prima.cpp/common/common.cpp
2025-03-11 22:09:39 +04:00

2889 lines
111 KiB
C++

#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "common.h"
#include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <codecvt>
#include <cstdarg>
#include <cstring>
#include <csignal>
#include <ctime>
#include <fstream>
#include <iostream>
#include <iterator>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <thread>
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <locale>
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
#define PATH_MAX MAX_PATH
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
#endif // LLAMA_USE_CURL
#if defined(USE_HIGHS)
#include "Highs.h"
#endif
using json = nlohmann::ordered_json;
constexpr int GIGABYTE = 1024 * 1024 * 1024;
struct HiGHSException {
int signal;
const char * message;
};
[[noreturn]] static void highs_handler(int signal) {
HiGHSException e{signal, "HiGHS terminated due to signal"};
throw e;
}
//
// CPU utils
//
int32_t cpu_get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
std::unordered_set<std::string> siblings;
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
+ std::to_string(cpu) + "/topology/thread_siblings");
if (!thread_siblings.is_open()) {
break; // no more cpus
}
std::string line;
if (std::getline(thread_siblings, line)) {
siblings.insert(line);
}
}
if (!siblings.empty()) {
return static_cast<int32_t>(siblings.size());
}
#elif defined(__APPLE__) && defined(__MACH__)
int32_t num_physical_cores;
size_t len = sizeof(num_physical_cores);
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
// TODO: windows + arm64 + mingw64
unsigned int n_threads_win = std::thread::hardware_concurrency();
unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;
DWORD buffer_size = 0;
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
return default_threads;
}
}
std::vector<char> buffer(buffer_size);
if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
return default_threads;
}
int32_t num_physical_cores = 0;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
while (buffer_size > 0) {
if (info->Relationship == RelationProcessorCore) {
num_physical_cores += info->Processor.GroupCount;
}
buffer_size -= info->Size;
info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
}
return num_physical_cores > 0 ? num_physical_cores : default_threads;
#endif
unsigned int n_threads = std::thread::hardware_concurrency();
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>
static void cpuid(unsigned leaf, unsigned subleaf,
unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
__asm__("movq\t%%rbx,%%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx,%%rsi"
: "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
: "0"(leaf), "2"(subleaf));
}
static int pin_cpu(int cpu) {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(cpu, &mask);
return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}
static bool is_hybrid_cpu(void) {
unsigned eax, ebx, ecx, edx;
cpuid(7, 0, &eax, &ebx, &ecx, &edx);
return !!(edx & (1u << 15));
}
static bool is_running_on_efficiency_core(void) {
unsigned eax, ebx, ecx, edx;
cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
int intel_atom = 0x20;
int core_type = (eax & 0xff000000u) >> 24;
return core_type == intel_atom;
}
static int cpu_count_math_cpus(int n_cpu) {
int result = 0;
for (int cpu = 0; cpu < n_cpu; ++cpu) {
if (pin_cpu(cpu)) {
return -1;
}
if (is_running_on_efficiency_core()) {
continue; // efficiency cores harm lockstep threading
}
++cpu; // hyperthreading isn't useful for linear algebra
++result;
}
return result;
}
#endif // __x86_64__ && __linux__
/**
* Returns number of CPUs on system that are useful for math.
*/
int32_t cpu_get_num_math() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
if (n_cpu < 1) {
return cpu_get_num_physical_cores();
}
if (is_hybrid_cpu()) {
cpu_set_t affinity;
if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
int result = cpu_count_math_cpus(n_cpu);
pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
if (result > 0) {
return result;
}
}
}
#endif
return cpu_get_num_physical_cores();
}
// Helper for setting process priority
#if defined(_WIN32)
bool set_process_priority(enum ggml_sched_priority prio) {
if (prio == GGML_SCHED_PRIO_NORMAL) {
return true;
}
DWORD p = NORMAL_PRIORITY_CLASS;
switch (prio) {
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break;
}
if (!SetPriorityClass(GetCurrentProcess(), p)) {
LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
return false;
}
return true;
}
#else // MacOS and POSIX
#include <sys/types.h>
#include <sys/resource.h>
bool set_process_priority(enum ggml_sched_priority prio) {
if (prio == GGML_SCHED_PRIO_NORMAL) {
return true;
}
int p = 0;
switch (prio) {
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
case GGML_SCHED_PRIO_HIGH: p = -10; break;
case GGML_SCHED_PRIO_REALTIME: p = -20; break;
}
if (!setpriority(PRIO_PROCESS, 0, p)) {
LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
return false;
}
return true;
}
#endif
//
// CLI argument parsing
//
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
int32_t n_set = 0;
if (cpuparams.n_threads < 0) {
// Assuming everything about cpuparams is invalid
if (role_model != nullptr) {
cpuparams = *role_model;
} else {
cpuparams.n_threads = cpu_get_num_math();
}
}
for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
if (cpuparams.cpumask[i]) {
n_set++;
}
}
if (n_set && n_set < cpuparams.n_threads) {
// Not enough set bits, may experience performance issues.
LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
}
}
bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
size_t dash_loc = range.find('-');
if (dash_loc == std::string::npos) {
LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
return false;
}
size_t start_i;
size_t end_i;
if (dash_loc == 0) {
start_i = 0;
} else {
start_i = std::stoull(range.substr(0, dash_loc));
if (start_i >= GGML_MAX_N_THREADS) {
LOG_ERR("Start index out of bounds!\n");
return false;
}
}
if (dash_loc == range.length() - 1) {
end_i = GGML_MAX_N_THREADS - 1;
} else {
end_i = std::stoull(range.substr(dash_loc + 1));
if (end_i >= GGML_MAX_N_THREADS) {
LOG_ERR("End index out of bounds!\n");
return false;
}
}
for (size_t i = start_i; i <= end_i; i++) {
boolmask[i] = true;
}
return true;
}
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
// Discard potential 0x prefix
size_t start_i = 0;
if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
start_i = 2;
}
size_t num_digits = mask.length() - start_i;
if (num_digits > 128) num_digits = 128;
size_t end_i = num_digits + start_i;
for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
char c = mask.at(i);
int8_t id = c;
if ((c >= '0' && c <= '9')) {
id -= '0';
} else if (c >= 'a' && c <= 'f') {
id -= 'a' - 10;
} else if (c >= 'A' && c <= 'F') {
id -= 'A' - 10;
} else {
LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
return false;
}
boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0);
boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
}
return true;
}
void gpt_init() {
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= gpt_log_verbosity_thold) {
gpt_log_add(gpt_log_main(), level, "%s", text);
}
}, NULL);
#ifdef NDEBUG
const char * build_type = "";
#else
const char * build_type = " (debug)";
#endif
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
}
std::string gpt_params_get_system_info(const gpt_params & params) {
std::ostringstream os;
os << "system_info: n_threads = " << params.cpuparams.n_threads;
if (params.cpuparams_batch.n_threads != -1) {
os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
}
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
// TODO: windows + arm64 + mingw64
DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
#else
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
#endif
return os.str();
}
//
// String utils
//
std::vector<std::string> string_split(std::string input, char separator) {
std::vector<std::string> parts;
size_t separator_pos = input.find(separator);
while (separator_pos != std::string::npos) {
std::string part = input.substr(0, separator_pos);
parts.emplace_back(part);
input = input.substr(separator_pos + 1);
separator_pos = input.find(separator);
}
parts.emplace_back(input);
return parts;
}
std::string string_strip(const std::string & str) {
size_t start = 0;
size_t end = str.size();
while (start < end && std::isspace(str[start])) {
start++;
}
while (end > start && std::isspace(str[end - 1])) {
end--;
}
return str.substr(start, end - start);
}
std::string string_get_sortable_timestamp() {
using clock = std::chrono::system_clock;
const clock::time_point current_time = clock::now();
const time_t as_time_t = clock::to_time_t(current_time);
char timestamp_no_ns[100];
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
current_time.time_since_epoch() % 1000000000).count();
char timestamp_ns[11];
snprintf(timestamp_ns, 11, "%09" PRId64, ns);
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}
void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
std::string string_from(bool value) {
return value ? "true" : "false";
}
std::string string_from(const std::vector<int> & values) {
std::stringstream buf;
buf << "[ ";
bool first = true;
for (auto e : values) {
if (first) {
first = false;
} else {
buf << ", ";
}
buf << std::to_string(e);
}
buf << " ]";
return buf.str();
}
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
std::stringstream buf;
buf << "[ ";
bool first = true;
for (const auto & token : tokens) {
if (!first) {
buf << ", ";
} else {
first = false;
}
auto detokenized = llama_token_to_piece(ctx, token);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf << "'" << detokenized << "'"
<< ":" << std::to_string(token);
}
buf << " ]";
return buf.str();
}
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
std::stringstream buf;
buf << "[ ";
bool first = true;
for (int i = 0; i < batch.n_tokens; ++i) {
if (!first) {
buf << ", ";
} else {
first = false;
}
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf << "\n" << std::to_string(i)
<< ":token '" << detokenized << "'"
<< ":pos " << std::to_string(batch.pos[i])
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
<< ":logits " << std::to_string(batch.logits[i]);
}
buf << " ]";
return buf.str();
}
void string_process_escapes(std::string & input) {
std::size_t input_len = input.length();
std::size_t output_idx = 0;
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
switch (input[++input_idx]) {
case 'n': input[output_idx++] = '\n'; break;
case 'r': input[output_idx++] = '\r'; break;
case 't': input[output_idx++] = '\t'; break;
case '\'': input[output_idx++] = '\''; break;
case '\"': input[output_idx++] = '\"'; break;
case '\\': input[output_idx++] = '\\'; break;
case 'x':
// Handle \x12, etc
if (input_idx + 2 < input_len) {
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
char *err_p = nullptr;
const long val = std::strtol(x, &err_p, 16);
if (err_p == x + 2) {
input_idx += 2;
input[output_idx++] = char(val);
break;
}
}
// fall through
default: input[output_idx++] = '\\';
input[output_idx++] = input[input_idx]; break;
}
} else {
input[output_idx++] = input[input_idx];
}
}
input.resize(output_idx);
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
const char * sep = strchr(data, '=');
if (sep == nullptr || sep - data >= 128) {
LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
return false;
}
llama_model_kv_override kvo;
std::strncpy(kvo.key, data, sep - data);
kvo.key[sep - data] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.val_f64 = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.val_bool = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.val_bool = false;
} else {
LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
return false;
}
} else if (strncmp(sep, "str:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
if (strlen(sep) > 127) {
LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
return false;
}
strncpy(kvo.val_str, sep, 127);
kvo.val_str[127] = '\0';
} else {
LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
return false;
}
overrides.emplace_back(std::move(kvo));
return true;
}
//
// Filesystem utils
//
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
if (!filename.length()) {
// Empty filename invalid
return false;
}
if (filename.length() > 255) {
// Limit at common largest possible filename on Linux filesystems
// to avoid unnecessary further validation
// (On systems with smaller limits it will be caught by the OS)
return false;
}
std::u32string filename_utf32;
try {
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
filename_utf32 = converter.from_bytes(filename);
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
// or invalid encodings were encountered. Reject such attempts
std::string filename_reencoded = converter.to_bytes(filename_utf32);
if (filename_reencoded != filename) {
return false;
}
} catch (const std::exception &) {
return false;
}
// Check for forbidden codepoints:
// - Control characters
// - Unicode equivalents of illegal characters
// - UTF-16 surrogate pairs
// - UTF-8 replacement character
// - Byte order mark (BOM)
// - Illegal characters: / \ : * ? " < > |
for (char32_t c : filename_utf32) {
if (c <= 0x1F // Control characters (C0)
|| c == 0x7F // Control characters (DEL)
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1)
|| c == 0xFF0E // Fullwidth Full Stop (period equivalent)
|| c == 0x2215 // Division Slash (forward slash equivalent)
|| c == 0x2216 // Set Minus (backslash equivalent)
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
// Unicode and other whitespace is not affected, only 0x20 space
if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
return false;
}
// Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
if (filename.find("..") != std::string::npos) {
return false;
}
// Reject "."
if (filename == ".") {
return false;
}
return true;
}
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return true;
}
size_t pos_slash = 0;
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
if (!success) {
const DWORD error = GetLastError();
// if the path already exists, ensure that it's a directory
if (error == ERROR_ALREADY_EXISTS) {
const DWORD attributes = GetFileAttributesW(subpath.c_str());
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return false;
}
} else {
return false;
}
}
pos_slash += 1;
}
return true;
#else
// if the path already exists, check whether it's a directory
struct stat info;
if (stat(path.c_str(), &info) == 0) {
return S_ISDIR(info.st_mode);
}
size_t pos_slash = 1; // skip leading slashes for directory creation
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
const std::string subpath = path.substr(0, pos_slash);
struct stat info;
// if the path already exists, ensure that it's a directory
if (stat(subpath.c_str(), &info) == 0) {
if (!S_ISDIR(info.st_mode)) {
return false;
}
} else {
// create parent directories
const int ret = mkdir(subpath.c_str(), 0755);
if (ret != 0) {
return false;
}
}
pos_slash += 1;
}
return true;
#endif // _WIN32
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
// Make sure to add trailing slash
if (p.back() != DIRECTORY_SEPARATOR) {
p += DIRECTORY_SEPARATOR;
}
return p;
};
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
return ensure_trailing_slash(cache_directory);
}
std::string fs_get_cache_file(const std::string & filename) {
GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
std::string cache_directory = fs_get_cache_directory();
const bool success = fs_create_directory_with_parents(cache_directory);
if (!success) {
throw std::runtime_error("failed to create cache directory: " + cache_directory);
}
return cache_directory + filename;
}
template <typename T>
static std::string vec_to_str(const std::vector<T> & vec) {
std::ostringstream oss;
oss << "[";
for (size_t i = 0; i < vec.size(); ++i) {
oss << vec[i];
if (i < vec.size() - 1) {
oss << ", ";
}
}
oss << "]";
return oss.str();
}
static bool assign_layers_to_device(
uint32_t n_world,
uint32_t my_rank,
const device_info * dev_info_set,
uint32_t * n_layer_window,
uint32_t * n_gpu_layers,
struct llama_model * model,
const struct llama_context_params cparams,
float min_disk_read_speed = 0.1f) { // minimum disk I/O speed: 100 MB/s
GGML_ASSERT(dev_info_set != nullptr);
GGML_ASSERT(n_layer_window != nullptr);
GGML_ASSERT(my_rank == 0);
// if only 1 device, it is assigned all layers
const uint32_t n_layer = llama_model_n_layers(model);
if (n_world == 1) {
n_layer_window[0] = n_layer;
return true;
}
std::vector<int> w(n_world, 0);
std::vector<int> n(n_world, 0);
std::vector<float> mem_budget(n_world, 0.0f);
// model-specific constants
const int n_embd_k_gqa = llama_model_n_embd_k_gqa(model);
const int n_embd_v_gqa = llama_model_n_embd_v_gqa(model);
if (n_embd_k_gqa <= 0 || n_embd_v_gqa <= 0) {
LOG_ERR("Invalid model parameters,n_embd_k_gqa and n_embd_v_gqa cannot be less than 0");
return false;
}
const int n_kv = cparams.n_ctx;
const int64_t b = dev_info_set[0].model_bytes.nb_layer;
const int64_t bo = dev_info_set[0].model_bytes.nb_output;
const int64_t b_prime = b + 2 * (n_embd_k_gqa + n_embd_v_gqa) * n_kv;
#if defined(USE_HIGHS)
const device_info &master = dev_info_set[0];
const int n_vocab = llama_n_vocab(model);
const int64_t bi = dev_info_set[0].model_bytes.nb_input;
// device-specific constants
std::vector<float> alpha(n_world, 0.0f);
std::vector<float> beta(n_world, 0.0f);
std::vector<float> xi(n_world, 0.0f);
float kappa = 0.0f;
// -------- Compute alpha[m], beta[m], xi[m] --------
for (uint32_t m = 0; m < n_world; ++m) {
// alpha[m]
const device_info & dev = dev_info_set[m];
float t_read_ram_cpu = 0.0f;
float t_calc_cpu = (
master.model_flops.layer_f32_f32 / (dev.cpu_props.flops_f32_f32 * 1e9 + EPS) +
master.model_flops.layer_f16_f32 / (dev.cpu_props.flops_f16_f32 * 1e9 + EPS) +
master.model_flops.layer_q4k_f32 / (dev.cpu_props.flops_q4k_f32 * 1e9 + EPS) +
master.model_flops.layer_q50_f32 / (dev.cpu_props.flops_q50_f32 * 1e9 + EPS) +
master.model_flops.layer_q5k_f32 / (dev.cpu_props.flops_q5k_f32 * 1e9 + EPS) +
master.model_flops.layer_q6k_f32 / (dev.cpu_props.flops_q6k_f32 * 1e9 + EPS) +
master.model_flops.layer_q80_f32 / (dev.cpu_props.flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
float t_kv_cpy_cpu = dev.memory.mem_cpy_delay; // in ms
// t_read_ram_cpu = b_prime / (dev.memory.cpu_read_ram_bw * 1e9) * 1000; // in ms
alpha[m] = t_calc_cpu + t_kv_cpy_cpu + t_read_ram_cpu; // in ms
// beta[m]
if (dev.gpu_support.metal || dev.gpu_support.cuda) {
float t_calc_gpu = 0.0;
float t_kv_cpy_gpu = 0.0;
float t_read_ram_gpu = 0.0;
if (dev.gpu_support.metal) {
t_calc_gpu = (
master.model_flops.layer_f32_f32 / (dev.gpu_props.metal_flops_f32_f32 * 1e9 + EPS) +
master.model_flops.layer_f16_f32 / (dev.gpu_props.metal_flops_f16_f32 * 1e9 + EPS) +
master.model_flops.layer_q4k_f32 / (dev.gpu_props.metal_flops_q4k_f32 * 1e9 + EPS) +
master.model_flops.layer_q50_f32 / (dev.gpu_props.metal_flops_q50_f32 * 1e9 + EPS) +
master.model_flops.layer_q5k_f32 / (dev.gpu_props.metal_flops_q5k_f32 * 1e9 + EPS) +
master.model_flops.layer_q6k_f32 / (dev.gpu_props.metal_flops_q6k_f32 * 1e9 + EPS) +
master.model_flops.layer_q80_f32 / (dev.gpu_props.metal_flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
t_kv_cpy_gpu = dev.gpu_props.metal_mem_cpy_delay; // in ms
// t_read_ram_gpu = b_prime / (dev.gpu_props.metal_read_vram_bw * 1e9) * 1000; // in ms
} else {
t_calc_gpu = (
master.model_flops.layer_f32_f32 / (dev.gpu_props.cuda_flops_f32_f32 * 1e9 + EPS) +
master.model_flops.layer_f16_f32 / (dev.gpu_props.cuda_flops_f16_f32 * 1e9 + EPS) +
master.model_flops.layer_q4k_f32 / (dev.gpu_props.cuda_flops_q4k_f32 * 1e9 + EPS) +
master.model_flops.layer_q50_f32 / (dev.gpu_props.cuda_flops_q50_f32 * 1e9 + EPS) +
master.model_flops.layer_q5k_f32 / (dev.gpu_props.cuda_flops_q5k_f32 * 1e9 + EPS) +
master.model_flops.layer_q6k_f32 / (dev.gpu_props.cuda_flops_q6k_f32 * 1e9 + EPS) +
master.model_flops.layer_q80_f32 / (dev.gpu_props.cuda_flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
t_kv_cpy_gpu = dev.gpu_props.cuda_mem_cpy_delay; // in ms
// t_read_ram_gpu = b_prime / (dev.gpu_props.cuda_read_vram_bw * 1e9) * 1000; // in ms
}
beta[m] = t_calc_gpu - t_calc_cpu + t_kv_cpy_gpu - t_kv_cpy_cpu + t_read_ram_gpu - t_read_ram_cpu; // in ms
}
// xi[m]
// the ram-vram and vram-ram transfer time and the communication time are less than 1 ms
xi[m] = 0.0;
}
// we adopt an iterative optimization approach. Initially, $w_m$ is set proportionally
// based on the available memory budget and $n_m$ is initialized to 0.
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
GGML_ASSERT(dev.device_os != nullptr);
bool is_macos = strcmp(dev.device_os, "macOS") == 0;
bool is_linux = strcmp(dev.device_os, "Linux") == 0;
bool is_android = strcmp(dev.device_os, "Android") == 0;
bool is_windows = strcmp(dev.device_os, "Windows") == 0;
GGML_ASSERT(!is_windows && "Windows is not tested yet\n");
if ((is_macos && !dev.gpu_support.metal) || is_linux) {
mem_budget[m] = dev.memory.available_physical;
} else if (is_macos && dev.gpu_support.metal) {
mem_budget[m] = dev.gpu_props.memory_free;
} else if (is_android) {
mem_budget[m] = dev.memory.available_physical + dev.memory.used_can_swap;
} else {
// todo: add support for other OS such as Windows
GGML_ASSERT(false && "Unsupported OS\n");
}
}
// initialize w_m proportionally to memory budget and n_m to 0
float total_mem_budget = std::accumulate(mem_budget.begin(), mem_budget.end(), 0.0f);
for (uint32_t m = 0; m < n_world; ++m) {
w[m] = std::round(mem_budget[m] / total_mem_budget * n_layer);
n[m] = 0;
}
// adjust w[m] to ensure L mod W = 0
int diff = n_layer - std::accumulate(w.begin(), w.end(), 0);
auto device = (diff > 0) ? std::max_element(mem_budget.begin(), mem_budget.end())
: std::min_element(mem_budget.begin(), mem_budget.end());
w[std::distance(mem_budget.begin(), device)] += diff;
// stores the actual read bandwidth (GB/s) for each device
std::vector<float> disk_speed(n_world, 0.0f);
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
GGML_ASSERT(dev.device_os != nullptr);
bool is_linux = strcmp(dev.device_os, "Linux") == 0;
if (is_linux) {
disk_speed[m] = dev.disk.read_seq_bw;
} else {
disk_speed[m] = dev.disk.read_rnd_bw;
}
}
// helper function to find valid factors for a given n_layers
auto find_factors = [&](int n_layers) {
std::vector<int> factors;
for (int k = 1; k <= n_layers / 2; ++k) {
if (n_layers % k == 0) {
factors.push_back(k);
}
}
return factors;
};
// get valid factors
std::vector<int> valid_k = cparams.n_cycles > 0 ? std::vector<int>{cparams.n_cycles} : find_factors(n_layer);
// assign devices to sets M1, M2, M3, and M4
// M1: devices running on macOS without Metal, and with insufficient memory
// M2: devices running on macOS with Metal and insufficient memory
// M3: devices running on Linux or Android and with insufficient memory
// M4: devices with sufficient memory or very slow disk I/O (slower than min_disk_io_speed)
std::vector<uint32_t> M1, M2, M3, M4, M1_prev, M2_prev, M3_prev, M4_prev;
std::vector<bool> M4_force(n_world, false);
std::vector<int64_t> c_cpu(n_world, 0), c_gpu(n_world, 0);
// helper function to check if a device is in a specific set
auto in_set = [&](uint32_t m, const std::vector<uint32_t> & M) {
return (std::find(M.begin(), M.end(), m) != M.end());
};
auto assign_sets = [&](int k) -> bool {
M1.clear(), M2.clear(), M3.clear(), M4.clear();
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
GGML_ASSERT(dev.device_os != nullptr);
bool is_macos = strcmp(dev.device_os, "macOS") == 0;
bool is_linux = strcmp(dev.device_os, "Linux") == 0;
bool is_android = strcmp(dev.device_os, "Android") == 0;
bool is_windows = strcmp(dev.device_os, "Windows") == 0;
GGML_ASSERT(!is_windows && "Windows is not tested yet\n");
bool use_gpu = dev.gpu_support.metal || dev.gpu_support.cuda;
llama_model_compute_buf_size(&c_cpu[m], &c_gpu[m], model, cparams, use_gpu, m == 0, w[m] * k, n[m] * k);
int l_m = w[m] * k; // total number of layers assigned to device m
int l_m_gpu = n[m] * k; // number of layers assigned to device m that run on GPU
bool condition1 = l_m * b + (bi / n_vocab + bo) * int(m == 0) + 2 * (n_embd_k_gqa + n_embd_v_gqa) * n_kv * l_m + c_cpu[m] > mem_budget[m] * GIGABYTE;
bool condition2 = l_m * b + (bi / n_vocab + bo) * int(m == 0) + 2 * (n_embd_k_gqa + n_embd_v_gqa) * n_kv * l_m + c_cpu[m] + c_gpu[m] > mem_budget[m] * GIGABYTE;
bool condition3 = (l_m - l_m_gpu) * b_prime + (bi / n_vocab + bo) * int(m == 0) + c_cpu[m] > mem_budget[m] * GIGABYTE;
bool is_slow_disk = disk_speed[m] < min_disk_read_speed;
if (M4_force[m] || is_slow_disk) {
M4.push_back(m); // case 4: devices with very slow disk or force to be in M4
} else if (is_macos && !dev.gpu_support.metal && condition1) {
M1.push_back(m); // case 1: macOS without Metal, and with insufficient memory
} else if (is_macos && dev.gpu_support.metal && condition2) {
M2.push_back(m); // case 2: macOS with Metal, and with insufficient memory
} else if ((is_linux || is_android) && condition3) {
M3.push_back(m); // case 3: Linux with insufficient memory
} else {
M4.push_back(m); // case 4: devices with sufficient memory
}
}
// check whether the sets are changed
bool sets_changed = (M1 != M1_prev || M2 != M2_prev || M3 != M3_prev || M4 != M4_prev);
// update the previous sets
M1_prev = M1, M2_prev = M2, M3_prev = M3, M4_prev = M4;
return sets_changed;
};
// helper function to print a matrix
auto print_matrix = [](const std::vector<std::vector<double>>& matrix) {
for (const auto& row : matrix) {
for (const auto& elem : row) {
printf("%.3f ", elem);
}
printf("\n");
}
};
(void)print_matrix;
double final_objective = 1.0e30;
std::vector<double> final_solution;
int final_k = -1;
// iterative optimization to find a valid set assignment (M1, M2, M3, M4)
while (true) {
int W = std::accumulate(w.begin(), w.end(), 0);
int cur_k = (int)n_layer / W;
if (W <= 1 || (int)n_layer % W != 0) {
LOG_INF("Constraint: L = k * W must hold, but W = %d, L = %d\n", W, n_layer);
fflush(stdout);
fflush(stderr);
return false;
}
if (!assign_sets(cur_k)) break;
LOG_INF("Set assignment: M1: %s, M2: %s, M3: %s, M4: %s\n",
vec_to_str(M1).c_str(), vec_to_str(M2).c_str(), vec_to_str(M3).c_str(), vec_to_str(M4).c_str());
// update kappa
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
GGML_ASSERT(dev.device_os != nullptr);
bool is_android = strcmp(dev.device_os, "Android") == 0;
if (m == 0) {
kappa = (
dev.model_flops.layer_f32_f32 / (dev.cpu_props.flops_f32_f32 * 1e9 + EPS) +
dev.model_flops.layer_f16_f32 / (dev.cpu_props.flops_f16_f32 * 1e9 + EPS) +
dev.model_flops.layer_q4k_f32 / (dev.cpu_props.flops_q4k_f32 * 1e9 + EPS) +
dev.model_flops.layer_q50_f32 / (dev.cpu_props.flops_q50_f32 * 1e9 + EPS) +
dev.model_flops.layer_q5k_f32 / (dev.cpu_props.flops_q5k_f32 * 1e9 + EPS) +
dev.model_flops.layer_q6k_f32 / (dev.cpu_props.flops_q6k_f32 * 1e9 + EPS) +
dev.model_flops.layer_q80_f32 / (dev.cpu_props.flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
// kappa += (bi / n_vocab + bo) / (dev.memory.cpu_read_ram_bw * 1e9) * 1000; // in ms
kappa += (bi / n_vocab) / (disk_speed[m] * 1e9) * 1000; // in ms
if (!in_set(m, M4)) {
kappa += bo / (disk_speed[m] * 1e9) * 1000; // in ms
}
}
if (in_set(m, M1) || in_set(m, M3)) {
kappa += (c_cpu[m] - dev.memory.available_physical * GIGABYTE - dev.memory.used_can_swap * GIGABYTE * int(is_android)) / (disk_speed[m] * 1e9) * 1000; // in ms
}
}
std::vector<int> dev_gpu(n_world, 0);
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
if (dev.gpu_support.cuda || dev.gpu_support.metal) {
dev_gpu[m] = 1;
}
}
// -------------------------------------------------------------
// Construct vectors va, vb, vc
// -------------------------------------------------------------
std::vector<float> vec_a(n_world, 0.0f), vec_b(n_world, 0.0f), vec_c(n_world, 0.0f);
for (uint32_t m = 0; m < n_world; ++m) {
if (in_set(m, M1)) {
vec_a[m] = alpha[m] + b_prime / (disk_speed[m] * 1e9) * 1000; // in ms
} else if (in_set(m, M2)) {
vec_a[m] = alpha[m] + b / (disk_speed[m] * 1e9) * 1000; // in ms
vec_b[m] = beta[m];
} else if (in_set(m, M3)) {
vec_a[m] = alpha[m] + b_prime / (disk_speed[m] * 1e9) * 1000; // in ms
if (dev_gpu[m]) vec_b[m] = beta[m] - b_prime / (disk_speed[m] * 1e9) * 1000; // in ms
} else {
vec_a[m] = alpha[m];
if (dev_gpu[m]) vec_b[m] = beta[m];
}
vec_c[m] = xi[m];
}
// -------------------------------------------------------------
// Construct vectors vz, vz_gpu
// -------------------------------------------------------------
std::vector<float> vec_z(n_world, 0.0f), vec_z_gpu(n_world, 0.0f);
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
GGML_ASSERT(dev.device_os != nullptr);
bool is_macos = strcmp(dev.device_os, "macOS") == 0;
bool is_android = strcmp(dev.device_os, "Android") == 0;
bool is_windows = strcmp(dev.device_os, "Windows") == 0;
GGML_ASSERT(!is_windows && "Windows is not tested yet\n");
int64_t b_cio = (bi / n_vocab + bo) * int(m == 0) + c_cpu[m];
if (in_set(m, M1)) {
vec_z[m] = (double)(dev.memory.available_physical * GIGABYTE - b_cio) / (double)(n_layer * b_prime);
} else if (in_set(m, M2)) {
vec_z[m] = (double)(dev.gpu_props.memory_free * GIGABYTE - b_cio - c_gpu[m]) / (double)(n_layer * b_prime);
} else if (in_set(m, M3)) {
vec_z[m] = (double)(dev.memory.available_physical * GIGABYTE + dev.memory.used_can_swap * GIGABYTE * int(is_android) - b_cio) / (double)(n_layer * b_prime);
} else {
if (is_macos && !dev.gpu_support.metal) {
vec_z[m] = - (double)(dev.memory.available_physical * GIGABYTE - b_cio) / (double)(n_layer * b_prime);
} else if (is_macos && dev.gpu_support.metal) {
vec_z[m] = - (double)(dev.gpu_props.memory_free * GIGABYTE - b_cio - c_gpu[m]) / (double)(n_layer * b_prime);
} else {
vec_z[m] = - (double)((dev.memory.available_physical + dev.memory.used_can_swap * int(is_android)) * GIGABYTE - b_cio) / (double)(n_layer * b_prime);
}
}
if (dev_gpu[m]) {
vec_z_gpu[m] = (double)(dev.gpu_props.memory_free * GIGABYTE - c_gpu[m]) / (double)(n_layer * b_prime);
if (dev.gpu_support.metal && m == 0 && cparams.keep_out_in_metal) {
vec_z_gpu[m] -= (double)bo / (double)(n_layer * b_prime);
}
}
}
// -------------------------------------------------------------
// Build and solve the optimization model
// -------------------------------------------------------------
double best_objective = 1.0e30;
std::vector<double> best_solution;
int best_k = -1;
// iterate over all possible values of k to find the best solution
for (int k : valid_k) {
GGML_ASSERT(n_layer % k == 0 && "Constraint: L = k * W must hold\n");
int W = n_layer / k;
HighsModel model;
// define the number of decision variables and constraints
model.lp_.num_col_ = n_world * 2; // number of decision variables
model.lp_.num_row_ = 1 + 3 * n_world; // number of constraints
// define the objective: k * sum(a[m] * w[m] + b[m] * n[m]) + kappa + k * sum(c[m])
model.lp_.sense_ = ObjSense::kMinimize;
model.lp_.offset_ = k * std::accumulate(vec_c.begin(), vec_c.end(), 0.0f) + kappa;
model.lp_.col_cost_.clear();
std::copy(vec_a.begin(), vec_a.end(), std::back_inserter(model.lp_.col_cost_));
std::copy(vec_b.begin(), vec_b.end(), std::back_inserter(model.lp_.col_cost_));
std::transform(
model.lp_.col_cost_.begin(),
model.lp_.col_cost_.end(),
model.lp_.col_cost_.begin(), [k](double cost) {
return cost * k;
}
);
// define the variable bounds
model.lp_.col_lower_ = std::vector<double>(n_world * 2, 0.0);
std::fill(model.lp_.col_lower_.begin(), model.lp_.col_lower_.begin() + n_world, 1.0);
model.lp_.col_upper_ = std::vector<double>(n_world * 2, n_layer);
// define the constraint bounds
int constraint_idx = 0;
model.lp_.row_lower_ = std::vector<double>(model.lp_.num_row_, -1.0e30); // initialize to a large negative value
model.lp_.row_upper_ = std::vector<double>(model.lp_.num_row_, 1.0e30); // initialize to a large positive value
// constraint bound 1: sum(w[m]) = W
model.lp_.row_lower_[constraint_idx] = {(double)W};
model.lp_.row_upper_[constraint_idx] = {(double)W};
constraint_idx++;
// constraint bound 2: n[m] <= w[m], m = 1, 2, ..., n_world
std::fill_n(model.lp_.row_upper_.begin() + constraint_idx, n_world, 0.0); // constraint: -w[m] + n[m] <= 0.0
constraint_idx += n_world;
// constraint bound 3: RAM constraint for each device
for (uint32_t m = 0; m < n_world; ++m) {
model.lp_.row_upper_[constraint_idx + m] = -W * vec_z[m];
}
constraint_idx += n_world;
// constraint bound 4: CUDA/shared memory constraint for CUDA/Metal devices
for (uint32_t m = 0; m < n_world; ++m) {
double upper_bound = W * vec_z_gpu[m];
model.lp_.row_upper_[constraint_idx] = std::max(upper_bound, 0.0);
constraint_idx++;
}
// define the constraint matrix
const int n_rows = model.lp_.num_row_;
const int n_cols = model.lp_.num_col_;
std::vector<std::vector<double>> A(n_rows, std::vector<double>(n_cols, 0.0));
constraint_idx = 0;
// constraint coefficients 1: sum(w[m]) = W
std::fill_n(A[constraint_idx].begin(), n_world, 1.0);
constraint_idx++;
// constraint coefficients 2: n[m] <= w[m], m = 1, 2, ..., n_world
for (uint32_t m = 0; m < n_world; ++m) {
A[constraint_idx + m][m] = -1.0; // coefficient for w[m]
A[constraint_idx + m][m + n_world] = 1.0; // coefficient for n[m]
}
constraint_idx += n_world;
// constraint coefficients 3: RAM constraint for each device
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
GGML_ASSERT(dev.device_os != nullptr);
bool is_macos = strcmp(dev.device_os, "macOS") == 0;
int cons_row = constraint_idx + m;
if (in_set(m, M1) || in_set(m, M2)) { // in sets M1 and M2
A[cons_row][m] = -1.0; // coefficient for w[m]
} else if (in_set(m, M3)) { // in set M3
A[cons_row][m] = -1.0; // coefficient for w[m]
if (dev_gpu[m]) {
A[cons_row][m + n_world] = 1.0; // coefficient for n[m]
}
} else { // in set M4
A[cons_row][m] = 1.0; // coefficient for w[m]
if (!is_macos && dev_gpu[m]) {
A[cons_row][m + n_world] = -1.0; // coefficient for n[m]
}
}
}
constraint_idx += n_world;
// constraint coefficients 4: CUDA/shared memory constraint for CUDA/Metal devices
for (uint32_t m = 0; m < n_world; ++m) {
A[constraint_idx][m + n_world] = 1.0; // coefficient for n[m]
constraint_idx++;
}
// translate the constraint matrix A into the LP model
model.lp_.a_matrix_.format_ = MatrixFormat::kColwise;
model.lp_.a_matrix_.start_.resize(n_cols + 1);
model.lp_.a_matrix_.index_.clear();
model.lp_.a_matrix_.value_.clear();
int nnz_count = 0; // number of non-zero elements
for (int j = 0; j < n_cols; ++j) {
model.lp_.a_matrix_.start_[j] = nnz_count;
for (int i = 0; i < n_rows; ++i) {
if (A[i][j] != 0.0) {
model.lp_.a_matrix_.index_.push_back(i);
model.lp_.a_matrix_.value_.push_back(A[i][j]);
nnz_count++;
}
}
}
model.lp_.a_matrix_.start_[n_cols] = nnz_count;
// integer constraints
model.lp_.integrality_ = std::vector<HighsVarType>(n_world * 2, HighsVarType::kInteger);
// solve the optimization problem
Highs highs;
highs.setOptionValue("log_to_console", false); // disable logging
HighsStatus return_status = highs.passModel(model);
GGML_ASSERT(return_status == HighsStatus::kOk && "Failed to pass model\n");
// run the solver
try {
std::signal(SIGABRT, highs_handler);
return_status = highs.run();
GGML_ASSERT(return_status == HighsStatus::kOk && "Failed to run the solver\n");
} catch (const HiGHSException &e) {
LOG_INF("Failed to run the solver when k = %d: unknown exception\n", k);
continue;
}
// get the solution
const HighsModelStatus& model_status = highs.getModelStatus();
if (model_status != HighsModelStatus::kOptimal) continue;
// record the best solution
const HighsSolution& solution = highs.getSolution();
double objective_value = highs.getInfo().objective_function_value;
if (objective_value < best_objective) {
best_objective = objective_value;
best_k = k;
best_solution = solution.col_value;
}
LOG_INF("k = %2d, obj = %7.1f, solution: %s | best_k = %2d, best_obj = %7.1f, best_solution: %s\n",
k, objective_value, vec_to_str(solution.col_value).c_str(), best_k, best_objective, vec_to_str(best_solution).c_str());
}
// check the solution
bool has_free_gpu_memory = false, has_gpu_overload = false, has_cpu_overload = false;
for (uint32_t m = 0; m < n_world; ++m) {
// if (!dev_gpu[m]) continue;
uint32_t w_m = best_solution[m], n_m = best_solution[m + n_world];
if (dev_gpu[m]) {
if (n_m < static_cast<uint32_t>(std::floor(W * vec_z_gpu[m]))) {
// if there is still free GPU memory
has_free_gpu_memory = true;
} else if (w_m > n_m) {
// if the GPU is overloaded
has_gpu_overload = true;
}
} else if (!in_set(m, M4)) {
// if the CPU is overloaded
has_cpu_overload = true;
}
}
if (has_free_gpu_memory && (has_gpu_overload || has_cpu_overload)) {
int worst_device = -1;
float worst_speed = std::numeric_limits<float>::max();
// find the device with slowest disk speed but was not in M4 yet
for (uint32_t m = 0; m < n_world; ++m) {
if (!in_set(m, M4) && disk_speed[m] < worst_speed) {
worst_speed = disk_speed[m];
worst_device = m;
}
}
if (worst_device != -1) {
M4_force[worst_device] = true;
LOG_INF("Forcing device %d (disk speed %.2f GB/s) into M4\n", worst_device, worst_speed);
} else {
LOG_INF("Infeasible solution detected but no device can be forced into M4\n");
}
continue;
}
// update w[m] and n[m]
GGML_ASSERT(best_solution.size() == n_world * 2 && "Invalid solution\n");
std::copy(best_solution.begin(), best_solution.begin() + n_world, w.begin());
std::copy(best_solution.begin() + n_world, best_solution.end(), n.begin());
bool solution_unchanged = (final_solution == best_solution);
// update the global best solution
final_k = best_k;
final_objective = best_objective;
final_solution = best_solution;
if (solution_unchanged) break;
}
LOG_INF("\n----- Allocation Strategy (by HiGHS) -----\n");
LOG_INF("\nParameters:\n");
LOG_INF(" - k = %d\n", final_k);
LOG_INF(" - W = %d\n", n_layer / final_k);
for (uint32_t m = 0; m < n_world; ++m) {
const char * device_name = dev_info_set[m].device_name;
GGML_ASSERT(final_solution[m] == w[m] && final_solution[m + n_world] == n[m]);
LOG_INF("\n%s:\n", device_name);
LOG_INF(" - Device Index : %d\n", m);
LOG_INF(" - Assignment Set : %s\n", in_set(m, M1) ? "M1" : in_set(m, M2) ? "M2" : in_set(m, M3) ? "M3" : "M4");
LOG_INF(" - N Layer Window : %d\n", w[m]);
LOG_INF(" - N GPU Layers : %d\n", n[m]);
}
// LOG_INF("\nEstimated Latency: %.3f ms\n", final_objective);
// LOG_INF("------------------------------------------");
// copy value from w and n to n_layer_window and n_gpu_layers, respectively
std::copy(w.begin(), w.end(), n_layer_window);
std::copy(n.begin(), n.end(), n_gpu_layers);
#else
(void)min_disk_read_speed;
// assign layers according to RAM/VRAM
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
if (dev.gpu_support.metal || dev.gpu_support.cuda) {
mem_budget[m] = dev.gpu_props.memory_free;
} else {
mem_budget[m] = dev.memory.available_physical;
}
}
// initialize w_m proportionally to memory budget and n_m to 0
float total_mem_budget = std::accumulate(mem_budget.begin(), mem_budget.end(), 0.0f);
for (uint32_t m = 0; m < n_world; ++m) {
w[m] = std::round(mem_budget[m] / total_mem_budget * n_layer);
n[m] = 0;
}
// adjust w[m] to ensure L mod W = 0
int diff = n_layer - std::accumulate(w.begin(), w.end(), 0);
auto device = (diff > 0) ? std::max_element(mem_budget.begin(), mem_budget.end())
: std::min_element(mem_budget.begin(), mem_budget.end());
w[std::distance(mem_budget.begin(), device)] += diff;
std::copy(w.begin(), w.end(), n_layer_window);
std::vector<float> vec_z_gpu(n_world, 0.0f);
std::vector<int64_t> c_cpu(n_world, 0), c_gpu(n_world, 0);
for (uint32_t m = 0; m < n_world; ++m) {
const device_info & dev = dev_info_set[m];
bool use_gpu = dev.gpu_support.metal || dev.gpu_support.cuda;
llama_model_compute_buf_size(&c_cpu[m], &c_gpu[m], model, cparams, use_gpu, m == 0, w[m], n[m]);
if (dev.gpu_support.cuda || dev.gpu_support.metal) {
int64_t required_mem = w[m] * b_prime;
int64_t available_mem = dev.gpu_props.memory_free * GIGABYTE - c_gpu[m];
if (dev.gpu_support.metal && m == 0 && cparams.keep_out_in_metal) {
available_mem -= bo;
}
if (required_mem <= available_mem) {
n_gpu_layers[m] = w[m];
} else {
n_gpu_layers[m] = available_mem / b_prime;
}
}
}
#endif
return true;
}
//
// Model utils
//
struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
llama_init_result iparams;
auto mparams = llama_model_params_from_gpt_params(params);
struct llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
} else if (!params.model_url.empty()) {
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
} else {
model = llama_load_model_from_file(params.model.c_str(), mparams);
}
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
return iparams;
}
llama_model_loader * ml = llama_model_load(params.model.c_str(), model, &mparams);
if (params.reranking) {
bool ok = true;
if (llama_token_bos(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_token_eos(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have an EOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_token_sep(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
llama_free_model(model);
return iparams;
}
}
device_info dev_info;
uint32_t n_world = params.n_world;
uint32_t my_rank = params.rank;
bool auto_schedule = params.n_layer_window[0] == 0;
// get device profile
LOG_INF("\nstart profiling this device, this may take some seconds ...\n");
dev_info.rank = params.rank;
if (n_world > 1) {
llama_profile_device(&dev_info, model, ml, params.gpu_mem, params.n_predict, params.n_ctx, params.cpuparams.n_threads, params.flash_attn);
}
// create llama context
struct llama_context_params cparams = llama_context_params_from_gpt_params(params);
llama_context * lctx = llama_new_context_with_model(model, cparams);
if (n_world == 1) {
uint32_t n_layers = llama_model_n_layers(model);
params.n_layer_window[0] = n_layers;
cparams.n_layer_window[0] = n_layers;
mparams.n_layer_window[0] = n_layers;
llama_context_n_layer_window(lctx)[0] = n_layers;
} else {
uint32_t n_layer_window[32] = {0}, n_gpu_layers[32] = {0};
// initialize sockets
llama_init_sockets(lctx, n_world, my_rank);
// sychronize device profile to the master node
struct device_info * dev_info_set = nullptr;
if (my_rank == 0) {
dev_info_set = (struct device_info *)malloc(n_world * sizeof(struct device_info));
dev_info_set[0] = dev_info;
llama_gather_device_info(lctx, dev_info_set);
device_print_props(dev_info_set, n_world, model, cparams);
if (auto_schedule) {
// automatically determine n_layer_window and n_gpu_layers
if (!assign_layers_to_device(n_world, my_rank, dev_info_set, n_layer_window, n_gpu_layers, model, cparams)) {
LOG_ERR("%s: Invalid allocation by HiGHS solver\n", __func__);
llama_free(lctx);
llama_free_model(model);
return iparams;
}
llama_bcast_layer_setup(lctx, n_layer_window, n_gpu_layers);
} else {
// use the user-defined n_layer_window
std::copy(std::begin(params.n_layer_window), std::end(params.n_layer_window), n_layer_window);
llama_bcast_layer_setup(lctx, n_layer_window, nullptr);
}
} else {
llama_send_device_info(lctx, &dev_info);
llama_recv_layer_setup(lctx, n_layer_window, n_gpu_layers);
}
// update n_layer_window and n_gpu_layers
std::copy(std::begin(n_layer_window), std::end(n_layer_window), params.n_layer_window);
std::copy(std::begin(n_layer_window), std::end(n_layer_window), cparams.n_layer_window);
std::copy(std::begin(n_layer_window), std::end(n_layer_window), mparams.n_layer_window);
std::copy(std::begin(n_layer_window), std::end(n_layer_window), llama_context_n_layer_window(lctx));
if (params.n_gpu_layers == 0) { // if -ngl not set
params.n_gpu_layers = n_gpu_layers[my_rank];
cparams.n_gpu_layers = n_gpu_layers[my_rank];
mparams.n_gpu_layers = n_gpu_layers[my_rank];
llama_model_set_n_gpu_layers(model, n_gpu_layers[my_rank]);
}
}
LOG_INF("\nUsing window size: %d, GPU layers: %d\n\n", cparams.n_layer_window[my_rank], cparams.n_gpu_layers);
if (!mparams.vocab_only && llm_load_tensors(ml, model, mparams) < 0) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
llama_free(lctx);
llama_free_model(model);
return iparams;
}
llama_perf_context_sync(lctx, model);
if (llama_context_setup_backend(model, cparams, lctx) == nullptr) {
LOG_ERR("%s: failed to setup context with model '%s'\n", __func__, params.model.c_str());
llama_free(lctx);
llama_free_model(model);
return iparams;
}
if (!params.control_vectors.empty()) {
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
const auto cvec = llama_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_free_model(model);
return iparams;
}
int err = llama_control_vector_apply(lctx,
cvec.data.data(),
cvec.data.size(),
cvec.n_embd,
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_free_model(model);
return iparams;
}
}
// load and optionally apply lora adapters
for (auto & la : params.lora_adapters) {
llama_lora_adapter_container loaded_la;
loaded_la.path = la.path;
loaded_la.scale = la.scale;
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
if (loaded_la.adapter == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
llama_free(lctx);
llama_free_model(model);
return iparams;
}
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
}
if (!params.lora_init_without_apply) {
llama_lora_adapters_apply(lctx, iparams.lora_adapters);
}
if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sparams.ignore_eos = false;
}
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
const uint32_t my_rank = cparams.rank;
std::vector<llama_token> tmp;
if (my_rank == 0) {
llama_token bos = llama_token_bos(model);
llama_token eos = llama_token_eos(model);
// some models (e.g. T5) don't have a BOS token
if (bos != LLAMA_TOKEN_NULL) {
tmp.push_back(bos);
}
if (eos != LLAMA_TOKEN_NULL) {
tmp.push_back(eos);
}
if (tmp.empty()) {
tmp.push_back(0);
}
if (llama_model_has_encoder(model)) {
throw std::runtime_error("this model is currently not supported");
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = bos;
}
tmp.clear();
tmp.push_back(decoder_start_token_id);
}
}
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
}
llama_kv_cache_clear(lctx);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
}
iparams.model = model;
iparams.context = lctx;
return iparams;
}
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters) {
llama_lora_adapter_clear(ctx);
for (auto & la : lora_adapters) {
if (la.scale != 0.0f) {
llama_lora_adapter_set(ctx, la.adapter, la.scale);
}
}
}
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
auto mparams = llama_model_default_params();
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.n_world = params.n_world;
mparams.rank = params.rank;
mparams.rpc_servers = params.rpc_servers.c_str();
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.keep_out_in_metal = params.keep_out_in_metal;
std::copy(std::begin(params.n_layer_window), std::end(params.n_layer_window), mparams.n_layer_window);
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
mparams.kv_overrides = params.kv_overrides.data();
}
return mparams;
}
static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f32") {
return GGML_TYPE_F32;
}
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
throw std::runtime_error("Invalid cache type: " + s);
}
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto cparams = llama_context_default_params();
cparams.n_world = params.n_world;
cparams.rank = params.rank;
cparams.prefetch = params.prefetch;
cparams.force = params.force;
cparams.keep_out_in_metal = params.keep_out_in_metal;
cparams.n_gpu_layers = params.n_gpu_layers;
cparams.n_cycles = params.n_cycles;
std::copy(std::begin(params.n_layer_window), std::end(params.n_layer_window), cparams.n_layer_window);
if (cparams.master_ip != nullptr) {
delete[] cparams.master_ip;
}
cparams.master_ip = new char[params.master_ip.length() + 1];
std::strcpy(cparams.master_ip, params.master_ip.c_str());
if (cparams.next_node_ip != nullptr) {
delete[] cparams.next_node_ip;
}
cparams.next_node_ip = new char[params.next_node_ip.length() + 1];
std::strcpy(cparams.next_node_ip, params.next_node_ip.c_str());
cparams.n_ctx = params.n_ctx;
cparams.n_predict = params.n_predict;
cparams.n_seq_max = params.n_parallel;
cparams.n_batch = params.n_batch;
cparams.n_ubatch = params.n_ubatch;
cparams.n_threads = params.cpuparams.n_threads;
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale;
cparams.yarn_ext_factor = params.yarn_ext_factor;
cparams.yarn_attn_factor = params.yarn_attn_factor;
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.attention_type = params.attention_type;
cparams.defrag_thold = params.defrag_thold;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
if (params.reranking) {
cparams.embeddings = true;
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
return cparams;
}
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
struct ggml_threadpool_params tpp;
ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults
if (params.mask_valid) {
std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
}
tpp.prio = params.priority;
tpp.poll = params.poll;
tpp.strict_cpu = params.strict_cpu;
return tpp;
}
#ifdef LLAMA_USE_CURL
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool starts_with(const std::string & str, const std::string & prefix) {
// While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
// Check if hf-token or bearer-token was specified
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer ";
auth_header += hf_token.c_str();
struct curl_slist *http_headers = NULL;
http_headers = curl_slist_append(http_headers, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
}
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
struct stat model_file_info;
auto file_exists = (stat(path.c_str(), &model_file_info) == 0);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct llama_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
llama_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
struct llama_model * llama_load_model_from_url(
const char * model_url,
const char * path_model,
const char * hf_token,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (!model_url || strlen(model_url) == 0) {
LOG_ERR("%s: invalid model_url\n", __func__);
return NULL;
}
if (!llama_download_file(model_url, path_model, hf_token)) {
return NULL;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, path_model);
return NULL;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, path_model, n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url, n_split);
return NULL;
}
}
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (int idx = 1; idx < n_split; idx++) {
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
return llama_download_file(split_url, split_path, hf_token);
}, idx));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return NULL;
}
}
}
return llama_load_model_from_file(path_model, params);
}
struct llama_model * llama_load_model_from_hf(
const char * repo,
const char * model,
const char * path_model,
const char * hf_token,
const struct llama_model_params & params) {
// construct hugging face model url:
//
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
//
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
//
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += model;
return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
}
#else
struct llama_model * llama_load_model_from_url(
const char * /*model_url*/,
const char * /*path_model*/,
const char * /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr;
}
struct llama_model * llama_load_model_from_hf(
const char * /*repo*/,
const char * /*model*/,
const char * /*path_model*/,
const char * /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;
}
#endif // LLAMA_USE_CURL
//
// Batch utils
//
void llama_batch_clear(struct llama_batch & batch) {
batch.n_tokens = 0;
}
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits) {
GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");
batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = pos;
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
for (size_t i = 0; i < seq_ids.size(); ++i) {
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
}
batch.logits [batch.n_tokens] = logits;
batch.n_tokens++;
}
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_special,
bool parse_special) {
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
}
std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
std::string piece;
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
if (n_chars < 0) {
piece.resize(-n_chars);
int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
GGML_ASSERT(check == -n_chars);
}
else {
piece.resize(n_chars);
}
return piece;
}
std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
std::string text;
text.resize(std::max(text.capacity(), tokens.size()));
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
if (n_chars < 0) {
text.resize(-n_chars);
n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
}
text.resize(n_chars);
// NOTE: the original tokenizer decodes bytes after collecting the pieces.
return text;
}
//
// Chat template utils
//
bool llama_chat_verify_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
std::string llama_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & msgs,
bool add_ass) {
int alloc_size = 0;
bool fallback = false; // indicate if we must fallback to default chatml
std::vector<llama_chat_message> chat;
for (auto & msg : msgs) {
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// error: chat template is not supported
if (res < 0) {
if (ptr_tmpl != nullptr) {
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
} else {
// If the built-in template is not supported, we default to chatml
res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
fallback = true;
}
}
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(
fallback ? nullptr : model,
fallback ? "chatml" : ptr_tmpl,
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
std::string llama_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & past_msg,
const llama_chat_msg & new_msg,
bool add_ass) {
std::ostringstream ss;
auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
std::vector<llama_chat_msg> chat_new(past_msg);
// if the past_msg ends with a newline, we must preserve it in the formatted version
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
ss << "\n";
};
// format chat with new_msg
chat_new.push_back(new_msg);
auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
// get the diff part
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
return ss.str();
}
std::string llama_chat_format_example(const struct llama_model * model,
const std::string & tmpl) {
std::vector<llama_chat_msg> msgs = {
{"system", "You are a helpful assistant"},
{"user", "Hello"},
{"assistant", "Hi there"},
{"user", "How are you?"},
};
return llama_chat_apply_template(model, tmpl, msgs, true);
}
//
// KV cache utils
//
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
const size_t sz = seqs.size();
seqs[cs_curr[j]] = sz;
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}
//
// Embedding utils
//
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
double sum = 0.0;
switch (embd_norm) {
case -1: // no normalisation
sum = 1.0;
break;
case 0: // max absolute
for (int i = 0; i < n; i++) {
if (sum < std::abs(inp[i])) sum = std::abs(inp[i]);
}
sum /= 32760.0; // make an int16 range
break;
case 2: // euclidean
for (int i = 0; i < n; i++) {
sum += inp[i] * inp[i];
}
sum = std::sqrt(sum);
break;
default: // p-norm (euclidean is p-norm p=2)
for (int i = 0; i < n; i++) {
sum += std::pow(std::abs(inp[i]), embd_norm);
}
sum = std::pow(sum, 1.0 / embd_norm);
break;
}
const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;
for (int i = 0; i < n; i++) {
out[i] = inp[i] * norm;
}
}
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
double sum = 0.0;
double sum1 = 0.0;
double sum2 = 0.0;
for (int i = 0; i < n; i++) {
sum += embd1[i] * embd2[i];
sum1 += embd1[i] * embd1[i];
sum2 += embd2[i] * embd2[i];
}
// Handle the case where one or both vectors are zero vectors
if (sum1 == 0.0 || sum2 == 0.0) {
if (sum1 == 0.0 && sum2 == 0.0) {
return 1.0f; // two zero vectors are similar
}
return 0.0f;
}
return sum / (sqrt(sum1) * sqrt(sum2));
}
//
// Control vector utils
//
static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
llama_control_vector_data result = { -1, {} };
ggml_context * ctx = nullptr;
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ false,
/* .ctx = */ &ctx,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
if (!ctx_gguf) {
LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
return result;
}
int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
if (n_tensors == 0) {
LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
}
for (int i = 0; i < n_tensors; i++) {
std::string name = gguf_get_tensor_name(ctx_gguf, i);
int layer_idx = -1;
// split on '.'
size_t dotpos = name.find('.');
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
try {
layer_idx = std::stoi(name.substr(dotpos + 1));
} catch (...) {
layer_idx = -1;
}
}
if (layer_idx < 0) {
LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
result.n_embd = -1;
break;
} else if (layer_idx == 0) {
LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
result.n_embd = -1;
break;
}
struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
if (tensor->type != GGML_TYPE_F32) {
LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
result.n_embd = -1;
break;
}
if (ggml_n_dims(tensor) != 1) {
LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
result.n_embd = -1;
break;
}
if (result.n_embd == -1) {
result.n_embd = ggml_nelements(tensor);
} else if (ggml_nelements(tensor) != result.n_embd) {
LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
result.n_embd = -1;
break;
}
// extend if necessary - do not store data for layer 0 (it's not used)
result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);
const float * src = (const float *) tensor->data;
float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0]
for (int j = 0; j < result.n_embd; j++) {
dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file
}
}
if (result.n_embd == -1) {
LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
result.data.clear();
}
gguf_free(ctx_gguf);
ggml_free(ctx);
return result;
}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
llama_control_vector_data result = { -1, {} };
for (const auto & info : load_infos) {
auto cur = llama_control_vector_load_one(info);
if (cur.n_embd == -1) {
result.n_embd = -1;
break;
}
if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
result.n_embd = -1;
break;
}
if (result.n_embd == -1) {
result = std::move(cur);
} else {
result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary
for (size_t i = 0; i < cur.data.size(); i++) {
result.data[i] += cur.data[i];
}
}
}
if (result.n_embd == -1) {
LOG_ERR("%s: no valid control vector files passed\n", __func__);
result.data.clear();
}
return result;
}
//
// YAML utils
//
void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%e, ", data[i]);
}
fprintf(stream, "%e]\n", data.back());
}
void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%d, ", data[i]);
}
fprintf(stream, "%d]\n", data.back());
}
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
std::string data_str(data == NULL ? "" : data);
if (data_str.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
size_t pos_start = 0;
size_t pos_found = 0;
if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
if (data_str.find('\n') == std::string::npos) {
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
fprintf(stream, "%s: |\n", prop_name);
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
pos_start = pos_found + 1;
}
}
void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
const auto & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_riscv_v: %s\n", ggml_cpu_has_riscv_v() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
#ifdef NDEBUG
fprintf(stream, "debug: false\n");
#else
fprintf(stream, "debug: true\n");
#endif // NDEBUG
fprintf(stream, "model_desc: %s\n", model_desc);
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
#ifdef __OPTIMIZE__
fprintf(stream, "optimize: true\n");
#else
fprintf(stream, "optimize: false\n");
#endif // __OPTIMIZE__
fprintf(stream, "time: %s\n", timestamp.c_str());
fprintf(stream, "\n");
fprintf(stream, "###############\n");
fprintf(stream, "# User Inputs #\n");
fprintf(stream, "###############\n");
fprintf(stream, "\n");
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n");
for (const auto & logit_bias : sparams.logit_bias) {
fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
}
fprintf(stream, "lora:\n");
for (auto & la : params.lora_adapters) {
if (la.scale == 1.0f) {
fprintf(stream, " - %s\n", la.path.c_str());
}
}
fprintf(stream, "lora_scaled:\n");
for (auto & la : params.lora_adapters) {
if (la.scale != 1.0f) {
fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale);
}
}
fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false");
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) {
size_t pos = 0;
while ((pos = ap.find('\n', pos)) != std::string::npos) {
ap.replace(pos, 1, "\\n");
pos += 1;
}
fprintf(stream, " - %s\n", ap.c_str());
}
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
}