_f32_f32 / ((double)cpu.flops_f32_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_f16_f32 / ((double)cpu.flops_f16_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_q2k_f32 / ((double)cpu.flops_q2k_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_q4k_f32 / ((double)cpu.flops_q4k_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_q5k_f32 / ((double)cpu.flops_q5k_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_q6k_f32 / ((double)cpu.flops_q6k_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_iq2xxs_f32 / ((double)cpu.flops_iq2xxs_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_q50_f32 / ((double)cpu.flops_q50_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_q80_f32 / ((double)cpu.flops_q80_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_iq1s_f32 / ((double)cpu.flops_iq1s_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_iq4nl_f32 / ((double)cpu.flops_iq4nl_f32 + EPS) / 1e9;
total_latency += (double)n_flops.output_iq1m_f32 / ((double)cpu.flops_iq1m_f32 + EPS) / 1e9;
total_latency *= 1000; // convert to ms
total_latency += n_flops.inp_embd_ms;
return static_cast<float>(total_latency);
}
// estimate the memory access delay, except for the input embedding because it has been considered in n_flops.inp_embd_ms
static float device_memory_access_delay(struct device_info & dev_info, struct llama_model * model, const struct llama_context_params cparams, int n_layers) {
auto n_bytes = dev_info.model_bytes;
int n_gpu_layers = std::min(static_cast<int>(cparams.n_gpu_layers), n_layers);
int64_t cpu_kv_size;
int64_t gpu_kv_size;
#if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA)
llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, true);
int64_t vram_bytes = n_bytes.nb_layer * n_gpu_layers + gpu_kv_size;
int64_t ram_bytes = n_bytes.nb_layer * (n_layers - n_gpu_layers) + n_bytes.nb_output + cpu_kv_size;
#ifdef GGML_USE_CUDA
double vram_access_delay = (double)(vram_bytes) / 1e6 / dev_info.gpu_props.cuda_read_vram_bw;
#elif GGML_USE_METAL
double vram_access_delay = (double)(vram_bytes) / 1e6 / dev_info.gpu_props.metal_read_vram_bw;
#endif
double ram_access_delay = (double)(ram_bytes) / 1e6 / dev_info.memory.cpu_read_ram_bw;
return static_cast<float>(vram_access_delay + ram_access_delay); // ms
#else
llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, false);
(void)n_gpu_layers;
(void)gpu_kv_size;
int64_t ram_bytes = n_bytes.nb_layer * n_layers + n_bytes.nb_output + cpu_kv_size;
double ram_access_delay = (double)(ram_bytes) / 1e6 / dev_info.memory.cpu_read_ram_bw;
return static_cast<float>(ram_access_delay); // ms
#endif
}
static uint64_t device_termux_swappable_memory() {
if (access("/data/data/com.termux/files/usr/bin", F_OK) != 0) {
LOG_ERR("Not in a Termux environment\n");
return 0;
}
uint64_t total_swappable = 0;
uint64_t active_anon = 0;
uint64_t inactive_anon = 0;
std::ifstream meminfo("/proc/meminfo");
std::string line;
if (meminfo.is_open()) {
while (std::getline(meminfo, line)) {
if (line.find("Active(anon):") == 0) {
sscanf(line.c_str(), "Active(anon): %" SCNu64 " kB", &active_anon);
} else if (line.find("Inactive(anon):") == 0) {
sscanf(line.c_str(), "Inactive(anon): %" SCNu64 " kB", &inactive_anon);
}
}
meminfo.close();
}
total_swappable = (active_anon + inactive_anon) * 1024;
DIR * proc_dir = opendir("/proc");
if (proc_dir) {
struct dirent * entry;
while ((entry = readdir(proc_dir)) != nullptr) {
if (!isdigit(entry->d_name[0])) continue;
std::string smaps_path = "/proc/" + std::string(entry->d_name) + "/smaps";
std::ifstream smaps_file(smaps_path);
if (!smaps_file.is_open()) {
LOG_WRN("Failed to open smaps file: %s\n", smaps_path.c_str());
continue;
}
uint64_t locked_pages = 0;
while (std::getline(smaps_file, line)) {
if (line.find("Locked:") == 0) {
uint64_t kb;
sscanf(line.c_str(), "Locked: %" SCNu64 " kB", &kb);
locked_pages += kb * 1024;
}
}
smaps_file.close();
// Subtract locked pages from swappable memory
total_swappable -= locked_pages;
}
closedir(proc_dir);
}
return total_swappable;
}
static uint64_t device_macos_swappable_memory() {
#if defined(__APPLE__) && defined(__MACH__)
mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
vm_statistics64_data_t vm_stats;
kern_return_t kr = host_statistics64(mach_host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stats, &count);
if (kr != KERN_SUCCESS) {
LOG_INF("Failed to get VM statistics\n");
return 0;
}
return vm_stats.internal_page_count * get_page_size();
#else
return 0;
#endif
}
uint64_t device_swappable_memory() {
#if defined(__APPLE__) && defined(__MACH__)
return device_macos_swappable_memory();
#endif
if (access("/data/data/com.termux/files/usr/bin", F_OK) == 0) {
return device_termux_swappable_memory();
}
return 0;
}
static float device_disk_access_delay(struct device_info & dev_info, struct llama_model * model, const struct llama_context_params cparams) {
auto n_bytes = dev_info.model_bytes;
int n_layers = llama_model_n_layers(model);
int n_gpu_layers = std::min(static_cast<int>(cparams.n_gpu_layers), n_layers);
int n_vocab = llama_n_vocab(model);
int64_t cpu_total_bytes = 0;
int64_t input_bytes = n_bytes.nb_input / n_vocab; // lookup table, retrieve only n_embd elements
cpu_total_bytes += input_bytes;
#if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA)
cpu_total_bytes += n_bytes.nb_layer * (n_layers - n_gpu_layers);
#if defined(GGML_USE_METAL)
int64_t gpu_total_bytes = n_bytes.nb_layer * n_gpu_layers;
#endif
#else
(void)n_gpu_layers;
cpu_total_bytes += n_bytes.nb_layer * n_layers;
#endif
cpu_total_bytes += n_bytes.nb_output;
int64_t cpu_kv_size;
int64_t gpu_kv_size;
int64_t cpu_compute_buf;
int64_t gpu_compute_buf;
#if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA)
llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, true);
enum backend_type backend;
#if GGML_USE_METAL
backend = BACKEND_METAL;
#elif GGML_USE_CUDA
backend = BACKEND_CUDA;
#endif
llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, backend, 0, n_bytes, n_layers > n_gpu_layers, n_gpu_layers > 0);
#else
llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, false);
enum backend_type backend = BACKEND_CPU;
llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, backend, 0, n_bytes, n_layers > n_gpu_layers, n_gpu_layers > 0);
#endif
double cpu_kv_size_gib = static_cast<double>(cpu_kv_size) / 1024.0 / 1024.0 / 1024.0; // convert to GiB
double gpu_kv_size_gib = static_cast<double>(gpu_kv_size) / 1024.0 / 1024.0 / 1024.0; // convert to GiB
double cpu_compute_buf_gib = static_cast<double>(cpu_compute_buf) / 1024.0 / 1024.0 / 1024.0; // convert to GiB
double gpu_compute_buf_gib = static_cast<double>(gpu_compute_buf) / 1024.0 / 1024.0 / 1024.0; // convert to GiB
#if defined(GGML_USE_METAL)
if (n_gpu_layers > 0) {
double total_bytes_gib = static_cast<double>(cpu_total_bytes + gpu_total_bytes) / 1024.0 / 1024.0 / 1024.0;
double total_kv_size_gib = cpu_kv_size_gib + gpu_kv_size_gib;
double total_compute_buf_gib = cpu_compute_buf_gib + gpu_compute_buf_gib;
double total_mem_needed = total_bytes_gib + total_kv_size_gib + total_compute_buf_gib;
float disk_read_bw = dev_info.disk.read_rnd_bw;
if (total_mem_needed < dev_info.memory.total_physical - 1) { // -1 is an empirical value reserved by system processes
// each time one new row of lookup table will be loaded
return static_cast<double>(input_bytes) / 1e6 / disk_read_bw; // convert to ms
} else {
// warn: OOM error may occur if -ngl is set large
// inactive pages are swapped out or compressed to free memory for Metal
// mmap pages are not locked so they will be released when memory is busy
return total_bytes_gib * 1024.0 * 1024.0 * 1024.0 / 1e6 / disk_read_bw; // ms
}
}
#endif
(void)gpu_kv_size_gib;
(void)gpu_compute_buf_gib;
float cpu_total_bytes_gib = (double)cpu_total_bytes / 1024.0 / 1024.0 / 1024.0; // convert to GiB
float cpu_mem_avail = dev_info.memory.available_physical; // GiB
float total_mem_needed = cpu_total_bytes_gib + cpu_kv_size_gib + cpu_compute_buf_gib;
// non-linux os uses random read bandwidth
float disk_read_bw = dev_info.disk.read_rnd_bw * 1e9 / 1024.0 / 1024.0 / 1024.0; // convert GB/s to GiB/s
if (total_mem_needed > cpu_mem_avail) {
#if defined(__APPLE__) && defined(__MACH__)
// if physical memory reaches busy, all mapped tensors should be re-loaded
return cpu_total_bytes_gib / disk_read_bw * 1000; // convert to ms
#else
#if defined(__linux__)
if (getenv("TERMUX_VERSION") != NULL) {
// Android will forcibly reserve some physical memory, usually 128 MiB
dev_info.memory.available_physical -= 0.128;
// termux on android: swap has higher priority than releasing mmap
// non-app memory that can be swapped to disk
float swapout_gib = std::min(
std::max(0.0f, total_mem_needed - dev_info.memory.available_physical),
std::min(dev_info.memory.used_can_swap, dev_info.memory.available_swap)
);
float mmapin_gib = total_mem_needed - (dev_info.memory.available_physical + swapout_gib);
return mmapin_gib / disk_read_bw * 1000; // ms
} else {
// if this linux not in termux env, use sequantial read bandwidth
// POSIX_FADV_SEQUENTIAL is set on linux
disk_read_bw = dev_info.disk.read_seq_bw * 1e9 / 1024.0 / 1024.0 / 1024.0;
}
#endif
// only part of the mapped tensors needs to be re-loaded
float gbytes_to_load = cpu_total_bytes_gib - (cpu_mem_avail - cpu_kv_size_gib - cpu_compute_buf_gib);
return gbytes_to_load / disk_read_bw * 1000; // convert to ms
#endif
} else {
// if physical memory is enough, all mapped tensors can be stored in memory and will not be released
return 0.0f;
}
}
static float device_mem_copy_delay(struct device_info & dev_info, struct llama_model * model, const struct llama_context_params cparams) {
int n_layers = llama_model_n_layers(model);
int n_gpu_layers = std::min(static_cast<int>(cparams.n_gpu_layers), n_layers);
float layer_delay_cpu = dev_info.memory.mem_cpy_delay;
#ifdef GGML_USE_METAL
float layer_delay_metal = dev_info.gpu_props.metal_mem_cpy_delay;
return layer_delay_metal * n_gpu_layers + layer_delay_cpu * (n_layers - n_gpu_layers);
#elif GGML_USE_CUDA
float layer_delay_cuda = dev_info.gpu_props.cuda_mem_cpy_delay;
return layer_delay_cuda * n_gpu_layers + layer_delay_cpu * (n_layers - n_gpu_layers);
#else
(void)n_gpu_layers;
return layer_delay_cpu * n_layers;
#endif
}
void device_print_props(struct device_info * dev_info_set, int n, struct llama_model * model, const struct llama_context_params cparams) {
LOG_INF("\n-------------------------------------------------------------------------------------------\n");
LOG_INF("| Property ");
for (int i = 0; i < n; ++i) {
LOG_INF("| Rank %-8d", i);
GGML_ASSERT((int)dev_info_set[i].rank == i);
}
LOG_INF("\n-------------------------------------------------------------------------------------------\n");
LOG_INF("| Device Name ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.10s ", dev_info_set[i].device_name);
}
LOG_INF("\n");
LOG_INF("| Device OS ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.10s ", dev_info_set[i].device_os);
}
LOG_INF("\n");
LOG_INF("| CPU Name ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.10s ", dev_info_set[i].cpu_props.name);
}
LOG_INF("\n");
LOG_INF("| CPU Description ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.10s ", dev_info_set[i].cpu_props.description);
}
LOG_INF("\n");
LOG_INF("| Number of CPU cores ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10u ", dev_info_set[i].cpu_props.cores);
}
LOG_INF("\n");
LOG_INF("| CPU flops (F32xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f32_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (F16xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f16_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (Q2K x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q2k_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (Q4K x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q4k_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (Q5K x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q5k_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (Q6K x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q6k_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (IQ2XXS x F32, GFLOPS)");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_iq2xxs_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (Q50 x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q50_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (Q80 x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q80_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (IQ1S x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_iq1s_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (IQ4NL x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_iq4nl_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (IQ1M x F32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_iq1m_f32);
}
LOG_INF("\n");
LOG_INF("| Physical Mem Total (GiB) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.total_physical);
}
LOG_INF("\n");
LOG_INF("| Physical Mem Available (GiB) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.available_physical);
}
LOG_INF("\n");
LOG_INF("| Used Mem Swappable (GiB) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.used_can_swap);
}
LOG_INF("\n");
LOG_INF("| Swap Mem Total (GiB) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.total_swap);
}
LOG_INF("\n");
LOG_INF("| Swap Mem Available (GiB) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.available_swap);
}
LOG_INF("\n");
LOG_INF("| CPU RAM Read BW (GB/s) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.cpu_read_ram_bw);
}
LOG_INF("\n");
LOG_INF("| CPU KVCache Copy Time (ms/l) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.mem_cpy_delay);
}
LOG_INF("\n");
LOG_INF("| Disk Read Seq Speed (GB/s) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].disk.read_seq_bw);
}
LOG_INF("\n");
LOG_INF("| Disk Write Seq Speed (GB/s) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].disk.write_seq_bw);
}
LOG_INF("\n");
LOG_INF("| Disk Read Rnd Speed (GB/s) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].disk.read_rnd_bw);
}
LOG_INF("\n");
LOG_INF("| Disk Write Rnd Speed (GB/s) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].disk.write_rnd_bw);
}
LOG_INF("\n");
LOG_INF("| GPU Metal ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10d ", dev_info_set[i].gpu_support.metal);
}
LOG_INF("\n");
LOG_INF("| GPU CUDA ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10d ", dev_info_set[i].gpu_support.cuda);
}
LOG_INF("\n");
LOG_INF("| GPU Vulkan ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10d ", dev_info_set[i].gpu_support.vulkan);
}
LOG_INF("\n");
LOG_INF("| GPU Kompute ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10d ", dev_info_set[i].gpu_support.kompute);
}
LOG_INF("\n");
LOG_INF("| GPU BLAS ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10d ", dev_info_set[i].gpu_support.gpublas);
}
LOG_INF("\n");
LOG_INF("| BLAS ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10d ", dev_info_set[i].gpu_support.blas);
}
LOG_INF("\n");
LOG_INF("| SYCL ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10d ", dev_info_set[i].gpu_support.sycl);
}
LOG_INF("\n");
LOG_INF("| GPU Name ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.10s ", dev_info_set[i].gpu_props.name);
}
LOG_INF("\n");
LOG_INF("| GPU Description ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.10s ", dev_info_set[i].gpu_props.description);
}
LOG_INF("\n");
LOG_INF("| GPU Mem Free (GiB) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.memory_free);
}
LOG_INF("\n");
LOG_INF("| GPU Mem Total (GiB) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.memory_total);
}
LOG_INF("\n");
LOG_INF("| Metal VRAM Read BW (GB/s) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.metal_read_vram_bw);
}
LOG_INF("\n");
LOG_INF("| Metal KVCache Copy Time(ms/l) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.metal_mem_cpy_delay);
}
LOG_INF("\n");
LOG_INF("| Metal flops (F32xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_f32_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (F16xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_f16_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q2KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q2k_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q4KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q4k_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q5KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q5k_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q6KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q6k_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (IQ2XXSxF32, GFLOPS)");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_iq2xxs_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q50xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q50_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q80xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q80_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (IQ1SxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_iq1s_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (IQ4NLxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_iq4nl_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (IQ1MxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_iq1m_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA VRAM Read BW (GB/s) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.cuda_read_vram_bw);
}
LOG_INF("\n");
LOG_INF("| CUDA KVCache Copy Time (ms/l) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.cuda_mem_cpy_delay);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (F32xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f32_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (F16xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f16_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (Q2KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q2k_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (Q4KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q4k_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (Q5KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q5k_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (Q6KxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q6k_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (IQ2XXSxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_iq2xxs_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (Q50xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q50_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (Q80xF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q80_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (IQ1SxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_iq1s_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (IQ4NLxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_iq4nl_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (IQ1MxF32, GFLOPS) ");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_iq1m_f32);
}
LOG_INF("\n");
LOG_INF("| Model flops (output F32xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_f32_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output F16xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_f16_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output Q2KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q2k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output Q4KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q4k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output Q5KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q5k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output Q6KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q6k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output IQ2XXSxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_iq2xxs_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output Q50xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q50_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output Q80xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q80_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output IQ1SxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_iq1s_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output IQ4NLxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_iq4nl_f32);
LOG_INF("\n");
LOG_INF("| Model flops (output IQ1MxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_iq1m_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer F32xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_f32_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer F16xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_f16_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer Q2KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q2k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer Q4KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q4k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer Q5KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q5k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer Q6KxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q6k_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer IQ2XXSxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_iq2xxs_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer Q50xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q50_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer Q80xF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q80_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer IQ1SxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_iq1s_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer IQ4NLxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_iq4nl_f32);
LOG_INF("\n");
LOG_INF("| Model flops (layer IQ1MxF32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_iq1m_f32);
LOG_INF("\n");
LOG_INF("| Model params (input F32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_f32);
LOG_INF("\n");
LOG_INF("| Model params (input F16) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_f16);
LOG_INF("\n");
LOG_INF("| Model params (input Q2K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q2k);
LOG_INF("\n");
LOG_INF("| Model params (input Q4K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q4k);
LOG_INF("\n");
LOG_INF("| Model params (input Q5K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q5k);
LOG_INF("\n");
LOG_INF("| Model params (input Q6K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q6k);
LOG_INF("\n");
LOG_INF("| Model params (input IQ2XXS) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_iq2xxs);
LOG_INF("\n");
LOG_INF("| Model params (input Q50) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q50);
LOG_INF("\n");
LOG_INF("| Model params (input Q80) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q80);
LOG_INF("\n");
LOG_INF("| Model params (input IQ1S) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_iq1s);
LOG_INF("\n");
LOG_INF("| Model params (input IQ4NL) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_iq4nl);
LOG_INF("\n");
LOG_INF("| Model params (input IQ1M) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_iq1m);
LOG_INF("\n");
LOG_INF("| Model params (layer F32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_f32);
LOG_INF("\n");
LOG_INF("| Model params (layer F16) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_f16);
LOG_INF("\n");
LOG_INF("| Model params (layer Q2K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q2k);
LOG_INF("\n");
LOG_INF("| Model params (layer Q4K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q4k);
LOG_INF("\n");
LOG_INF("| Model params (layer Q5K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q5k);
LOG_INF("\n");
LOG_INF("| Model params (layer Q6K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q6k);
LOG_INF("\n");
LOG_INF("| Model params (layer IQ2XXS) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_iq2xxs);
LOG_INF("\n");
LOG_INF("| Model params (layer Q50) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q50);
LOG_INF("\n");
LOG_INF("| Model params (layer Q80) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q80);
LOG_INF("\n");
LOG_INF("| Model params (layer IQ1S) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_iq1s);
LOG_INF("\n");
LOG_INF("| Model params (layer IQ4NL) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_iq4nl);
LOG_INF("\n");
LOG_INF("| Model params (layer IQ1M) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_iq1m);
LOG_INF("\n");
LOG_INF("| Model params (output F32) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_f32);
LOG_INF("\n");
LOG_INF("| Model params (output F16) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_f16);
LOG_INF("\n");
LOG_INF("| Model params (output Q2K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q2k);
LOG_INF("\n");
LOG_INF("| Model params (output Q4K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q4k);
LOG_INF("\n");
LOG_INF("| Model params (output Q5K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q5k);
LOG_INF("\n");
LOG_INF("| Model params (output Q6K) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q6k);
LOG_INF("\n");
LOG_INF("| Model params (output IQ2XXS) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_iq2xxs);
LOG_INF("\n");
LOG_INF("| Model params (output Q50) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q50);
LOG_INF("\n");
LOG_INF("| Model params (output Q80) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q80);
LOG_INF("\n");
LOG_INF("| Model params (output IQ1S) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_iq1s);
LOG_INF("\n");
LOG_INF("| Model params (output IQ4NL) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_iq4nl);
LOG_INF("\n");
LOG_INF("| Model params (output IQ1M) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_iq1m);
LOG_INF("\n");
LOG_INF("| Model bytes (input) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_bytes.nb_input);
LOG_INF("\n");
LOG_INF("| Model bytes (layer) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_bytes.nb_layer);
LOG_INF("\n");
LOG_INF("| Model bytes (output) ");
LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_bytes.nb_output);
LOG_INF("\n");
// float latency = 0.0f;
// int n_layers = llama_model_n_layers (model);
// latency += device_compute_delay (dev_info_set[0], n_layers, cparams);
// latency += device_memory_access_delay(dev_info_set[0], model, cparams, n_layers);
// latency += device_disk_access_delay (dev_info_set[0], model, cparams); // if physical memory is not enough, some mapped data will be released and reloaded later
// latency += device_mem_copy_delay (dev_info_set[0], model, cparams); // memory copy delay in kvcache
// LOG_INF("| Token latency (ms) ");
// LOG_INF("| %-10.2f ", latency);
// LOG_INF("\n");
(void)model;
(void)cparams;
LOG_INF("-------------------------------------------------------------------------------------------\n\n");
}
size_t serialize(const struct device_info * dev_info, char ** buffer) {
// calculate total size for serialized buffer
size_t device_name_len = strlen(dev_info->device_name) + 1;
size_t device_os_len = strlen(dev_info->device_os) + 1;
size_t next_ip_len = strlen(dev_info->next_ip) + 1;
size_t cpu_name_len = strlen(dev_info->cpu_props.name) + 1;
size_t cpu_description_len = strlen(dev_info->cpu_props.description) + 1;
size_t gpu_name_len = strlen(dev_info->gpu_props.name) + 1;
size_t gpu_description_len = strlen(dev_info->gpu_props.description) + 1;
size_t total_size = sizeof(uint32_t)
+ sizeof(size_t) * 7 // for lengths of strings
+ device_name_len
+ device_os_len
+ next_ip_len
+ cpu_name_len
+ cpu_description_len
+ gpu_name_len
+ gpu_description_len
+ sizeof(struct disk_props)
+ sizeof(uint32_t) // cpu_props.cores
+ sizeof(float) * 12 // - cpu_props.flops_f32_f32, cpu_props.flops_f16_f32,
// - cpu_props.flops_q2k_f32, cpu_props.flops_q4k_f32, cpu_props.flops_q5k_f32, cpu_props.flops_q6k_f32
// - cpu_props.flops_iq2xxs_f32
// - cpu_props.flops_q50_f32, cpu_props.flops_q80_f32
// - cpu_props.flops_iq1s_f32, cpu_props.flops_iq4nl_f32
// - cpu_props.flops_iq1m_f32
+ sizeof(struct memory_info)
+ sizeof(struct gpu_support)
+ sizeof(float) * 30; // GPU attributes
// memory:
// - memory_free, memory_total
// - metal_read_vram_bw, cuda_read_vram_bw
// Metal floating-point performance:
// - metal_flops_f32_f32, metal_flops_f16_f32
// - metal_flops_q2k_f32, metal_flops_q4k_f32, metal_flops_q5k_f32, metal_flops_q6k_f32
// - metal_flops_iq2xxs_f32
// - metal_flops_q50_f32, metal_flops_q80_f32
// - metal_flops_iq1s_f32, metal_flops_iq4nl_f32
// - metal_flops_iq1m_f32
// CUDA floating-point performance:
// - cuda_flops_f32_f32, cuda_flops_f16_f32
// - cuda_flops_q2k_f32, cuda_flops_q4k_f32, cuda_flops_q5k_f32, cuda_flops_q6k_f32
// - cuda_flops_iq2xxs_f32
// - cuda_flops_q50_f32, cuda_flops_q80_f32
// - cuda_flops_iq1s_f32, cuda_flops_iq4nl_f32
// - cuda_flops_iq1m_f32
// delay:
// - metal_mem_cpy_delay, cuda_mem_cpy_delay
*buffer = (char *)malloc(total_size);
char * ptr = *buffer;
if (*buffer == NULL) {
LOG_ERR("%s: failed to allocate %zu bytes for device info serialization\n",
__func__, total_size);
return 0;
}
// rank
memcpy(ptr, &dev_info->rank, sizeof(uint32_t));
ptr += sizeof(uint32_t);
// copy string lengths and string data
memcpy(ptr, &device_name_len, sizeof(size_t));
ptr += sizeof(size_t);
memcpy(ptr, dev_info->device_name, device_name_len);
ptr += device_name_len;
memcpy(ptr, &device_os_len, sizeof(size_t));
ptr += sizeof(size_t);
memcpy(ptr, dev_info->device_os, device_os_len);
ptr += device_os_len;
memcpy(ptr, &next_ip_len, sizeof(size_t));
ptr += sizeof(size_t);
memcpy(ptr, dev_info->next_ip, next_ip_len);
ptr += next_ip_len;
memcpy(ptr, &cpu_name_len, sizeof(size_t));
ptr += sizeof(size_t);
memcpy(ptr, dev_info->cpu_props.name, cpu_name_len);
ptr += cpu_name_len;
memcpy(ptr, &cpu_description_len, sizeof(size_t));
ptr += sizeof(size_t);
memcpy(ptr, dev_info->cpu_props.description, cpu_description_len);
ptr += cpu_description_len;
memcpy(ptr, &gpu_name_len, sizeof(size_t));
ptr += sizeof(size_t);
memcpy(ptr, dev_info->gpu_props.name, gpu_name_len);
ptr += gpu_name_len;
memcpy(ptr, &gpu_description_len, sizeof(size_t));
ptr += sizeof(size_t);
memcpy(ptr, dev_info->gpu_props.description, gpu_description_len);
ptr += gpu_description_len;
// copy the non-string members
memcpy(ptr, &dev_info->disk, sizeof(struct disk_props));
ptr += sizeof(struct disk_props);
memcpy(ptr, &dev_info->cpu_props.cores, sizeof(uint32_t));
ptr += sizeof(uint32_t);
memcpy(ptr, &dev_info->cpu_props.flops_f32_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_f16_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q2k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q4k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q5k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q6k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_iq2xxs_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q50_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q80_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_iq1s_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_iq4nl_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_iq1m_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->memory, sizeof(struct memory_info));
ptr += sizeof(struct memory_info);
memcpy(ptr, &dev_info->gpu_support, sizeof(struct gpu_support));
ptr += sizeof(struct gpu_support);
memcpy(ptr, &dev_info->gpu_props.memory_free, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.memory_total, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_read_vram_bw, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_f32_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_f16_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q2k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q4k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q5k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q6k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_iq2xxs_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q50_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q80_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_iq1s_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_iq4nl_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_iq1m_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_mem_cpy_delay, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_read_vram_bw, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_f32_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_f16_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q2k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q4k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q5k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q6k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_iq2xxs_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q50_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q80_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_iq1s_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_iq4nl_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_iq1m_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_mem_cpy_delay, sizeof(float));
// no need to synchronize model flops and model params
return total_size;
}
size_t deserialize(const char * buffer, struct device_info * dev_info) {
const char * ptr = buffer;
// rank
memcpy(&dev_info->rank, ptr, sizeof(uint32_t));
ptr += sizeof(uint32_t);
// device_name
size_t device_name_len;
memcpy(&device_name_len, ptr, sizeof(size_t));
ptr += sizeof(size_t);
dev_info->device_name = (char *)malloc(device_name_len);
memcpy(const_cast<void*>(static_cast<const void*>(dev_info->device_name)), ptr, device_name_len);
ptr += device_name_len;
// device_os
size_t device_os_len;
memcpy(&device_os_len, ptr, sizeof(size_t));
ptr += sizeof(size_t);
dev_info->device_os = (char *)malloc(device_os_len);
memcpy(const_cast<void*>(static_cast<const void*>(dev_info->device_os)), ptr, device_os_len);
ptr += device_os_len;
// next ip
size_t next_ip_len;
memcpy(&next_ip_len, ptr, sizeof(size_t));
ptr += sizeof(size_t);
dev_info->next_ip = (char *)malloc(next_ip_len);
memcpy(const_cast<void*>(static_cast<const void*>(dev_info->next_ip)), ptr, next_ip_len);
ptr += next_ip_len;
// cpu_props.name
size_t cpu_name_len;
memcpy(&cpu_name_len, ptr, sizeof(size_t));
ptr += sizeof(size_t);
dev_info->cpu_props.name = (char *)malloc(cpu_name_len);
memcpy(const_cast<void*>(static_cast<const void*>(dev_info->cpu_props.name)), ptr, cpu_name_len);
ptr += cpu_name_len;
// cpu_props.description
size_t cpu_description_len;
memcpy(&cpu_description_len, ptr, sizeof(size_t));
ptr += sizeof(size_t);
dev_info->cpu_props.description = (char *)malloc(cpu_description_len);
memcpy(const_cast<void*>(static_cast<const void*>(dev_info->cpu_props.description)), ptr, cpu_description_len);
ptr += cpu_description_len;
// gpu_props.name
size_t gpu_name_len;
memcpy(&gpu_name_len, ptr, sizeof(size_t));
ptr += sizeof(size_t);
dev_info->gpu_props.name = (char *)malloc(gpu_name_len);
memcpy(const_cast<void*>(static_cast<const void*>(dev_info->gpu_props.name)), ptr, gpu_name_len);
ptr += gpu_name_len;
// gpu_props.description
size_t gpu_description_len;
memcpy(&gpu_description_len, ptr, sizeof(size_t));
ptr += sizeof(size_t);
dev_info->gpu_props.description = (char *)malloc(gpu_description_len);
memcpy(const_cast<void*>(static_cast<const void*>(dev_info->gpu_props.description)), ptr, gpu_description_len);
ptr += gpu_description_len;
// other non-string members
memcpy(&dev_info->disk, ptr, sizeof(struct disk_props));
ptr += sizeof(struct disk_props);
memcpy(&dev_info->cpu_props.cores, ptr, sizeof(uint32_t));
ptr += sizeof(uint32_t);
memcpy(&dev_info->cpu_props.flops_f32_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_f16_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q2k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q4k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q5k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q6k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_iq2xxs_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q50_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q80_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_iq1s_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_iq4nl_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_iq1m_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->memory, ptr, sizeof(struct memory_info));
ptr += sizeof(struct memory_info);
memcpy(&dev_info->gpu_support, ptr, sizeof(struct gpu_support));
ptr += sizeof(struct gpu_support);
memcpy(&dev_info->gpu_props.memory_free, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.memory_total, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_read_vram_bw, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_f32_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_f16_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q2k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q4k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q5k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q6k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_iq2xxs_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q50_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q80_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_iq1s_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_iq4nl_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_iq1m_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_mem_cpy_delay, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_read_vram_bw, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_f32_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_f16_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q2k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q4k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q5k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q6k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_iq2xxs_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q50_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q80_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_iq1s_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_iq4nl_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_iq1m_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_mem_cpy_delay, ptr, sizeof(float));
ptr += sizeof(float);
// no need to synchronize model flops and model params
return ptr - buffer;
}
void TopoRebuildHelperInfo::deserialize(const char * buffer) {
size_t buffer_size = ::deserialize(buffer, &dev_info);
if (buffer_size == 0) {
LOG_ERR("%s: failed to deserialize device info\n", __func__);
return;
}
memcpy(&is_forwarder, buffer + buffer_size, 1);
}
size_t TopoRebuildHelperInfo::serialize(char ** buffer) const{
size_t buffer_size = ::serialize(&dev_info, buffer);
char * buffer_ = (char *)malloc(buffer_size + 1);
if (buffer_ == NULL) {
LOG_ERR("%s: failed to allocate %zu bytes for device info serialization\n",
__func__, buffer_size);
return 0;
}
memcpy(buffer_, *buffer, buffer_size);
memcpy(buffer_ + buffer_size, &is_forwarder, 1);
free(*buffer);
*buffer = buffer_;
return buffer_size + 1;
}