#include "log.h" #include "profiler.h" #include "ggml.h" #include "ggml-backend.h" #include "llama.h" #if defined(_WIN32) || defined(_WIN64) #include #elif defined(__linux__) #include #include #include #include #include #include #include #elif defined(__APPLE__) && defined(__MACH__) #include #include #include #include #include #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #ifdef GGML_USE_CUDA #include "ggml-cuda.h" #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char * device_name() { static char device_name[256]; #if defined(_WIN32) || defined(_WIN64) DWORD size = sizeof(device_name); if (GetComputerNameA(device_name, &size) == 0) { strncpy(device_name, "Unknown Windows Device", sizeof(device_name)); } #elif defined(__linux__) if (gethostname(device_name, sizeof(device_name)) != 0) { strncpy(device_name, "Unknown Linux Device", sizeof(device_name)); } #elif defined(__APPLE__) && defined(__MACH__) if (gethostname(device_name, sizeof(device_name)) != 0) { strncpy(device_name, "Unknown Mac Device", sizeof(device_name)); } #else strncpy(device_name, "Unknown Device", sizeof(device_name)); #endif return device_name; } uint32_t device_cpu_cores() { unsigned int core_count = 1; // default to 1 in case of failure #if defined(_WIN32) || defined(_WIN64) SYSTEM_INFO sysinfo; GetSystemInfo(&sysinfo); core_count = sysinfo.dwNumberOfProcessors; #elif defined(__linux__) core_count = sysconf(_SC_NPROCESSORS_ONLN); #elif defined(__APPLE__) && defined(__MACH__) int mib[4]; size_t len = sizeof(core_count); mib[0] = CTL_HW; mib[1] = HW_AVAILCPU; if (sysctl(mib, 2, &core_count, &len, NULL, 0) != 0 || core_count < 1) { mib[1] = HW_NCPU; // total number of cpus if (sysctl(mib, 2, &core_count, &len, NULL, 0) != 0 || core_count < 1) { core_count = 1; // default to 1 if sysctl fails } } #endif return core_count; } static float device_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t, enum profiler_backend_type btype, int n_threads) { int n_repeat = 1; int n_embd = std::min(llama_n_embd(model), 4096); if (btype == PROFILER_BACKEND_TYPE_CPU) n_embd /= 8; // simulate small tensor calculation on cpu std::vector matrix_A(n_embd * n_embd, 1.0f); std::vector matrix_B(n_embd * n_embd, 1.0f / n_embd); ggml_backend_t backend = NULL; switch (btype) { case PROFILER_BACKEND_TYPE_CPU: backend = ggml_backend_cpu_init(); break; case PROFILER_BACKEND_TYPE_METAL: #ifdef GGML_USE_METAL backend = ggml_backend_metal_init(); #endif break; case PROFILER_BACKEND_TYPE_CUDA: #ifdef GGML_USE_CUDA backend = ggml_backend_cuda_init(0); #endif break; } if (!backend) { LOG_INF("%s: ggml backend init failed\n", __func__); return 0.0f; } struct ggml_init_params params = { /*.mem_size =*/ 2 * ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() }; struct ggml_context * ctx = ggml_init(params); struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, src0t, n_embd, n_embd); struct ggml_tensor * tensor_b = ggml_new_tensor_2d(ctx, src1t, n_embd, n_embd); ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); ggml_backend_tensor_set(tensor_a, matrix_A.data(), 0, ggml_nbytes(tensor_a)); ggml_backend_tensor_set(tensor_b, matrix_B.data(), 0, ggml_nbytes(tensor_b)); struct ggml_cgraph * gf = NULL; struct ggml_context * ctx_cgraph = NULL; struct ggml_tensor * cur = NULL; { struct ggml_init_params params0 = { /*.mem_size =*/ ggml_tensor_overhead() * (n_repeat + 2) + ggml_graph_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() }; ctx_cgraph = ggml_init(params0); gf = ggml_new_graph(ctx_cgraph); cur = ggml_mul_mat(ctx_cgraph, tensor_a, tensor_b); for (int i = 0; i < n_repeat - 1; i++) { cur = ggml_mul_mat(ctx_cgraph, tensor_a, cur); } ggml_build_forward_expand(gf, cur); } ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); ggml_gallocr_alloc_graph(allocr, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } // use scheduler std::vector backend_buft; std::vector backends = {backend}; if (!ggml_backend_is_cpu(backend)) { backends.push_back(ggml_backend_cpu_init()); } for (ggml_backend_t bak : backends) { if (ggml_backend_is_cpu(bak)) { backend_buft.push_back(ggml_backend_cpu_buffer_type()); } else { backend_buft.push_back(ggml_backend_get_default_buffer_type(bak)); } } ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backend_buft.data(), backends.size(), 256, false); bool ok = ggml_backend_sched_reserve(sched, gf); if (!ok) { LOG_INF("%s: failed to allocate compute buffers\n", __func__); ggml_free(ctx_cgraph); ggml_gallocr_free(allocr); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); return 0.0f; } ggml_backend_sched_reset(sched); ggml_backend_sched_alloc_graph(sched, gf); // warm-up ggml_backend_graph_compute(backend, gf); const int64_t t_start = ggml_time_us(); ggml_backend_graph_compute(backend, gf); const int64_t t_end = ggml_time_us(); double elapsed_seconds = ((double)t_end - (double)t_start) / 1e6; // convert to seconds double flops = (2.0 * (double)n_embd * (double)n_embd * (double)n_embd * n_repeat) / elapsed_seconds / 1e9; // convert to GFLOPS ggml_free(ctx_cgraph); ggml_gallocr_free(allocr); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); return (float)flops; } float device_cpu_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t, int n_threads) { return device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_CPU, n_threads); } float device_metal_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t) { float flops = 0.0f; #ifdef GGML_USE_METAL flops = device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_METAL, 4); #endif (void)model; (void)src0t; (void)src1t; return flops; } float device_cuda_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t) { float flops = 0.0f; #ifdef GGML_USE_CUDA flops = device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_CUDA, 4); #endif (void)model; (void)src0t; (void)src1t; return flops; } float device_inp_embd_delay(struct llama_model * model, enum ggml_type src0t, int n_tokens, int n_threads) { const int n_vocab = llama_n_vocab(model); const int n_embd = llama_n_embd(model); ggml_backend_t backend = ggml_backend_cpu_init(); if (!backend) { LOG_INF("%s: ggml backend init failed\n", __func__); return 0.0f; } size_t ctx_size = 0; ctx_size += 2 * ggml_tensor_overhead(); // tensors struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() }; struct ggml_context * ctx = ggml_init(params); struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_tokens); struct ggml_tensor * tok_embd = ggml_new_tensor_2d(ctx, src0t, n_embd, n_vocab); ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); std::vector matrix_A(n_tokens); for (int i = 0; i < n_tokens; ++i) { matrix_A[i] = i % n_vocab; } const size_t embd_size = n_vocab * n_embd; void * matrix_B = nullptr; // quantization and dequantization functions ggml_type_traits_t qfns = ggml_internal_get_type_traits(src0t); if (!qfns.from_float || !qfns.to_float) { LOG_INF("Unsupported or uninitialized quantization type: %d\n", src0t); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); return 0.0f; } size_t QK_K = 0; switch (src0t) { case GGML_TYPE_F32: { matrix_B = malloc(embd_size * sizeof(float)); float * matrix_B_f32 = static_cast(matrix_B); for (size_t i = 0; i < embd_size; ++i) { matrix_B_f32[i] = static_cast(rand() / RAND_MAX); } break; } case GGML_TYPE_F16: { matrix_B = malloc(embd_size * sizeof(ggml_fp16_t)); std::vector temp_f32(embd_size); for (size_t i = 0; i < embd_size; ++i) { temp_f32[i] = static_cast(rand() / RAND_MAX); } ggml_fp32_to_fp16_row(temp_f32.data(), static_cast(matrix_B), embd_size); break; } case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_Q8_K: case GGML_TYPE_Q8_0: QK_K = 256; matrix_B = malloc((embd_size / QK_K) * ggml_type_size(src0t)); break; default: LOG_INF("Unsupported type: %d\n", src0t); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); return 0.0f; } ggml_backend_tensor_set(inp_tokens, matrix_A.data(), 0, ggml_nbytes(inp_tokens)); ggml_backend_tensor_set(tok_embd, matrix_B, 0, ggml_nbytes(tok_embd)); struct ggml_cgraph * gf = NULL; struct ggml_context * ctx_cgraph = NULL; { struct ggml_init_params params0 = { /*.mem_size =*/ ggml_tensor_overhead() * 3 + ggml_graph_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() }; ctx_cgraph = ggml_init(params0); gf = ggml_new_graph(ctx_cgraph); struct ggml_tensor * cur = ggml_get_rows(ctx_cgraph, tok_embd, inp_tokens); ggml_build_forward_expand(gf, cur); } ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); ggml_gallocr_alloc_graph(allocr, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } // warm-up // ggml_backend_graph_compute(backend, gf); const int64_t t_start = ggml_time_us(); ggml_backend_graph_compute(backend, gf); const int64_t t_end = ggml_time_us(); double elapsed_ms = ((double)t_end - (double)t_start) / 1e3; // convert to ms ggml_free(ctx_cgraph); ggml_gallocr_free(allocr); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); return (float)elapsed_ms; } static bool device_is_docker_container() { #if defined(__linux__) struct stat buffer; if (stat("/.dockerenv", &buffer) == 0) { return true; } std::ifstream cgroup_file("/proc/1/cgroup"); std::string line; while (std::getline(cgroup_file, line)) { if (line.find("docker") != std::string::npos || line.find("containerd") != std::string::npos) { return true; } } cgroup_file.close(); #endif return false; } static int is_uma_arch() { #if defined(__APPLE__) && defined(__MACH__) int is_arm64 = 0; size_t size = sizeof(is_arm64); // check whether it is Apple Silicon (ARM64) if (sysctlbyname("hw.optional.arm64", &is_arm64, &size, NULL, 0) != 0) { return 0; } return is_arm64; #else return 0; #endif } static uint64_t device_host_physical_memory(bool available) { uint64_t memory = 0; #if defined(_WIN32) || defined(_WIN64) MEMORYSTATUSEX status; status.dwLength = sizeof(status); GlobalMemoryStatusEx(&status); if (available) { memory = status.ullAvailPhys; } else { memory = status.ullTotalPhys; } #elif defined(__linux__) if (available) { // read available memory from /proc/meminfo std::ifstream meminfo("/proc/meminfo"); std::string line; if (meminfo.is_open()) { while (std::getline(meminfo, line)) { if (line.find("MemAvailable:") == 0) { std::istringstream iss(line); std::string key; uint64_t kb; iss >> key >> kb; memory = kb * 1024; break; } } meminfo.close(); } } else { // get total memory using sysinfo struct sysinfo info; if (sysinfo(&info) == 0) { memory = info.totalram * info.mem_unit; } } #elif defined(__APPLE__) && defined(__MACH__) mach_port_t host = mach_host_self(); vm_statistics64_data_t vm_stats; mach_msg_type_number_t count = HOST_VM_INFO64_COUNT; uint64_t total_memory = 0; size_t len = sizeof(total_memory); int mib[2] = {CTL_HW, HW_MEMSIZE}; if (sysctl(mib, 2, &total_memory, &len, NULL, 0) != 0) { LOG_INF("sysctl failed\n"); return 0; } if (available) { if (host_statistics64(host, HOST_VM_INFO64, (host_info64_t)&vm_stats, &count) == KERN_SUCCESS) { size_t page_size = sysconf(_SC_PAGESIZE); if (is_uma_arch()) { // Mac UMA with ARM64 memory = (vm_stats.free_count + vm_stats.inactive_count) * page_size; } else { // Mac with x86_64 memory = total_memory - (vm_stats.internal_page_count - vm_stats.purgeable_count) * page_size; } } else { LOG_INF("host_statistics64 failed\n"); } } else { memory = total_memory; } #endif return memory; } static uint64_t read_value_from_file(const char * path) { std::ifstream file(path); if (!file.is_open()) { return 0; } std::string line; if (!std::getline(file, line)) { return 0; } try { return std::stoull(line); } catch (...) { return 0; } } static std::unordered_map read_memory_stat() { std::unordered_map stats; std::ifstream file("/sys/fs/cgroup/memory.stat"); if (!file.is_open()) { return stats; } std::string line; while (std::getline(file, line)) { size_t space_pos = line.find(' '); if (space_pos != std::string::npos) { std::string key = line.substr(0, space_pos); std::string val_str = line.substr(space_pos + 1); try { uint64_t val = std::stoull(val_str); stats[key] = val; } catch (...) { return stats; } } } return stats; } static uint64_t device_cgroup_physical_memory(bool available) { const char * file_path = nullptr; bool is_cgroup_v2 = false; { std::ifstream cgroup_file("/proc/cgroups"); if (cgroup_file.is_open()) { std::string line; while (std::getline(cgroup_file, line)) { if (line.find("0") != std::string::npos) { is_cgroup_v2 = true; break; } } } } if (!available) { if (is_cgroup_v2) { file_path = "/sys/fs/cgroup/memory.max"; } else { file_path = "/sys/fs/cgroup/memory/memory.limit_in_bytes"; } return read_value_from_file(file_path); } else { if (is_cgroup_v2) { uint64_t mem_max = read_value_from_file("/sys/fs/cgroup/memory.max"); uint64_t mem_current = read_value_from_file("/sys/fs/cgroup/memory.current"); auto stats = read_memory_stat(); uint64_t slab_reclaimable = 0; uint64_t inactive_file = 0; if (stats.find("slab_reclaimable") != stats.end()) { slab_reclaimable = stats["slab_reclaimable"]; } if (stats.find("inactive_file") != stats.end()) { inactive_file = stats["inactive_file"]; } uint64_t available_memory = mem_max - mem_current > 0 ? mem_max - mem_current : 0; available_memory += slab_reclaimable; available_memory += inactive_file; return available_memory; } else { LOG_WRN("Using cgroup v1, the available memory could be error, will be addressed later\n"); uint64_t mem_limit = read_value_from_file("/sys/fs/cgroup/memory/memory.limit_in_bytes"); uint64_t mem_usage = read_value_from_file("/sys/fs/cgroup/memory/memory.usage_in_bytes"); return mem_limit - mem_usage > 0 ? mem_limit - mem_usage : 0; } } } uint64_t device_physical_memory(bool available) { if (device_is_docker_container()) { return device_cgroup_physical_memory(available); } else { return device_host_physical_memory(available); } } static uint64_t device_host_swap_memory(bool available) { uint64_t swap_memory = 0; #if defined(_WIN32) || defined(_WIN64) PERFORMANCE_INFORMATION performance_info; performance_info.cb = sizeof(performance_info); if (GetPerformanceInfo(&performance_info, sizeof(performance_info))) { if (available) { swap_memory = (performance_info.PageFileTotal - performance_info.PageFileUsage) * performance_info.PageSize; } else { swap_memory = performance_info.PageFileTotal * performance_info.PageSize; } } #elif defined(__linux__) std::ifstream meminfo("/proc/meminfo"); std::string line; uint64_t total_swap = 0; uint64_t free_swap = 0; if (meminfo.is_open()) { while (std::getline(meminfo, line)) { if (line.find("SwapTotal:") == 0) { std::istringstream iss(line); std::string key; uint64_t kb; iss >> key >> kb; total_swap = kb * 1024; } else if (line.find("SwapFree:") == 0) { std::istringstream iss(line); std::string key; uint64_t kb; iss >> key >> kb; free_swap = kb * 1024; } } meminfo.close(); } if (available) { swap_memory = free_swap; } else { swap_memory = total_swap; } #elif defined(__APPLE__) && defined(__MACH__) int mib[2] = {CTL_VM, VM_SWAPUSAGE}; struct xsw_usage swap; size_t len = sizeof(swap); if (sysctl(mib, 2, &swap, &len, NULL, 0) == 0) { if (available) { swap_memory = swap.xsu_avail; } else { swap_memory = swap.xsu_total; } } #endif return swap_memory; } static uint64_t device_cgroup_swap_memory(bool available) { if (available) return 0; #if defined(__linux__) const char * file_path = nullptr; uint64_t swap_limit = 0; std::ifstream cgroup_file("/proc/cgroups"); bool is_cgroup_v2 = false; if (cgroup_file.is_open()) { std::string line; while (std::getline(cgroup_file, line)) { if (line.find("0") != std::string::npos) { is_cgroup_v2 = true; break; } } cgroup_file.close(); } if (is_cgroup_v2) { file_path = "/sys/fs/cgroup/memory.swap.max"; } else { file_path = "/sys/fs/cgroup/memory/memory.memsw.limit_in_bytes"; } std::ifstream mem_swap_file(file_path); if (mem_swap_file.is_open()) { std::string line; if (std::getline(mem_swap_file, line)) { try { swap_limit = std::stoull(line); } catch (const std::exception &e) { swap_limit = 0; } } mem_swap_file.close(); } return swap_limit; #else return 0; // Unsupported on non-Linux platforms #endif } uint64_t device_swap_memory(bool available) { if (device_is_docker_container()) { return device_cgroup_swap_memory(available); } else { return device_host_swap_memory(available); } } static size_t get_page_size() { size_t page_size = 0; #ifdef _WIN32 SYSTEM_INFO si; GetSystemInfo(&si); page_size = si.dwPageSize; #elif defined(__APPLE__) || defined(__linux__) page_size = sysconf(_SC_PAGESIZE); #endif return page_size; } static std::string get_default_device_path() { #ifdef __linux__ // find the first block device under /sys/block const std::string block_path = "/sys/block/"; DIR * dir = opendir(block_path.c_str()); if (!dir) { LOG_INF("Unable to open %s\n", block_path.c_str()); return ""; } struct dirent * entry; while ((entry = readdir(dir)) != nullptr) { if (entry->d_name[0] != '.') { // ignore hidden files/directories std::string device = entry->d_name; closedir(dir); return "/dev/" + device; } } closedir(dir); LOG_INF("No block devices found in %s\n", block_path.c_str()); return ""; #elif __APPLE__ // use the root device as a default return "/"; #elif _WIN32 // use the default drive (usually C:) char volume_name[MAX_PATH]; if (GetVolumeInformation("C:\\", volume_name, sizeof(volume_name), NULL, NULL, NULL, NULL, 0)) { return "C:\\"; } else { LOG_INF("Failed to determine default volume\n"); return ""; } #else LOG_INF("Unsupported platform\n"); return ""; #endif } static size_t get_default_readahead_size() { const std::string device_path = get_default_device_path(); #ifdef __linux__ std::string device = device_path.empty() ? get_default_device_path() : device_path; if (device.empty()) return 0; // read from sysfs std::string sysfs_path = "/sys/block/" + device.substr(device.find_last_of("/") + 1) + "/queue/read_ahead_kb"; std::ifstream file(sysfs_path); if (file.is_open()) { size_t read_ahead_kb; file >> read_ahead_kb; file.close(); return read_ahead_kb * 1024; // convert to bytes } else { return 0; } #elif __APPLE__ // use statfs to determine default block size struct statfs stats; std::string path = device_path.empty() ? "/" : device_path; if (statfs(path.c_str(), &stats) == 0) { return stats.f_iosize; // return in bytes } else { LOG_INF("statfs failed\n"); return 0; } #elif _WIN32 // use GetDiskFreeSpace to get default cluster size std::string drive = device_path.empty() ? "C:\\" : device_path; DWORD sectorsPerCluster, bytesPerSector, numberOfFreeClusters, totalNumberOfClusters; if (GetDiskFreeSpace(drive.c_str(), §orsPerCluster, &bytesPerSector, &numberOfFreeClusters, &totalNumberOfClusters)) { return sectorsPerCluster * bytesPerSector; // return in bytes } else { LOG_INF("GetDiskFreeSpace failed\n"); return 0; } #else LOG_INF("Unsupported platform\n"); return 0; #endif } static void external_fio_impl(float * read_bw, float * write_bw, bool op_rand, int n_threads) { const char * test_file = "fio_test"; const char * fio_conf_template = R"( [global] ioengine=%s direct=1 time_based=1 runtime=1 size=4G group_reporting=1 iodepth=1 [write-job] rw=%s bs=%s filename=%s numjobs=%d [read-job] startdelay=1.5 rw=%s bs=%s filename=%s numjobs=%d )"; size_t page_size = get_page_size(); if (page_size == 0) { LOG_INF("Unable to get system page size, use 4KB by default\n"); page_size = 4 * 1024; } // format the page size as a readable string (e.g., "16k" or "4k") char page_size_str[8]; if (page_size >= 1024) { snprintf(page_size_str, sizeof(page_size_str), "%zuk", page_size / 1024); } else { snprintf(page_size_str, sizeof(page_size_str), "%zu", page_size); } size_t readahead_size = get_default_readahead_size(); if (readahead_size == 0) { LOG_INF("Unable to get system readahead size, use 128KB by default\n"); readahead_size = 128 * 1024; } // format the readahead size as a readable string (e.g., "128k" or "1m") char readahead_str[8]; if (readahead_size >= 1024 * 1024) { snprintf(readahead_str, sizeof(readahead_str), "%zuM", readahead_size / 1024 / 1024); } else if (readahead_size >= 1024) { snprintf(readahead_str, sizeof(readahead_str), "%zuk", readahead_size / 1024); } else { snprintf(readahead_str, sizeof(readahead_str), "%zu", readahead_size); } const char * read_type = op_rand ? "randread" : "read"; const char * write_type = op_rand ? "randwrite" : "write"; const char * block_size = op_rand ? page_size_str : readahead_str; const char * ioengine = "posixaio"; bool retry_with_sync = false; const char * output_file = "fio_output.log"; const char * conf_file = "config.fio"; do { char fio_conf[1024]; snprintf(fio_conf, sizeof(fio_conf), fio_conf_template, ioengine, read_type, block_size, test_file, n_threads, write_type, block_size, test_file, n_threads); std::ofstream conf(conf_file); if (!conf) { LOG_INF("Error: Unable to create configuration file\n"); return; } conf << fio_conf; conf.close(); std::string command = "fio " + std::string(conf_file) + " > " + std::string(output_file) + " 2>&1"; int ret = std::system(command.c_str()); if (ret == 0) { retry_with_sync = false; // Execution succeeded } else { LOG_INF("Engine posixaio not loadable, retrying with sync engine\n"); ioengine = "sync"; retry_with_sync = true; } } while (retry_with_sync); // parse fio output std::ifstream result(output_file); if (!result) { LOG_INF("Error: Failed to open fio output file\n"); return; } *read_bw = 0.0f; *write_bw = 0.0f; std::string line; std::regex read_regex(R"(READ: bw=([0-9.]+)([a-zA-Z/]+))"); std::regex write_regex(R"(WRITE: bw=([0-9.]+)([a-zA-Z/]+))"); std::smatch match; while (std::getline(result, line)) { if (std::regex_search(line, match, read_regex)) { float value = std::stof(match[1]); std::string unit = match[2]; if (unit == "MiB/s") { *read_bw = value * 1024.0f * 1024.0f / 1e9; // convert MiB/s to GB/s } else if (unit == "MB/s") { *read_bw = value / 1000.0f; // convert MB/s to GB/s } } else if (std::regex_search(line, match, write_regex)) { float value = std::stof(match[1]); std::string unit = match[2]; if (unit == "MiB/s") { *write_bw = value * 1024.0f * 1024.0f / 1e9; // convert MiB/s to GB/s } else if (unit == "MB/s") { *write_bw = value / 1000.0f; // convert MB/s to GB/s } } } // clean up temporary files std::remove(test_file); std::remove(conf_file); std::remove(output_file); } void device_disk_rnd_bw(float * read_rnd_bw, float * write_rnd_bw, int n_threads) { external_fio_impl(read_rnd_bw, write_rnd_bw, true, n_threads); } void device_disk_seq_bw(float * read_seq_bw, float * write_seq_bw, int n_threads) { external_fio_impl(read_seq_bw, write_seq_bw, false, n_threads); } float device_memory_bw(int n_thread) { // simulate large model weights, set to 100 MiB size_t buffer_size = 100L * 1024 * 1024; std::vector data(buffer_size); std::fill(data.begin(), data.end(), 1); // initialize data to avoid lazy loading std::vector results(n_thread); // memory bandwidth test function auto memory_bw_test = [](char * data, size_t total_size, size_t block_size, double & result) { size_t n_iters = total_size / block_size; volatile char temp = 0; // volatile to prevent compiler optimization auto start = std::chrono::high_resolution_clock::now(); for (size_t i = 0; i < n_iters; i++) { // simulate block-wise sequential access size_t offset = i * block_size; for (size_t j = 0; j < block_size; j += 64) { temp += data[offset + j]; } } auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration elapsed = end - start; result = total_size / elapsed.count() / 1e9; // GB/s (void)temp; }; std::vector thread_pool; for (int i = 0; i < n_thread; ++i) { thread_pool.emplace_back( memory_bw_test, data.data(), buffer_size / n_thread, MEM_TEST_BLOCK_SIZE, std::ref(results[i]) ); } for (auto & t : thread_pool) { t.join(); } double bandwidth = std::accumulate(results.begin(), results.end(), 0.0); return static_cast(bandwidth); } static float device_read_vram_bw(enum profiler_backend_type btype) { const int n_embd = 8192; std::vector matrix_A(n_embd * n_embd, 1.0f); ggml_backend_t backend = NULL; switch (btype) { case PROFILER_BACKEND_TYPE_METAL: #ifdef GGML_USE_METAL backend = ggml_backend_metal_init(); #endif break; case PROFILER_BACKEND_TYPE_CUDA: #ifdef GGML_USE_CUDA backend = ggml_backend_cuda_init(0); #endif break; case PROFILER_BACKEND_TYPE_CPU: break; } if (!backend) { LOG_INF("%s: ggml backend init failed\n", __func__); return 0.0f; } struct ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() }; struct ggml_context * ctx = ggml_init(params); struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); tensor_a->op = GGML_OP_READ; ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); ggml_backend_tensor_set(tensor_a, matrix_A.data(), 0, ggml_nbytes(tensor_a)); struct ggml_cgraph * gf = NULL; struct ggml_context * ctx_cgraph = NULL; { struct ggml_init_params params0 = { /*.mem_size =*/ ggml_tensor_overhead() + ggml_graph_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() }; ctx_cgraph = ggml_init(params0); gf = ggml_new_graph(ctx_cgraph); ggml_build_forward_expand(gf, tensor_a); } ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); ggml_gallocr_alloc_graph(allocr, gf); const int64_t t_start = ggml_time_us(); ggml_backend_graph_compute(backend, gf); const int64_t t_end = ggml_time_us(); double elapsed_s = ((double)t_end - (double)t_start) / 1e6; size_t total_bytes = n_embd * n_embd * sizeof(float); float bandwidth = (total_bytes / elapsed_s) / 1e9; // GB/s ggml_free(ctx_cgraph); ggml_gallocr_free(allocr); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); return bandwidth; } float device_metal_read_vram_bw() { float bw = 0.0f; #ifdef GGML_USE_METAL bw = device_read_vram_bw(PROFILER_BACKEND_TYPE_METAL); #endif return bw; } float device_cuda_read_vram_bw() { float bw = 0.0f; #ifdef GGML_USE_CUDA bw = device_read_vram_bw(PROFILER_BACKEND_TYPE_CUDA); #endif return bw; } // return ggml_cpy delay in kvcache in ms static float device_mem_copy(struct llama_model * model, enum profiler_backend_type btype, int n_threads) { const int64_t n_embd_k_gqa = llama_model_n_embd_k_gqa(model); const int64_t n_embd_v_gqa = llama_model_n_embd_v_gqa(model); std::vector src_mat_k(n_embd_k_gqa, 1.0f); std::vector src_mat_v(n_embd_v_gqa, 1.0f); std::vector dst_mat_k(n_embd_k_gqa, 0.0f); std::vector dst_mat_v(n_embd_v_gqa, 0.0f); ggml_backend_t backend = NULL; switch (btype) { case PROFILER_BACKEND_TYPE_CPU: backend = ggml_backend_cpu_init(); break; case PROFILER_BACKEND_TYPE_METAL: #ifdef GGML_USE_METAL backend = ggml_backend_metal_init(); #endif break; case PROFILER_BACKEND_TYPE_CUDA: #ifdef GGML_USE_CUDA backend = ggml_backend_cuda_init(0); #endif break; } if (!backend) { LOG_INF("%s: ggml backend init failed\n", __func__); return 0.0f; } size_t ctx_size = 0; ctx_size += 4 * ggml_tensor_overhead(); // tensors struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() }; struct ggml_context * ctx = ggml_init(params); struct ggml_tensor * src_tensor_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_k_gqa); struct ggml_tensor * src_tensor_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_v_gqa); struct ggml_tensor * dst_tensor_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_k_gqa); struct ggml_tensor * dst_tensor_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd_v_gqa); ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); ggml_backend_tensor_set(src_tensor_k, src_mat_k.data(), 0, ggml_nbytes(src_tensor_k)); ggml_backend_tensor_set(src_tensor_v, src_mat_v.data(), 0, ggml_nbytes(src_tensor_v)); ggml_backend_tensor_set(dst_tensor_k, dst_mat_k.data(), 0, ggml_nbytes(dst_tensor_k)); ggml_backend_tensor_set(dst_tensor_v, dst_mat_v.data(), 0, ggml_nbytes(dst_tensor_v)); struct ggml_cgraph * gf = NULL; struct ggml_context * ctx_cgraph = NULL; { struct ggml_init_params params0 = { /*.mem_size =*/ ggml_tensor_overhead() * 4 + ggml_graph_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() }; ctx_cgraph = ggml_init(params0); gf = ggml_new_graph(ctx_cgraph); ggml_build_forward_expand(gf, ggml_cpy(ctx_cgraph, src_tensor_k, dst_tensor_k)); ggml_build_forward_expand(gf, ggml_cpy(ctx_cgraph, src_tensor_v, dst_tensor_v)); } ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); ggml_gallocr_alloc_graph(allocr, gf); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } const int64_t t_start = ggml_time_us(); ggml_backend_graph_compute(backend, gf); const int64_t t_end = ggml_time_us(); double elapsed_ms = ((double)t_end - (double)t_start) / 1e3; // ms ggml_free(ctx_cgraph); ggml_gallocr_free(allocr); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); return (float)elapsed_ms; } float device_cpu_mem_copy(struct llama_model * model, int n_threads) { return device_mem_copy(model, PROFILER_BACKEND_TYPE_CPU, n_threads); } float device_metal_mem_copy(struct llama_model * model) { float delay = 0.0f; #ifdef GGML_USE_METAL delay = device_mem_copy(model, PROFILER_BACKEND_TYPE_METAL, 4); #endif (void)model; return delay; } float device_cuda_mem_copy(struct llama_model * model) { float delay = 0.0f; #ifdef GGML_USE_CUDA delay = device_mem_copy(model, PROFILER_BACKEND_TYPE_CUDA, 4); #endif (void)model; return delay; } int device_has_metal(void) { return ggml_cpu_has_metal(); } int device_has_cuda(void) { return ggml_cpu_has_cuda(); } int device_has_vulkan(void) { return ggml_cpu_has_vulkan(); } int device_has_kompute(void) { return ggml_cpu_has_kompute(); } int device_has_gpublas(void) { return ggml_cpu_has_gpublas(); } int device_has_blas(void) { return ggml_cpu_has_blas(); } int device_has_sycl(void) { return ggml_cpu_has_sycl(); } void device_get_props(struct llama_model * model, int device, struct ggml_backend_dev_props * props) { ggml_backend_buffer_type_t buft_type; if (device == -1) { // type cpu buft_type = ggml_backend_cpu_buffer_type(); } else { // type gpu buft_type = llama_dev_buffer_type(model, device); } ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft_type); ggml_backend_dev_get_props(dev, props); } static float device_compute_delay(struct device_info & dev_info, int n_layers, const struct llama_context_params cparams) { struct model_flops n_flops = dev_info.model_flops; struct cpu_props cpu = dev_info.cpu_props; int n_gpu_layers = std::min(static_cast(cparams.n_gpu_layers), n_layers); double gpu_latency_per_layer = 0.0f; double cpu_latency_per_layer = 0.0f; #ifdef GGML_USE_CUDA struct gpu_props gpu = dev_info.gpu_props; gpu_latency_per_layer += (double)n_flops.layer_f32_f32 / (double)gpu.cuda_flops_f32_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_f16_f32 / (double)gpu.cuda_flops_f16_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q4k_f32 / (double)gpu.cuda_flops_q4k_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q5k_f32 / (double)gpu.cuda_flops_q5k_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q6k_f32 / (double)gpu.cuda_flops_q6k_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q80_f32 / (double)gpu.cuda_flops_q80_f32 / 1e9; #elif GGML_USE_METAL struct gpu_props gpu = dev_info.gpu_props; gpu_latency_per_layer += (double)n_flops.layer_f32_f32 / (double)gpu.metal_flops_f32_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_f16_f32 / (double)gpu.metal_flops_f16_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q4k_f32 / (double)gpu.metal_flops_q4k_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q5k_f32 / (double)gpu.metal_flops_q5k_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q6k_f32 / (double)gpu.metal_flops_q6k_f32 / 1e9; gpu_latency_per_layer += (double)n_flops.layer_q80_f32 / (double)gpu.metal_flops_q80_f32 / 1e9; #endif cpu_latency_per_layer += (double)n_flops.layer_f32_f32 / (double)cpu.flops_f32_f32 / 1e9; cpu_latency_per_layer += (double)n_flops.layer_f16_f32 / (double)cpu.flops_f16_f32 / 1e9; cpu_latency_per_layer += (double)n_flops.layer_q4k_f32 / (double)cpu.flops_q4k_f32 / 1e9; cpu_latency_per_layer += (double)n_flops.layer_q5k_f32 / (double)cpu.flops_q5k_f32 / 1e9; cpu_latency_per_layer += (double)n_flops.layer_q6k_f32 / (double)cpu.flops_q6k_f32 / 1e9; cpu_latency_per_layer += (double)n_flops.layer_q80_f32 / (double)cpu.flops_q80_f32 / 1e9; double total_latency = 0.0f; #if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA) total_latency += gpu_latency_per_layer * n_gpu_layers; total_latency += cpu_latency_per_layer * (n_layers - n_gpu_layers); #else (void)n_gpu_layers; (void)gpu_latency_per_layer; total_latency += cpu_latency_per_layer * n_layers; #endif total_latency += (double)n_flops.output_f32_f32 / (double)cpu.flops_f32_f32 / 1e9; total_latency += (double)n_flops.output_f16_f32 / (double)cpu.flops_f16_f32 / 1e9; total_latency += (double)n_flops.output_q4k_f32 / (double)cpu.flops_q4k_f32 / 1e9; total_latency += (double)n_flops.output_q5k_f32 / (double)cpu.flops_q5k_f32 / 1e9; total_latency += (double)n_flops.output_q6k_f32 / (double)cpu.flops_q6k_f32 / 1e9; total_latency += (double)n_flops.output_q80_f32 / (double)cpu.flops_q80_f32 / 1e9; total_latency *= 1000; // convert to ms total_latency += n_flops.inp_embd_ms; return static_cast(total_latency); } // estimate the memory access delay, except for the input embedding because it has been considered in n_flops.inp_embd_ms static float device_memory_access_delay(struct device_info & dev_info, struct llama_model * model, const struct llama_context_params cparams, int n_layers) { auto n_bytes = dev_info.model_bytes; int n_gpu_layers = std::min(static_cast(cparams.n_gpu_layers), n_layers); uint64_t cpu_kv_size; uint64_t gpu_kv_size; #if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA) llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, true); int64_t vram_bytes = n_bytes.nb_layer * n_gpu_layers + gpu_kv_size; int64_t ram_bytes = n_bytes.nb_layer * (n_layers - n_gpu_layers) + n_bytes.nb_output + cpu_kv_size; #ifdef GGML_USE_CUDA double vram_access_delay = (double)(vram_bytes) / 1e6 / dev_info.gpu_props.cuda_read_vram_bw; #elif GGML_USE_METAL double vram_access_delay = (double)(vram_bytes) / 1e6 / dev_info.gpu_props.metal_read_vram_bw; #endif double ram_access_delay = (double)(ram_bytes) / 1e6 / dev_info.memory.cpu_read_ram_bw; return static_cast(vram_access_delay + ram_access_delay); // ms #else llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, false); (void)n_gpu_layers; (void)gpu_kv_size; int64_t ram_bytes = n_bytes.nb_layer * n_layers + n_bytes.nb_output + cpu_kv_size; double ram_access_delay = (double)(ram_bytes) / 1e6 / dev_info.memory.cpu_read_ram_bw; return static_cast(ram_access_delay); // ms #endif } static float device_disk_access_delay(struct device_info & dev_info, struct llama_model * model, const struct llama_context_params cparams) { auto n_bytes = dev_info.model_bytes; int n_layers = llama_model_n_layers(model); int n_gpu_layers = std::min(static_cast(cparams.n_gpu_layers), n_layers); int n_vocab = llama_n_vocab(model); int64_t cpu_total_bytes = 0; int64_t input_bytes = n_bytes.nb_input / n_vocab; // lookup table, retrieve only n_embd elements cpu_total_bytes += input_bytes; #if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA) cpu_total_bytes += n_bytes.nb_layer * (n_layers - n_gpu_layers); #if defined(GGML_USE_METAL) int64_t gpu_total_bytes = n_bytes.nb_layer * n_gpu_layers; #endif #else (void)n_gpu_layers; cpu_total_bytes += n_bytes.nb_layer * n_layers; #endif cpu_total_bytes += n_bytes.nb_output; uint64_t cpu_kv_size; uint64_t gpu_kv_size; uint64_t cpu_compute_buf; uint64_t gpu_compute_buf; #if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA) llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, true); llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, true); #else llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, false); llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, false); #endif double cpu_kv_size_gib = static_cast(cpu_kv_size) / 1024.0 / 1024.0 / 1024.0; // convert to GiB double gpu_kv_size_gib = static_cast(gpu_kv_size) / 1024.0 / 1024.0 / 1024.0; // convert to GiB double cpu_compute_buf_gib = static_cast(cpu_compute_buf) / 1024.0 / 1024.0 / 1024.0; // convert to GiB double gpu_compute_buf_gib = static_cast(gpu_compute_buf) / 1024.0 / 1024.0 / 1024.0; // convert to GiB #if defined(GGML_USE_METAL) if (n_gpu_layers > 0) { double total_bytes_gib = static_cast(cpu_total_bytes + gpu_total_bytes) / 1024.0 / 1024.0 / 1024.0; double total_kv_size_gib = cpu_kv_size_gib + gpu_kv_size_gib; double total_compute_buf_gib = cpu_compute_buf_gib + gpu_compute_buf_gib; double total_mem_needed = total_bytes_gib + total_kv_size_gib + total_compute_buf_gib; float disk_read_bw = dev_info.disk.read_rnd_bw; if (total_mem_needed < dev_info.memory.total_physical - 1) { // -1 is an empirical value reserved by system processes // each time one new row of lookup table will be loaded return static_cast(input_bytes) / 1e9 / disk_read_bw * 1000; // convert to ms } else { // warn: OOM error may occur if -ngl is set large if (total_mem_needed > dev_info.memory.total_physical + 10) { // 10 is an empirical value that may cause system down throw std::runtime_error("[WARN] Model is too large for Metal shared memory and may cause system down, stopped\n"); } return total_bytes_gib * 1024.0 * 1024.0 * 1024.0 / 1e6 / disk_read_bw; // ms } } #endif (void)gpu_kv_size_gib; (void)gpu_compute_buf_gib; float cpu_total_bytes_gib = (double)cpu_total_bytes / 1024.0 / 1024.0 / 1024.0; // convert to GiB float cpu_mem_avail = dev_info.memory.available_physical; // GiB float disk_read_bw = dev_info.disk.read_rnd_bw * 1e9 / 1024.0 / 1024.0 / 1024.0; // convert GB/s to GiB/s if (cpu_total_bytes_gib + cpu_kv_size_gib + cpu_compute_buf_gib > cpu_mem_avail) { #if defined(__APPLE__) && defined(__MACH__) // if physical memory reaches busy, all mapped tensors should be re-loaded return cpu_total_bytes_gib / disk_read_bw * 1000; // convert to ms #else // only part of the mapped tensors needs to be re-loaded float gbytes_to_load = cpu_total_bytes_gib - (cpu_mem_avail - cpu_kv_size_gib - cpu_compute_buf_gib); return gbytes_to_load / disk_read_bw * 1000; // convert to ms #endif } else { // if physical memory is enough, all mapped tensors can be stored in memory and will not be released return 0.0f; } } static float device_mem_copy_delay(struct llama_model * model, const struct llama_context_params cparams) { int n_layers = llama_model_n_layers(model); int n_gpu_layers = std::min(static_cast(cparams.n_gpu_layers), n_layers); float layer_delay_cpu = device_cpu_mem_copy(model, cparams.n_threads); #ifdef GGML_USE_METAL float layer_delay_metal = device_metal_mem_copy(model); return layer_delay_metal * n_gpu_layers + layer_delay_cpu * (n_layers - n_gpu_layers); #elif GGML_USE_CUDA float layer_delay_cuda = device_cuda_mem_copy(model); return layer_delay_cuda * n_gpu_layers + layer_delay_cpu * (n_layers - n_gpu_layers); #else (void)n_gpu_layers; return layer_delay_cpu * n_layers; #endif } void device_print_props(struct device_info * dev_info_set, int n, struct llama_model * model, const struct llama_context_params cparams) { LOG_INF("\n-------------------------------------------------------------------------------------------\n"); LOG_INF("| Property "); for (int i = 0; i < n; ++i) { LOG_INF("| Rank %-8d", i); GGML_ASSERT((int)dev_info_set[i].rank == i); } LOG_INF("\n-------------------------------------------------------------------------------------------\n"); LOG_INF("| Device Name "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.10s ", dev_info_set[i].device_name); } LOG_INF("\n"); LOG_INF("| CPU Name "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.10s ", dev_info_set[i].cpu_props.name); } LOG_INF("\n"); LOG_INF("| CPU Description "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.10s ", dev_info_set[i].cpu_props.description); } LOG_INF("\n"); LOG_INF("| Number of CPU cores "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10u ", dev_info_set[i].cpu_props.cores); } LOG_INF("\n"); LOG_INF("| CPU flops (F32xF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f32_f32); } LOG_INF("\n"); LOG_INF("| CPU flops (F16xF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f16_f32); } LOG_INF("\n"); LOG_INF("| CPU flops (Q4K x F32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q4k_f32); } LOG_INF("\n"); LOG_INF("| CPU flops (Q5K x F32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q5k_f32); } LOG_INF("\n"); LOG_INF("| CPU flops (Q6K x F32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q6k_f32); } LOG_INF("\n"); LOG_INF("| CPU flops (Q80 x F32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q80_f32); } LOG_INF("\n"); LOG_INF("| Physical Mem Total (GB) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].memory.total_physical); } LOG_INF("\n"); LOG_INF("| Physical Mem Available (GiB) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].memory.available_physical); } LOG_INF("\n"); LOG_INF("| Swap Mem Total (GiB) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].memory.total_swap); } LOG_INF("\n"); LOG_INF("| Swap Mem Available (GiB) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].memory.available_swap); } LOG_INF("\n"); LOG_INF("| CPU RAM Read BW (GB/s) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].memory.cpu_read_ram_bw); } LOG_INF("\n"); LOG_INF("| Disk Read Seq Speed (GB/s) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].disk.read_seq_bw); } LOG_INF("\n"); LOG_INF("| Disk Write Seq Speed (GB/s) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].disk.write_seq_bw); } LOG_INF("\n"); LOG_INF("| Disk Read Rnd Speed (GB/s) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].disk.read_rnd_bw); } LOG_INF("\n"); LOG_INF("| Disk Write Rnd Speed (GB/s) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].disk.write_rnd_bw); } LOG_INF("\n"); LOG_INF("| GPU Metal "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10d ", dev_info_set[i].gpu_support.metal); } LOG_INF("\n"); LOG_INF("| GPU CUDA "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10d ", dev_info_set[i].gpu_support.cuda); } LOG_INF("\n"); LOG_INF("| GPU Vulkan "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10d ", dev_info_set[i].gpu_support.vulkan); } LOG_INF("\n"); LOG_INF("| GPU Kompute "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10d ", dev_info_set[i].gpu_support.kompute); } LOG_INF("\n"); LOG_INF("| GPU BLAS "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10d ", dev_info_set[i].gpu_support.gpublas); } LOG_INF("\n"); LOG_INF("| BLAS "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10d ", dev_info_set[i].gpu_support.blas); } LOG_INF("\n"); LOG_INF("| SYCL "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10d ", dev_info_set[i].gpu_support.sycl); } LOG_INF("\n"); LOG_INF("| GPU Name "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.10s ", dev_info_set[i].gpu_props.name); } LOG_INF("\n"); LOG_INF("| GPU Description "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.10s ", dev_info_set[i].gpu_props.description); } LOG_INF("\n"); LOG_INF("| GPU Mem Free (GiB) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.memory_free); } LOG_INF("\n"); LOG_INF("| GPU Mem Total (GiB) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.memory_total); } LOG_INF("\n"); LOG_INF("| Metal VRAM Read BW (GB/s) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.metal_read_vram_bw); } LOG_INF("\n"); LOG_INF("| Metal flops (F32xF32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_f32_f32); } LOG_INF("\n"); LOG_INF("| Metal flops (F16xF32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_f16_f32); } LOG_INF("\n"); LOG_INF("| Metal flops (Q4KxF32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q4k_f32); } LOG_INF("\n"); LOG_INF("| Metal flops (Q5KxF32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q5k_f32); } LOG_INF("\n"); LOG_INF("| Metal flops (Q6KxF32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q6k_f32); } LOG_INF("\n"); LOG_INF("| Metal flops (Q80xF32, GFLOPS)"); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q80_f32); } LOG_INF("\n"); LOG_INF("| CUDA VRAM Read BW (GB/s) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.2f ", dev_info_set[i].gpu_props.cuda_read_vram_bw); } LOG_INF("\n"); LOG_INF("| CUDA flops (F32xF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f32_f32); } LOG_INF("\n"); LOG_INF("| CUDA flops (F16xF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f16_f32); } LOG_INF("\n"); LOG_INF("| CUDA flops (Q4KxF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q4k_f32); } LOG_INF("\n"); LOG_INF("| CUDA flops (Q5KxF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q5k_f32); } LOG_INF("\n"); LOG_INF("| CUDA flops (Q6KxF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q6k_f32); } LOG_INF("\n"); LOG_INF("| CUDA flops (Q80xF32, GFLOPS) "); for (int i = 0; i < n; ++i) { LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q80_f32); } LOG_INF("\n"); LOG_INF("| Model flops (output F32xF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_f32_f32); LOG_INF("\n"); LOG_INF("| Model flops (output F16xF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_f16_f32); LOG_INF("\n"); LOG_INF("| Model flops (output Q4KxF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q4k_f32); LOG_INF("\n"); LOG_INF("| Model flops (output Q5KxF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q5k_f32); LOG_INF("\n"); LOG_INF("| Model flops (output Q6KxF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q6k_f32); LOG_INF("\n"); LOG_INF("| Model flops (output Q80xF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.output_q80_f32); LOG_INF("\n"); LOG_INF("| Model flops (layer F32xF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_f32_f32); LOG_INF("\n"); LOG_INF("| Model flops (layer F16xF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_f16_f32); LOG_INF("\n"); LOG_INF("| Model flops (layer Q4KxF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q4k_f32); LOG_INF("\n"); LOG_INF("| Model flops (layer Q5KxF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q5k_f32); LOG_INF("\n"); LOG_INF("| Model flops (layer Q6KxF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q6k_f32); LOG_INF("\n"); LOG_INF("| Model flops (layer Q80xF32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_flops.layer_q80_f32); LOG_INF("\n"); LOG_INF("| Model params (input F32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_f32); LOG_INF("\n"); LOG_INF("| Model params (input F16) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_f16); LOG_INF("\n"); LOG_INF("| Model params (input Q4K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q4k); LOG_INF("\n"); LOG_INF("| Model params (input Q5K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q5k); LOG_INF("\n"); LOG_INF("| Model params (input Q6K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q6k); LOG_INF("\n"); LOG_INF("| Model params (input Q80) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.input_q80); LOG_INF("\n"); LOG_INF("| Model params (layer F32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_f32); LOG_INF("\n"); LOG_INF("| Model params (layer F16) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_f16); LOG_INF("\n"); LOG_INF("| Model params (layer Q4K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q4k); LOG_INF("\n"); LOG_INF("| Model params (layer Q5K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q5k); LOG_INF("\n"); LOG_INF("| Model params (layer Q6K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q6k); LOG_INF("\n"); LOG_INF("| Model params (layer Q80) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.layer_q80); LOG_INF("\n"); LOG_INF("| Model params (output F32) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_f32); LOG_INF("\n"); LOG_INF("| Model params (output F16) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_f16); LOG_INF("\n"); LOG_INF("| Model params (output Q4K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q4k); LOG_INF("\n"); LOG_INF("| Model params (output Q5K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q5k); LOG_INF("\n"); LOG_INF("| Model params (output Q6K) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q6k); LOG_INF("\n"); LOG_INF("| Model params (output Q80) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_params.output_q80); LOG_INF("\n"); LOG_INF("| Model bytes (input) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_bytes.nb_input); LOG_INF("\n"); LOG_INF("| Model bytes (layer) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_bytes.nb_layer); LOG_INF("\n"); LOG_INF("| Model bytes (output) "); LOG_INF("| %-10" PRId64 " ", dev_info_set[0].model_bytes.nb_output); LOG_INF("\n"); // todo: calculate for each device, not only master float latency = 0.0f; int n_layers = llama_model_n_layers (model); latency += device_compute_delay (dev_info_set[0], n_layers, cparams); latency += device_memory_access_delay(dev_info_set[0], model, cparams, n_layers); latency += device_disk_access_delay (dev_info_set[0], model, cparams); // if physical memory is not enough, some mapped data will be released and reloaded later latency += device_mem_copy_delay (model, cparams); // memory copy delay in kvcache LOG_INF("| Token latency (ms) "); LOG_INF("| %-10.2f ", latency); LOG_INF("\n"); LOG_INF("-------------------------------------------------------------------------------------------\n\n"); } size_t serialize(const struct device_info * dev_info, char ** buffer) { // calculate total size for serialized buffer size_t device_name_len = strlen(dev_info->device_name) + 1; size_t cpu_name_len = strlen(dev_info->cpu_props.name) + 1; size_t cpu_description_len = strlen(dev_info->cpu_props.description) + 1; size_t gpu_name_len = strlen(dev_info->gpu_props.name) + 1; size_t gpu_description_len = strlen(dev_info->gpu_props.description) + 1; size_t total_size = sizeof(uint32_t) + sizeof(size_t) * 5 // for lengths of strings + device_name_len + cpu_name_len + cpu_description_len + gpu_name_len + gpu_description_len + sizeof(struct disk_props) + sizeof(uint32_t) // cpu_props.cores + sizeof(float) * 6 // cpu_props.flops_f32_f32, cpu_props.flops_f16_f32, cpu_props.flops_q4k_f32, cpu_props.flops_q5k_f32, cpu_props.flops_q6k_f32, cpu_props.flops_q80_f32 + sizeof(struct memory_info) + sizeof(struct gpu_support) + sizeof(float) * 16; // gpu_props.memory_free, gpu_props.memory_total, gpu_props.metal_read_vram_bw, gpu_props.cuda_read_vram_bw, // gpu_props.metal_flops_f32_f32, gpu_props.metal_flops_f16_f32, gpu_props.metal_flops_q4k_f32, gpu_props.metal_flops_q5k_f32, gpu_props.metal_flops_q6k_f32, gpu_props.metal_flops_q80_f32, // gpu_props.cuda_flops_f32_f32, gpu_props.cuda_flops_f16_f32, gpu_props.cuda_flops_q4k_f32, gpu_props.cuda_flops_q5k_f32, gpu_props.cuda_flops_q6k_f32, gpu_props.cuda_flops_q80_f32 *buffer = (char *)malloc(total_size); char * ptr = *buffer; // rank memcpy(ptr, &dev_info->rank, sizeof(uint32_t)); ptr += sizeof(uint32_t); // copy string lengths and string data memcpy(ptr, &device_name_len, sizeof(size_t)); ptr += sizeof(size_t); memcpy(ptr, dev_info->device_name, device_name_len); ptr += device_name_len; memcpy(ptr, &cpu_name_len, sizeof(size_t)); ptr += sizeof(size_t); memcpy(ptr, dev_info->cpu_props.name, cpu_name_len); ptr += cpu_name_len; memcpy(ptr, &cpu_description_len, sizeof(size_t)); ptr += sizeof(size_t); memcpy(ptr, dev_info->cpu_props.description, cpu_description_len); ptr += cpu_description_len; memcpy(ptr, &gpu_name_len, sizeof(size_t)); ptr += sizeof(size_t); memcpy(ptr, dev_info->gpu_props.name, gpu_name_len); ptr += gpu_name_len; memcpy(ptr, &gpu_description_len, sizeof(size_t)); ptr += sizeof(size_t); memcpy(ptr, dev_info->gpu_props.description, gpu_description_len); ptr += gpu_description_len; // copy the non-string members memcpy(ptr, &dev_info->disk, sizeof(struct disk_props)); ptr += sizeof(struct disk_props); memcpy(ptr, &dev_info->cpu_props.cores, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &dev_info->cpu_props.flops_f32_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->cpu_props.flops_f16_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->cpu_props.flops_q4k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->cpu_props.flops_q5k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->cpu_props.flops_q6k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->cpu_props.flops_q80_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->memory, sizeof(struct memory_info)); ptr += sizeof(struct memory_info); memcpy(ptr, &dev_info->gpu_support, sizeof(struct gpu_support)); ptr += sizeof(struct gpu_support); memcpy(ptr, &dev_info->gpu_props.memory_free, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.memory_total, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.metal_read_vram_bw, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.metal_flops_f32_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.metal_flops_f16_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.metal_flops_q4k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.metal_flops_q5k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.metal_flops_q6k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.metal_flops_q80_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.cuda_read_vram_bw, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.cuda_flops_f32_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.cuda_flops_f16_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.cuda_flops_q4k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.cuda_flops_q5k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.cuda_flops_q6k_f32, sizeof(float)); ptr += sizeof(float); memcpy(ptr, &dev_info->gpu_props.cuda_flops_q80_f32, sizeof(float)); // no need to synchronize model flops and model params return total_size; } void deserialize(const char * buffer, struct device_info * dev_info) { const char * ptr = buffer; // rank memcpy(&dev_info->rank, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); // device_name size_t device_name_len; memcpy(&device_name_len, ptr, sizeof(size_t)); ptr += sizeof(size_t); dev_info->device_name = (char *)malloc(device_name_len); memcpy(const_cast(static_cast(dev_info->device_name)), ptr, device_name_len); ptr += device_name_len; // cpu_props.name size_t cpu_name_len; memcpy(&cpu_name_len, ptr, sizeof(size_t)); ptr += sizeof(size_t); dev_info->cpu_props.name = (char *)malloc(cpu_name_len); memcpy(const_cast(static_cast(dev_info->cpu_props.name)), ptr, cpu_name_len); ptr += cpu_name_len; // cpu_props.description size_t cpu_description_len; memcpy(&cpu_description_len, ptr, sizeof(size_t)); ptr += sizeof(size_t); dev_info->cpu_props.description = (char *)malloc(cpu_description_len); memcpy(const_cast(static_cast(dev_info->cpu_props.description)), ptr, cpu_description_len); ptr += cpu_description_len; // gpu_props.name size_t gpu_name_len; memcpy(&gpu_name_len, ptr, sizeof(size_t)); ptr += sizeof(size_t); dev_info->gpu_props.name = (char *)malloc(gpu_name_len); memcpy(const_cast(static_cast(dev_info->gpu_props.name)), ptr, gpu_name_len); ptr += gpu_name_len; // gpu_props.description size_t gpu_description_len; memcpy(&gpu_description_len, ptr, sizeof(size_t)); ptr += sizeof(size_t); dev_info->gpu_props.description = (char *)malloc(gpu_description_len); memcpy(const_cast(static_cast(dev_info->gpu_props.description)), ptr, gpu_description_len); ptr += gpu_description_len; // other non-string members memcpy(&dev_info->disk, ptr, sizeof(struct disk_props)); ptr += sizeof(struct disk_props); memcpy(&dev_info->cpu_props.cores, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&dev_info->cpu_props.flops_f32_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->cpu_props.flops_f16_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->cpu_props.flops_q4k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->cpu_props.flops_q5k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->cpu_props.flops_q6k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->cpu_props.flops_q80_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->memory, ptr, sizeof(struct memory_info)); ptr += sizeof(struct memory_info); memcpy(&dev_info->gpu_support, ptr, sizeof(struct gpu_support)); ptr += sizeof(struct gpu_support); memcpy(&dev_info->gpu_props.memory_free, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.memory_total, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.metal_read_vram_bw, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.metal_flops_f32_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.metal_flops_f16_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.metal_flops_q4k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.metal_flops_q5k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.metal_flops_q6k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.metal_flops_q80_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.cuda_read_vram_bw, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.cuda_flops_f32_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.cuda_flops_f16_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.cuda_flops_q4k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.cuda_flops_q5k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.cuda_flops_q6k_f32, ptr, sizeof(float)); ptr += sizeof(float); memcpy(&dev_info->gpu_props.cuda_flops_q80_f32, ptr, sizeof(float)); // no need to synchronize model flops and model params }