mirror of
https://github.com/Lizonghang/prima.cpp.git
synced 2025-09-06 15:29:04 +00:00
Added support for iq1s and iq1m quantization type
This commit is contained in:
commit
fc1e2d3fc6
8 changed files with 973 additions and 523 deletions
|
@ -901,13 +901,19 @@ static bool assign_layers_to_device(
|
|||
float t_read_ram_cpu = 0.0f;
|
||||
|
||||
float t_calc_cpu = (
|
||||
master.model_flops.layer_f32_f32 / (dev.cpu_props.flops_f32_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_f16_f32 / (dev.cpu_props.flops_f16_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q4k_f32 / (dev.cpu_props.flops_q4k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q50_f32 / (dev.cpu_props.flops_q50_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q5k_f32 / (dev.cpu_props.flops_q5k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q6k_f32 / (dev.cpu_props.flops_q6k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q80_f32 / (dev.cpu_props.flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
|
||||
master.model_flops.layer_f32_f32 / (dev.cpu_props.flops_f32_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_f16_f32 / (dev.cpu_props.flops_f16_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q2k_f32 / (dev.cpu_props.flops_q2k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q4k_f32 / (dev.cpu_props.flops_q4k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q5k_f32 / (dev.cpu_props.flops_q5k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q6k_f32 / (dev.cpu_props.flops_q6k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq2xxs_f32/ (dev.cpu_props.flops_iq2xxs_f32* 1e9 + EPS) +
|
||||
master.model_flops.layer_q50_f32 / (dev.cpu_props.flops_q50_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q80_f32 / (dev.cpu_props.flops_q80_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq1s_f32 / (dev.cpu_props.flops_iq1s_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq4nl_f32 / (dev.cpu_props.flops_iq4nl_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq1m_f32 / (dev.cpu_props.flops_iq1m_f32 * 1e9 + EPS) ) * 1000; // in ms
|
||||
|
||||
float t_kv_cpy_cpu = dev.memory.mem_cpy_delay; // in ms
|
||||
// t_read_ram_cpu = b_prime / (dev.memory.cpu_read_ram_bw * 1e9) * 1000; // in ms
|
||||
|
||||
|
@ -921,24 +927,36 @@ static bool assign_layers_to_device(
|
|||
|
||||
if (dev.gpu_support.metal) {
|
||||
t_calc_gpu = (
|
||||
master.model_flops.layer_f32_f32 / (dev.gpu_props.metal_flops_f32_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_f16_f32 / (dev.gpu_props.metal_flops_f16_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q4k_f32 / (dev.gpu_props.metal_flops_q4k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q50_f32 / (dev.gpu_props.metal_flops_q50_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q5k_f32 / (dev.gpu_props.metal_flops_q5k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q6k_f32 / (dev.gpu_props.metal_flops_q6k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q80_f32 / (dev.gpu_props.metal_flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
|
||||
master.model_flops.layer_f32_f32 / (dev.gpu_props.metal_flops_f32_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_f16_f32 / (dev.gpu_props.metal_flops_f16_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q2k_f32 / (dev.gpu_props.metal_flops_q2k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q4k_f32 / (dev.gpu_props.metal_flops_q4k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q5k_f32 / (dev.gpu_props.metal_flops_q5k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q6k_f32 / (dev.gpu_props.metal_flops_q6k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq2xxs_f32 / (dev.gpu_props.metal_flops_iq2xxs_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q50_f32 / (dev.gpu_props.metal_flops_q50_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q80_f32 / (dev.gpu_props.metal_flops_q80_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq1s_f32 / (dev.gpu_props.metal_flops_iq1s_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq4nl_f32 / (dev.gpu_props.metal_flops_iq4nl_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq1m_f32 / (dev.gpu_props.metal_flops_iq1m_f32 * 1e9 + EPS) ) * 1000; // in ms
|
||||
|
||||
t_kv_cpy_gpu = dev.gpu_props.metal_mem_cpy_delay; // in ms
|
||||
// t_read_ram_gpu = b_prime / (dev.gpu_props.metal_read_vram_bw * 1e9) * 1000; // in ms
|
||||
} else {
|
||||
t_calc_gpu = (
|
||||
master.model_flops.layer_f32_f32 / (dev.gpu_props.cuda_flops_f32_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_f16_f32 / (dev.gpu_props.cuda_flops_f16_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q4k_f32 / (dev.gpu_props.cuda_flops_q4k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q50_f32 / (dev.gpu_props.cuda_flops_q50_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q5k_f32 / (dev.gpu_props.cuda_flops_q5k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q6k_f32 / (dev.gpu_props.cuda_flops_q6k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q80_f32 / (dev.gpu_props.cuda_flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
|
||||
master.model_flops.layer_f32_f32 / (dev.gpu_props.cuda_flops_f32_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_f16_f32 / (dev.gpu_props.cuda_flops_f16_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q2k_f32 / (dev.gpu_props.cuda_flops_q2k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q4k_f32 / (dev.gpu_props.cuda_flops_q4k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q5k_f32 / (dev.gpu_props.cuda_flops_q5k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q6k_f32 / (dev.gpu_props.cuda_flops_q6k_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq2xxs_f32 / (dev.gpu_props.cuda_flops_iq2xxs_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q50_f32 / (dev.gpu_props.cuda_flops_q50_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_q80_f32 / (dev.gpu_props.cuda_flops_q80_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq1s_f32 / (dev.gpu_props.cuda_flops_iq1s_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq4nl_f32 / (dev.gpu_props.cuda_flops_iq4nl_f32 * 1e9 + EPS) +
|
||||
master.model_flops.layer_iq1m_f32 / (dev.gpu_props.cuda_flops_iq1m_f32 * 1e9 + EPS) ) * 1000; // in ms
|
||||
|
||||
t_kv_cpy_gpu = dev.gpu_props.cuda_mem_cpy_delay; // in ms
|
||||
// t_read_ram_gpu = b_prime / (dev.gpu_props.cuda_read_vram_bw * 1e9) * 1000; // in ms
|
||||
}
|
||||
|
@ -1113,14 +1131,18 @@ static bool assign_layers_to_device(
|
|||
|
||||
if (m == 0) {
|
||||
kappa = (
|
||||
dev.model_flops.layer_f32_f32 / (dev.cpu_props.flops_f32_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_f16_f32 / (dev.cpu_props.flops_f16_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q4k_f32 / (dev.cpu_props.flops_q4k_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q50_f32 / (dev.cpu_props.flops_q50_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q5k_f32 / (dev.cpu_props.flops_q5k_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q6k_f32 / (dev.cpu_props.flops_q6k_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q80_f32 / (dev.cpu_props.flops_q80_f32 * 1e9 + EPS)) * 1000; // in ms
|
||||
|
||||
dev.model_flops.layer_f32_f32 / (dev.cpu_props.flops_f32_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_f16_f32 / (dev.cpu_props.flops_f16_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q2k_f32 / (dev.cpu_props.flops_q2k_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q4k_f32 / (dev.cpu_props.flops_q4k_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q5k_f32 / (dev.cpu_props.flops_q5k_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q6k_f32 / (dev.cpu_props.flops_q6k_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_iq2xxs_f32 / (dev.cpu_props.flops_iq2xxs_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q50_f32 / (dev.cpu_props.flops_q50_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_q80_f32 / (dev.cpu_props.flops_q80_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_iq1s_f32 / (dev.cpu_props.flops_iq1s_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_iq4nl_f32 / (dev.cpu_props.flops_iq4nl_f32 * 1e9 + EPS) +
|
||||
dev.model_flops.layer_iq1m_f32 / (dev.cpu_props.flops_iq1m_f32 * 1e9 + EPS) ) * 1000; // in ms
|
||||
// kappa += (bi / n_vocab + bo) / (dev.memory.cpu_read_ram_bw * 1e9) * 1000; // in ms
|
||||
|
||||
kappa += (bi / n_vocab) / (disk_speed[m] * 1e9) * 1000; // in ms
|
||||
|
@ -1766,33 +1788,25 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
|||
return mparams;
|
||||
}
|
||||
|
||||
static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
if (s == "f32") {
|
||||
return GGML_TYPE_F32;
|
||||
}
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
if (s == "q8_0") {
|
||||
return GGML_TYPE_Q8_0;
|
||||
}
|
||||
if (s == "q4_0") {
|
||||
return GGML_TYPE_Q4_0;
|
||||
}
|
||||
if (s == "q4_1") {
|
||||
return GGML_TYPE_Q4_1;
|
||||
}
|
||||
if (s == "iq4_nl") {
|
||||
return GGML_TYPE_IQ4_NL;
|
||||
}
|
||||
if (s == "q5_0") {
|
||||
return GGML_TYPE_Q5_0;
|
||||
}
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
const std::vector<ggml_type> kv_cache_types = {
|
||||
GGML_TYPE_F32,
|
||||
GGML_TYPE_F16,
|
||||
GGML_TYPE_BF16, // Added BF16 data type support
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_IQ4_NL,
|
||||
GGML_TYPE_Q5_0,
|
||||
GGML_TYPE_Q5_1,
|
||||
};
|
||||
|
||||
throw std::runtime_error("Invalid cache type: " + s);
|
||||
static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
for (const auto & type : kv_cache_types) {
|
||||
if (ggml_type_name(type) == s) {
|
||||
return type;
|
||||
}
|
||||
}
|
||||
throw std::runtime_error("Unsupported cache type: " + s);
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -15,25 +15,36 @@ struct cpu_props {
|
|||
const char * name;
|
||||
const char * description;
|
||||
uint32_t cores;
|
||||
float flops_f32_f32; // in GFLOPS
|
||||
float flops_f16_f32; // in GFLOPS
|
||||
float flops_q4k_f32; // in GFLOPS
|
||||
float flops_q50_f32; // in GFLOPS
|
||||
float flops_q5k_f32; // in GFLOPS
|
||||
float flops_q6k_f32; // in GFLOPS
|
||||
float flops_q80_f32; // in GFLOPS
|
||||
float flops_f32_f32; // in GFLOPS
|
||||
float flops_f16_f32; // in GFLOPS
|
||||
float flops_q2k_f32; // in GFLOPS
|
||||
float flops_q4k_f32; // in GFLOPS
|
||||
float flops_q5k_f32; // in GFLOPS
|
||||
float flops_q6k_f32; // in GFLOPS
|
||||
float flops_iq2xxs_f32; // in GFLOPS
|
||||
float flops_q50_f32; // in GFLOPS
|
||||
float flops_q80_f32; // in GFLOPS
|
||||
float flops_iq1s_f32; // in GFLOPS
|
||||
float flops_iq4nl_f32; // in GFLOPS
|
||||
float flops_iq1m_f32; // in GFLOPS
|
||||
|
||||
cpu_props() :
|
||||
name(""),
|
||||
description(""),
|
||||
cores(0),
|
||||
flops_f32_f32(0.0f),
|
||||
flops_f16_f32(0.0f),
|
||||
flops_q4k_f32(0.0f),
|
||||
flops_q50_f32(0.0f),
|
||||
flops_q5k_f32(0.0f),
|
||||
flops_q6k_f32(0.0f),
|
||||
flops_q80_f32(0.0f) {}
|
||||
cpu_props()
|
||||
: name (""),
|
||||
description (""),
|
||||
cores (0),
|
||||
flops_f32_f32 (0.0f),
|
||||
flops_f16_f32 (0.0f),
|
||||
flops_q2k_f32 (0.0f),
|
||||
flops_q4k_f32 (0.0f),
|
||||
flops_q5k_f32 (0.0f),
|
||||
flops_q6k_f32 (0.0f),
|
||||
flops_iq2xxs_f32(0.0f),
|
||||
flops_q50_f32 (0.0f),
|
||||
flops_q80_f32 (0.0f),
|
||||
flops_iq1s_f32 (0.0f),
|
||||
flops_iq4nl_f32 (0.0f),
|
||||
flops_iq1m_f32 (0.0f)
|
||||
{}
|
||||
};
|
||||
|
||||
struct memory_info {
|
||||
|
@ -77,132 +88,204 @@ struct gpu_support {
|
|||
struct gpu_props {
|
||||
const char * name;
|
||||
const char * description;
|
||||
float memory_free; // in GiB
|
||||
float memory_total; // in GiB
|
||||
float metal_read_vram_bw; // in GB/s
|
||||
float metal_flops_f32_f32; // in GFLOPS
|
||||
float metal_flops_f16_f32; // in GFLOPS
|
||||
float metal_flops_q4k_f32; // in GFLOPS
|
||||
float metal_flops_q50_f32; // in GFLOPS
|
||||
float metal_flops_q5k_f32; // in GFLOPS
|
||||
float metal_flops_q6k_f32; // in GFLOPS
|
||||
float metal_flops_q80_f32; // in GFLOPS
|
||||
float metal_mem_cpy_delay; // in ms
|
||||
float cuda_read_vram_bw; // in GB/s
|
||||
float cuda_flops_f32_f32; // in GFLOPS
|
||||
float cuda_flops_f16_f32; // in GFLOPS
|
||||
float cuda_flops_q4k_f32; // in GFLOPS
|
||||
float cuda_flops_q50_f32; // in GFLOPS
|
||||
float cuda_flops_q5k_f32; // in GFLOPS
|
||||
float cuda_flops_q6k_f32; // in GFLOPS
|
||||
float cuda_flops_q80_f32; // in GFLOPS
|
||||
float cuda_mem_cpy_delay; // in ms
|
||||
float memory_free; // in GiB
|
||||
float memory_total; // in GiB
|
||||
float metal_read_vram_bw; // in GB/s
|
||||
float metal_flops_f32_f32; // in GFLOPS
|
||||
float metal_flops_f16_f32; // in GFLOPS
|
||||
float metal_flops_q2k_f32; // in GFLOPS
|
||||
float metal_flops_q4k_f32; // in GFLOPS
|
||||
float metal_flops_q5k_f32; // in GFLOPS
|
||||
float metal_flops_q6k_f32; // in GFLOPS
|
||||
float metal_flops_iq2xxs_f32; // in GFLOPS
|
||||
float metal_flops_q50_f32; // in GFLOPS
|
||||
float metal_flops_q80_f32; // in GFLOPS
|
||||
float metal_flops_iq1s_f32; // in GFLOPS
|
||||
float metal_flops_iq4nl_f32; // in GFLOPS
|
||||
float metal_flops_iq1m_f32; // in GFLOPS
|
||||
float metal_mem_cpy_delay; // in ms
|
||||
float cuda_read_vram_bw; // in GB/s
|
||||
float cuda_flops_f32_f32; // in GFLOPS
|
||||
float cuda_flops_f16_f32; // in GFLOPS
|
||||
float cuda_flops_q2k_f32; // in GFLOPS
|
||||
float cuda_flops_q4k_f32; // in GFLOPS
|
||||
float cuda_flops_q5k_f32; // in GFLOPS
|
||||
float cuda_flops_q6k_f32; // in GFLOPS
|
||||
float cuda_flops_iq2xxs_f32; // in GFLOPS
|
||||
float cuda_flops_q50_f32; // in GFLOPS
|
||||
float cuda_flops_q80_f32; // in GFLOPS
|
||||
float cuda_flops_iq1s_f32; // in GFLOPS
|
||||
float cuda_flops_iq4nl_f32; // in GFLOPS
|
||||
float cuda_flops_iq1m_f32; // in GFLOPS
|
||||
float cuda_mem_cpy_delay; // in ms
|
||||
|
||||
gpu_props() :
|
||||
name(""),
|
||||
description(""),
|
||||
memory_free (0.0f),
|
||||
memory_total (0.0f),
|
||||
metal_read_vram_bw (0.0f),
|
||||
metal_flops_f32_f32(0.0f),
|
||||
metal_flops_f16_f32(0.0f),
|
||||
metal_flops_q4k_f32(0.0f),
|
||||
metal_flops_q50_f32(0.0f),
|
||||
metal_flops_q5k_f32(0.0f),
|
||||
metal_flops_q6k_f32(0.0f),
|
||||
metal_flops_q80_f32(0.0f),
|
||||
metal_mem_cpy_delay(0.0f),
|
||||
cuda_read_vram_bw (0.0f),
|
||||
cuda_flops_f32_f32 (0.0f),
|
||||
cuda_flops_f16_f32 (0.0f),
|
||||
cuda_flops_q4k_f32 (0.0f),
|
||||
cuda_flops_q50_f32 (0.0f),
|
||||
cuda_flops_q5k_f32 (0.0f),
|
||||
cuda_flops_q6k_f32 (0.0f),
|
||||
cuda_flops_q80_f32 (0.0f),
|
||||
cuda_mem_cpy_delay (0.0f) {}
|
||||
name (""),
|
||||
description (""),
|
||||
memory_free (0.0f),
|
||||
memory_total (0.0f),
|
||||
metal_read_vram_bw (0.0f),
|
||||
metal_flops_f32_f32 (0.0f),
|
||||
metal_flops_f16_f32 (0.0f),
|
||||
metal_flops_q2k_f32 (0.0f),
|
||||
metal_flops_q4k_f32 (0.0f),
|
||||
metal_flops_q5k_f32 (0.0f),
|
||||
metal_flops_q6k_f32 (0.0f),
|
||||
metal_flops_iq2xxs_f32 (0.0f),
|
||||
metal_flops_q50_f32 (0.0f),
|
||||
metal_flops_q80_f32 (0.0f),
|
||||
metal_flops_iq1s_f32 (0.0f),
|
||||
metal_flops_iq4nl_f32 (0.0f),
|
||||
metal_flops_iq1m_f32 (0.0f),
|
||||
metal_mem_cpy_delay (0.0f),
|
||||
cuda_read_vram_bw (0.0f),
|
||||
cuda_flops_f32_f32 (0.0f),
|
||||
cuda_flops_f16_f32 (0.0f),
|
||||
cuda_flops_q2k_f32 (0.0f),
|
||||
cuda_flops_q4k_f32 (0.0f),
|
||||
cuda_flops_q5k_f32 (0.0f),
|
||||
cuda_flops_q6k_f32 (0.0f),
|
||||
cuda_flops_iq2xxs_f32 (0.0f),
|
||||
cuda_flops_q50_f32 (0.0f),
|
||||
cuda_flops_q80_f32 (0.0f),
|
||||
cuda_flops_iq1s_f32 (0.0f),
|
||||
cuda_flops_iq4nl_f32 (0.0f),
|
||||
cuda_flops_iq1m_f32 (0.0f),
|
||||
cuda_mem_cpy_delay (0.0f) {}
|
||||
};
|
||||
|
||||
struct model_flops {
|
||||
float inp_embd_ms;
|
||||
int64_t output_f32_f32;
|
||||
int64_t output_f16_f32;
|
||||
int64_t output_q2k_f32;
|
||||
int64_t output_q4k_f32;
|
||||
int64_t output_q50_f32;
|
||||
int64_t output_q5k_f32;
|
||||
int64_t output_q6k_f32;
|
||||
int64_t output_iq2xxs_f32;
|
||||
int64_t output_q50_f32;
|
||||
int64_t output_q80_f32;
|
||||
int64_t output_iq1s_f32;
|
||||
int64_t output_iq4nl_f32;
|
||||
int64_t output_iq1m_f32;
|
||||
int64_t layer_f32_f32;
|
||||
int64_t layer_f16_f32;
|
||||
int64_t layer_q2k_f32;
|
||||
int64_t layer_q4k_f32;
|
||||
int64_t layer_q50_f32;
|
||||
int64_t layer_q5k_f32;
|
||||
int64_t layer_q6k_f32;
|
||||
int64_t layer_iq2xxs_f32;
|
||||
int64_t layer_q50_f32;
|
||||
int64_t layer_q80_f32;
|
||||
int64_t layer_iq1s_f32;
|
||||
int64_t layer_iq4nl_f32;
|
||||
int64_t layer_iq1m_f32;
|
||||
|
||||
model_flops() :
|
||||
inp_embd_ms(0.0f),
|
||||
output_f32_f32(0),
|
||||
output_f16_f32(0),
|
||||
output_q4k_f32(0),
|
||||
output_q50_f32(0),
|
||||
output_q5k_f32(0),
|
||||
output_q6k_f32(0),
|
||||
output_q80_f32(0),
|
||||
layer_f32_f32 (0),
|
||||
layer_f16_f32 (0),
|
||||
layer_q4k_f32 (0),
|
||||
layer_q50_f32 (0),
|
||||
layer_q5k_f32 (0),
|
||||
layer_q6k_f32 (0),
|
||||
layer_q80_f32 (0) {}
|
||||
inp_embd_ms (0.0f),
|
||||
output_f32_f32 (0),
|
||||
output_f16_f32 (0),
|
||||
output_q2k_f32 (0),
|
||||
output_q4k_f32 (0),
|
||||
output_q5k_f32 (0),
|
||||
output_q6k_f32 (0),
|
||||
output_iq2xxs_f32 (0),
|
||||
output_q50_f32 (0),
|
||||
output_q80_f32 (0),
|
||||
output_iq1s_f32 (0),
|
||||
output_iq4nl_f32 (0),
|
||||
output_iq1m_f32 (0),
|
||||
layer_f32_f32 (0),
|
||||
layer_f16_f32 (0),
|
||||
layer_q2k_f32 (0),
|
||||
layer_q4k_f32 (0),
|
||||
layer_q5k_f32 (0),
|
||||
layer_q6k_f32 (0),
|
||||
layer_iq2xxs_f32 (0),
|
||||
layer_q50_f32 (0),
|
||||
layer_q80_f32 (0),
|
||||
layer_iq1s_f32 (0),
|
||||
layer_iq4nl_f32 (0),
|
||||
layer_iq1m_f32 (0)
|
||||
{}
|
||||
};
|
||||
|
||||
struct model_params {
|
||||
int64_t input_f32;
|
||||
int64_t input_f16;
|
||||
int64_t input_q2k;
|
||||
int64_t input_q4k;
|
||||
int64_t input_q50;
|
||||
int64_t input_q5k;
|
||||
int64_t input_q6k;
|
||||
int64_t input_iq2xxs;
|
||||
int64_t input_q50;
|
||||
int64_t input_q80;
|
||||
int64_t input_iq1s;
|
||||
int64_t input_iq4nl;
|
||||
int64_t input_iq1m;
|
||||
int64_t output_f32;
|
||||
int64_t output_f16;
|
||||
int64_t output_q2k;
|
||||
int64_t output_q4k;
|
||||
int64_t output_q50;
|
||||
int64_t output_q5k;
|
||||
int64_t output_q6k;
|
||||
int64_t output_iq2xxs;
|
||||
int64_t output_q50;
|
||||
int64_t output_q80;
|
||||
int64_t output_iq1s;
|
||||
int64_t output_iq4nl;
|
||||
int64_t output_iq1m;
|
||||
int64_t layer_f32;
|
||||
int64_t layer_f16;
|
||||
int64_t layer_q2k;
|
||||
int64_t layer_q4k;
|
||||
int64_t layer_q50;
|
||||
int64_t layer_q5k;
|
||||
int64_t layer_q6k;
|
||||
int64_t layer_iq2xxs;
|
||||
int64_t layer_q50;
|
||||
int64_t layer_q80;
|
||||
int64_t layer_iq1s;
|
||||
int64_t layer_iq4nl;
|
||||
int64_t layer_iq1m;
|
||||
|
||||
model_params() :
|
||||
input_f32 (0),
|
||||
input_f16 (0),
|
||||
input_q4k (0),
|
||||
input_q50 (0),
|
||||
input_q5k (0),
|
||||
input_q6k (0),
|
||||
input_q80 (0),
|
||||
output_f32(0),
|
||||
output_f16(0),
|
||||
output_q4k(0),
|
||||
output_q50(0),
|
||||
output_q5k(0),
|
||||
output_q6k(0),
|
||||
output_q80(0),
|
||||
layer_f32 (0),
|
||||
layer_f16 (0),
|
||||
layer_q4k (0),
|
||||
layer_q50 (0),
|
||||
layer_q5k (0),
|
||||
layer_q6k (0),
|
||||
layer_q80 (0) {}
|
||||
input_f32 (0),
|
||||
input_f16 (0),
|
||||
input_q2k (0),
|
||||
input_q4k (0),
|
||||
input_q5k (0),
|
||||
input_q6k (0),
|
||||
input_iq2xxs (0),
|
||||
input_q50 (0),
|
||||
input_q80 (0),
|
||||
input_iq1s (0),
|
||||
input_iq4nl (0),
|
||||
input_iq1m (0),
|
||||
output_f32 (0),
|
||||
output_f16 (0),
|
||||
output_q2k (0),
|
||||
output_q4k (0),
|
||||
output_q5k (0),
|
||||
output_q6k (0),
|
||||
output_iq2xxs (0),
|
||||
output_q50 (0),
|
||||
output_q80 (0),
|
||||
output_iq1s (0),
|
||||
output_iq4nl (0),
|
||||
output_iq1m (0),
|
||||
layer_f32 (0),
|
||||
layer_f16 (0),
|
||||
layer_q2k (0),
|
||||
layer_q4k (0),
|
||||
layer_q5k (0),
|
||||
layer_q6k (0),
|
||||
layer_iq2xxs (0),
|
||||
layer_q50 (0),
|
||||
layer_q80 (0),
|
||||
layer_iq1s (0),
|
||||
layer_iq4nl (0),
|
||||
layer_iq1m (0)
|
||||
{}
|
||||
};
|
||||
|
||||
struct model_bytes {
|
||||
|
|
|
@ -385,12 +385,12 @@ extern "C" {
|
|||
GGML_TYPE_F64 = 28,
|
||||
GGML_TYPE_IQ1_M = 29,
|
||||
GGML_TYPE_BF16 = 30,
|
||||
GGML_TYPE_Q4_0_4_4 = 31,
|
||||
GGML_TYPE_Q4_0_4_8 = 32,
|
||||
GGML_TYPE_Q4_0_8_8 = 33,
|
||||
// GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
|
||||
// GGML_TYPE_Q4_0_4_8 = 32,
|
||||
// GGML_TYPE_Q4_0_8_8 = 33,
|
||||
GGML_TYPE_TQ1_0 = 34,
|
||||
GGML_TYPE_TQ2_0 = 35,
|
||||
GGML_TYPE_COUNT,
|
||||
GGML_TYPE_COUNT = 39,
|
||||
};
|
||||
|
||||
// precision
|
||||
|
@ -431,9 +431,6 @@ extern "C" {
|
|||
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
|
|
|
@ -15725,15 +15725,6 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
|
|||
{
|
||||
VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
{
|
||||
VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x4, data, nbytes / sizeof(block_q4_0x4), 4);
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
{
|
||||
VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x8, data, nbytes / sizeof(block_q4_0x8), 8);
|
||||
} break;
|
||||
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
|
|
|
@ -1076,54 +1076,6 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||
.vec_dot_type = GGML_TYPE_BF16,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_Q4_0_4_4] = {
|
||||
.type_name = "q4_0_4x4",
|
||||
.blck_size = QK4_0,
|
||||
.blck_size_interleave = 4,
|
||||
.type_size = sizeof(block_q4_0),
|
||||
.is_quantized = true,
|
||||
.to_float = NULL,
|
||||
.from_float = NULL,
|
||||
.from_float_ref = NULL,
|
||||
.vec_dot = NULL,
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
.nrows = 1,
|
||||
.ncols = 4,
|
||||
.gemv = ggml_gemv_q4_0_4x4_q8_0,
|
||||
.gemm = ggml_gemm_q4_0_4x4_q8_0,
|
||||
},
|
||||
[GGML_TYPE_Q4_0_4_8] = {
|
||||
.type_name = "q4_0_4x8",
|
||||
.blck_size = QK4_0,
|
||||
.blck_size_interleave = 8,
|
||||
.type_size = sizeof(block_q4_0),
|
||||
.is_quantized = true,
|
||||
.to_float = NULL,
|
||||
.from_float = NULL,
|
||||
.from_float_ref = NULL,
|
||||
.vec_dot = NULL,
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
.nrows = 1,
|
||||
.ncols = 4,
|
||||
.gemv = ggml_gemv_q4_0_4x8_q8_0,
|
||||
.gemm = ggml_gemm_q4_0_4x8_q8_0,
|
||||
},
|
||||
[GGML_TYPE_Q4_0_8_8] = {
|
||||
.type_name = "q4_0_8x8",
|
||||
.blck_size = QK4_0,
|
||||
.blck_size_interleave = 8,
|
||||
.type_size = sizeof(block_q4_0),
|
||||
.is_quantized = true,
|
||||
.to_float = NULL,
|
||||
.from_float = NULL,
|
||||
.from_float_ref = NULL,
|
||||
.vec_dot = NULL,
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
.nrows = 1,
|
||||
.ncols = 8,
|
||||
.gemv = ggml_gemv_q4_0_8x8_q8_0,
|
||||
.gemm = ggml_gemm_q4_0_8x8_q8_0,
|
||||
},
|
||||
[GGML_TYPE_TQ1_0] = {
|
||||
.type_name = "tq1_0",
|
||||
.blck_size = QK_K,
|
||||
|
@ -3578,9 +3530,6 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
|||
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
|
||||
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
||||
}
|
||||
|
@ -4107,7 +4056,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
|||
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
|
||||
/*.name =*/ { 0 },
|
||||
/*.extra =*/ NULL,
|
||||
///*.padding =*/ { 0 },
|
||||
// /*.padding =*/ { 0 },
|
||||
};
|
||||
|
||||
#ifdef __clang__
|
||||
|
@ -9517,9 +9466,6 @@ static void ggml_compute_forward_add(
|
|||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
{
|
||||
ggml_compute_forward_add_q_f32(params, dst);
|
||||
} break;
|
||||
|
@ -9897,9 +9843,6 @@ static void ggml_compute_forward_add1(
|
|||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
{
|
||||
ggml_compute_forward_add1_q_f32(params, dst);
|
||||
} break;
|
||||
|
@ -10027,9 +9970,6 @@ static void ggml_compute_forward_acc(
|
|||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
|
@ -13093,9 +13033,6 @@ static void ggml_compute_forward_out_prod(
|
|||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
{
|
||||
ggml_compute_forward_out_prod_q_f32(params, dst);
|
||||
} break;
|
||||
|
@ -13283,9 +13220,6 @@ static void ggml_compute_forward_set(
|
|||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
|
@ -13547,9 +13481,6 @@ static void ggml_compute_forward_get_rows(
|
|||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
{
|
||||
ggml_compute_forward_get_rows_q(params, dst);
|
||||
} break;
|
||||
|
@ -14139,9 +14070,6 @@ static void ggml_compute_forward_clamp(
|
|||
case GGML_TYPE_IQ3_S:
|
||||
case GGML_TYPE_IQ2_S:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
|
@ -21941,9 +21869,6 @@ size_t ggml_quantize_chunk(
|
|||
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
size_t elemsize = sizeof(ggml_fp16_t);
|
||||
|
|
|
@ -165,18 +165,18 @@ extern "C" {
|
|||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors, 1 bit quantization
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors, 1 bit quantization
|
||||
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // removed from gguf files, use Q4_0 and runtime repack
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // removed from gguf files, use Q4_0 and runtime repack
|
||||
// LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // removed from gguf files, use Q4_0 and runtime repack
|
||||
LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
|
||||
|
||||
|
|
297
src/llama.cpp
297
src/llama.cpp
|
@ -3560,16 +3560,26 @@ static bool is_dtype_exist(struct model_params * n_params, enum ggml_type dtype)
|
|||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
return true;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return n_params->layer_q2k > 0 || n_params->output_q2k > 0;
|
||||
case GGML_TYPE_Q4_K:
|
||||
return n_params->layer_q4k > 0 || n_params->output_q4k > 0;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return n_params->layer_q50 > 0 || n_params->output_q50 > 0;
|
||||
return n_params->layer_q4k > 0 || n_params->output_q4k > 0;
|
||||
case GGML_TYPE_Q5_K:
|
||||
return n_params->layer_q5k > 0 || n_params->output_q5k > 0;
|
||||
return n_params->layer_q5k > 0 || n_params->output_q5k > 0;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return n_params->layer_q6k > 0 || n_params->output_q6k > 0;
|
||||
return n_params->layer_q6k > 0 || n_params->output_q6k > 0;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
return n_params->layer_iq2xxs > 0 || n_params->output_iq2xxs > 0;
|
||||
case GGML_TYPE_Q5_0:
|
||||
return n_params->layer_q50 > 0 || n_params->output_q50 > 0;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return n_params->layer_q80 > 0 || n_params->output_q80 > 0;
|
||||
return n_params->layer_q80 > 0 || n_params->output_q80 > 0;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
return n_params->layer_iq1s > 0 || n_params->output_iq1s > 0;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return n_params->layer_iq4nl > 0 || n_params->output_iq4nl > 0;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
return n_params->layer_iq1m > 0 || n_params->output_iq1m > 0;
|
||||
default:
|
||||
throw std::runtime_error("Unrecognized data type\n");
|
||||
}
|
||||
|
@ -3650,18 +3660,18 @@ void llama_profile_device(
|
|||
dev_info->gpu_props.cuda_flops_f16_f32 = device_cuda_flops (model, GGML_TYPE_F16, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_Q2_K)) {
|
||||
dev_info->cpu_props.flops_q2k_f32 = device_cpu_flops (model, GGML_TYPE_Q2_K, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_q2k_f32 = device_metal_flops(model, GGML_TYPE_Q2_K, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_q2k_f32 = device_cuda_flops (model, GGML_TYPE_Q2_K, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_Q4_K)) {
|
||||
dev_info->cpu_props.flops_q4k_f32 = device_cpu_flops (model, GGML_TYPE_Q4_K, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_q4k_f32 = device_metal_flops(model, GGML_TYPE_Q4_K, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_q4k_f32 = device_cuda_flops (model, GGML_TYPE_Q4_K, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_Q5_0)) {
|
||||
dev_info->cpu_props.flops_q50_f32 = device_cpu_flops (model, GGML_TYPE_Q5_0, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_q50_f32 = device_metal_flops(model, GGML_TYPE_Q5_0, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_q50_f32 = device_cuda_flops (model, GGML_TYPE_Q5_0, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_Q5_K)) {
|
||||
dev_info->cpu_props.flops_q5k_f32 = device_cpu_flops (model, GGML_TYPE_Q5_K, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_q5k_f32 = device_metal_flops(model, GGML_TYPE_Q5_K, GGML_TYPE_F32);
|
||||
|
@ -3674,11 +3684,42 @@ void llama_profile_device(
|
|||
dev_info->gpu_props.cuda_flops_q6k_f32 = device_cuda_flops (model, GGML_TYPE_Q6_K, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_IQ2_XXS)) {
|
||||
dev_info->cpu_props.flops_iq2xxs_f32 = device_cpu_flops (model, GGML_TYPE_IQ2_XXS, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_iq2xxs_f32= device_metal_flops(model, GGML_TYPE_IQ2_XXS, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_iq2xxs_f32 = device_cuda_flops (model, GGML_TYPE_IQ2_XXS, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_Q5_0)) {
|
||||
dev_info->cpu_props.flops_q50_f32 = device_cpu_flops (model, GGML_TYPE_Q5_0, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_q50_f32 = device_metal_flops(model, GGML_TYPE_Q5_0, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_q50_f32 = device_cuda_flops (model, GGML_TYPE_Q5_0, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_Q8_0)) {
|
||||
dev_info->cpu_props.flops_q80_f32 = device_cpu_flops (model, GGML_TYPE_Q8_0, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_q80_f32 = device_metal_flops(model, GGML_TYPE_Q8_0, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_q80_f32 = device_cuda_flops (model, GGML_TYPE_Q8_0, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_IQ1_S)) {
|
||||
dev_info->cpu_props.flops_iq1s_f32 = device_cpu_flops (model, GGML_TYPE_IQ1_S, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_iq1s_f32= device_metal_flops(model, GGML_TYPE_IQ1_S, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_iq1s_f32 = device_cuda_flops (model, GGML_TYPE_IQ1_S, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_IQ4_NL)) {
|
||||
dev_info->cpu_props.flops_iq4nl_f32 = device_cpu_flops (model, GGML_TYPE_IQ4_NL, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_iq4nl_f32= device_metal_flops(model, GGML_TYPE_IQ4_NL, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_iq4nl_f32 = device_cuda_flops (model, GGML_TYPE_IQ4_NL, GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
if (is_dtype_exist(n_params, GGML_TYPE_IQ1_M)) {
|
||||
dev_info->cpu_props.flops_iq1m_f32 = device_cpu_flops (model, GGML_TYPE_IQ1_M, GGML_TYPE_F32, n_threads);
|
||||
dev_info->gpu_props.metal_flops_iq1m_f32= device_metal_flops(model, GGML_TYPE_IQ1_M, GGML_TYPE_F32);
|
||||
dev_info->gpu_props.cuda_flops_iq1m_f32 = device_cuda_flops (model, GGML_TYPE_IQ1_M, GGML_TYPE_F32);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t llama_dev_buffer_type(struct llama_model * model, int device) {
|
||||
|
@ -4844,9 +4885,7 @@ struct llama_model_loader {
|
|||
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
|
||||
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
|
||||
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
|
||||
case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
|
||||
case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
|
||||
case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
|
||||
|
||||
default:
|
||||
{
|
||||
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
|
||||
|
@ -5654,9 +5693,6 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8";
|
||||
|
||||
default: return "unknown, may not work";
|
||||
}
|
||||
|
@ -18997,10 +19033,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
|
||||
new_type == GGML_TYPE_Q4_0_8_8) {
|
||||
new_type = GGML_TYPE_Q4_0;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
|
@ -19323,9 +19355,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
|
||||
|
||||
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
||||
}
|
||||
|
@ -19646,14 +19675,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
f32_data = (float *) f32_conv_buf.data();
|
||||
}
|
||||
|
||||
int chunk_size_multiplier = 1;
|
||||
if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
|
||||
if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
|
||||
else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
|
||||
if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
|
||||
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
|
||||
fflush(stdout);
|
||||
|
||||
|
@ -19666,8 +19687,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
const int64_t nrows = tensor->ne[1];
|
||||
|
||||
static const int64_t min_chunk_size = 32 * 512;
|
||||
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
|
||||
chunk_size_multiplier;
|
||||
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row));
|
||||
|
||||
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
|
||||
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
|
||||
|
@ -21049,25 +21069,40 @@ static void count_n_flops(struct model_flops * n_flops, enum ggml_type dtype, en
|
|||
case PROFILER_LAYER_OUTPUT:
|
||||
switch (dtype) {
|
||||
case GGML_TYPE_F32:
|
||||
n_flops->output_f32_f32 += n;
|
||||
n_flops->output_f32_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
n_flops->output_f16_f32 += n;
|
||||
n_flops->output_f16_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
n_flops->output_q2k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
n_flops->output_q4k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_flops->output_q50_f32 += n;
|
||||
n_flops->output_q4k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
n_flops->output_q5k_f32 += n;
|
||||
n_flops->output_q5k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
n_flops->output_q6k_f32 += n;
|
||||
n_flops->output_q6k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
n_flops->output_iq2xxs_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_flops->output_q50_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
n_flops->output_q80_f32 += n;
|
||||
n_flops->output_q80_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
n_flops->output_iq1s_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
n_flops->output_iq4nl_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
n_flops->output_iq1m_f32 += n;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Unrecognized weight type in PROFILER_LAYER_OUTPUT\n");
|
||||
|
@ -21075,27 +21110,42 @@ static void count_n_flops(struct model_flops * n_flops, enum ggml_type dtype, en
|
|||
break;
|
||||
|
||||
case PROFILER_LAYER_BACKEND:
|
||||
switch (dtype) {
|
||||
switch (dtype) {
|
||||
case GGML_TYPE_F32:
|
||||
n_flops->layer_f32_f32 += n;
|
||||
n_flops->layer_f32_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
n_flops->layer_f16_f32 += n;
|
||||
n_flops->layer_f16_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
n_flops->layer_q2k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
n_flops->layer_q4k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_flops->layer_q50_f32 += n;
|
||||
n_flops->layer_q4k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
n_flops->layer_q5k_f32 += n;
|
||||
n_flops->layer_q5k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
n_flops->layer_q6k_f32 += n;
|
||||
n_flops->layer_q6k_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
n_flops->layer_iq2xxs_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_flops->layer_q50_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
n_flops->layer_q80_f32 += n;
|
||||
n_flops->layer_q80_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
n_flops->layer_iq1s_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
n_flops->layer_iq4nl_f32 += n;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
n_flops->layer_iq1m_f32 += n;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Unrecognized weight type in PROFILER_LAYER_BACKEND\n");
|
||||
|
@ -21113,25 +21163,40 @@ static void count_n_params(struct model_params * n_params, enum ggml_type dtype,
|
|||
case PROFILER_LAYER_INPUT:
|
||||
switch (dtype) {
|
||||
case GGML_TYPE_F32:
|
||||
n_params->input_f32 += n_i64t;
|
||||
n_params->input_f32 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
n_params->input_f16 += n_i64t;
|
||||
n_params->input_f16 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
n_params->input_q2k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
n_params->input_q4k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_params->input_q50 += n_i64t;
|
||||
n_params->input_q4k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
n_params->input_q5k += n_i64t;
|
||||
n_params->input_q5k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
n_params->input_q6k += n_i64t;
|
||||
n_params->input_q6k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
n_params->input_iq2xxs += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_params->input_q50 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
n_params->input_q80 += n_i64t;
|
||||
n_params->input_q80 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
n_params->input_iq1s += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
n_params->input_iq4nl += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
n_params->input_iq1m += n_i64t;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Unrecognized weight type in PROFILER_LAYER_OUTPUT\n");
|
||||
|
@ -21141,25 +21206,40 @@ static void count_n_params(struct model_params * n_params, enum ggml_type dtype,
|
|||
case PROFILER_LAYER_OUTPUT:
|
||||
switch (dtype) {
|
||||
case GGML_TYPE_F32:
|
||||
n_params->output_f32 += n_i64t;
|
||||
n_params->output_f32 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
n_params->output_f16 += n_i64t;
|
||||
n_params->output_f16 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
n_params->output_q2k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
n_params->output_q4k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_params->output_q50 += n_i64t;
|
||||
n_params->output_q4k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
n_params->output_q5k += n_i64t;
|
||||
n_params->output_q5k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
n_params->output_q6k += n_i64t;
|
||||
n_params->output_q6k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
n_params->output_iq2xxs += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_params->output_q50 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
n_params->output_q80 += n_i64t;
|
||||
n_params->output_q80 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
n_params->output_iq1s += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
n_params->output_iq4nl += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
n_params->output_iq1m += n_i64t;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Unrecognized weight type in PROFILER_LAYER_OUTPUT\n");
|
||||
|
@ -21169,25 +21249,40 @@ static void count_n_params(struct model_params * n_params, enum ggml_type dtype,
|
|||
case PROFILER_LAYER_BACKEND:
|
||||
switch (dtype) {
|
||||
case GGML_TYPE_F32:
|
||||
n_params->layer_f32 += n_i64t;
|
||||
n_params->layer_f32 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
n_params->layer_f16 += n_i64t;
|
||||
n_params->layer_f16 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
n_params->layer_q2k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
n_params->layer_q4k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_params->layer_q50 += n_i64t;
|
||||
n_params->layer_q4k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
n_params->layer_q5k += n_i64t;
|
||||
n_params->layer_q5k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
n_params->layer_q6k += n_i64t;
|
||||
n_params->layer_q6k += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
n_params->layer_iq2xxs += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
n_params->layer_q50 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
n_params->layer_q80 += n_i64t;
|
||||
n_params->layer_q80 += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
n_params->layer_iq1s += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
n_params->layer_iq4nl += n_i64t;
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
n_params->layer_iq1m += n_i64t;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Unrecognized weight type in PROFILER_LAYER_BACKEND\n");
|
||||
|
@ -21477,23 +21572,33 @@ void llama_model_n_flops(
|
|||
}
|
||||
|
||||
// use average values instead of total values
|
||||
n_flops->layer_f32_f32 = static_cast<int64_t>((double)n_flops->layer_f32_f32 / (double)n_layer);
|
||||
n_flops->layer_f16_f32 = static_cast<int64_t>((double)n_flops->layer_f16_f32 / (double)n_layer);
|
||||
n_flops->layer_q4k_f32 = static_cast<int64_t>((double)n_flops->layer_q4k_f32 / (double)n_layer);
|
||||
n_flops->layer_q50_f32 = static_cast<int64_t>((double)n_flops->layer_q50_f32 / (double)n_layer);
|
||||
n_flops->layer_q5k_f32 = static_cast<int64_t>((double)n_flops->layer_q5k_f32 / (double)n_layer);
|
||||
n_flops->layer_q6k_f32 = static_cast<int64_t>((double)n_flops->layer_q6k_f32 / (double)n_layer);
|
||||
n_flops->layer_q80_f32 = static_cast<int64_t>((double)n_flops->layer_q80_f32 / (double)n_layer);
|
||||
n_flops->layer_f32_f32 = static_cast<int64_t>((double)n_flops->layer_f32_f32 / (double)n_layer);
|
||||
n_flops->layer_f16_f32 = static_cast<int64_t>((double)n_flops->layer_f16_f32 / (double)n_layer);
|
||||
n_flops->layer_q2k_f32 = static_cast<int64_t>((double)n_flops->layer_q2k_f32 / (double)n_layer);
|
||||
n_flops->layer_q4k_f32 = static_cast<int64_t>((double)n_flops->layer_q4k_f32 / (double)n_layer);
|
||||
n_flops->layer_q5k_f32 = static_cast<int64_t>((double)n_flops->layer_q5k_f32 / (double)n_layer);
|
||||
n_flops->layer_q6k_f32 = static_cast<int64_t>((double)n_flops->layer_q6k_f32 / (double)n_layer);
|
||||
n_flops->layer_iq2xxs_f32 = static_cast<int64_t>((double)n_flops->layer_iq2xxs_f32 / (double)n_layer);
|
||||
n_flops->layer_q50_f32 = static_cast<int64_t>((double)n_flops->layer_q50_f32 / (double)n_layer);
|
||||
n_flops->layer_q80_f32 = static_cast<int64_t>((double)n_flops->layer_q80_f32 / (double)n_layer);
|
||||
n_flops->layer_iq1s_f32 = static_cast<int64_t>((double)n_flops->layer_iq1s_f32 / (double)n_layer);
|
||||
n_flops->layer_iq4nl_f32 = static_cast<int64_t>((double)n_flops->layer_iq4nl_f32 / (double)n_layer);
|
||||
n_flops->layer_iq1m_f32 = static_cast<int64_t>((double)n_flops->layer_iq1m_f32 / (double)n_layer);
|
||||
|
||||
n_params->layer_f32 = static_cast<int64_t>((double)n_params->layer_f32 / (double)n_layer);
|
||||
n_params->layer_f16 = static_cast<int64_t>((double)n_params->layer_f16 / (double)n_layer);
|
||||
n_params->layer_q4k = static_cast<int64_t>((double)n_params->layer_q4k / (double)n_layer);
|
||||
n_params->layer_q50 = static_cast<int64_t>((double)n_params->layer_q50 / (double)n_layer);
|
||||
n_params->layer_q5k = static_cast<int64_t>((double)n_params->layer_q5k / (double)n_layer);
|
||||
n_params->layer_q6k = static_cast<int64_t>((double)n_params->layer_q6k / (double)n_layer);
|
||||
n_params->layer_q80 = static_cast<int64_t>((double)n_params->layer_q80 / (double)n_layer);
|
||||
n_params->layer_f32 = static_cast<int64_t>((double)n_params->layer_f32 / (double)n_layer);
|
||||
n_params->layer_f16 = static_cast<int64_t>((double)n_params->layer_f16 / (double)n_layer);
|
||||
n_params->layer_q2k = static_cast<int64_t>((double)n_params->layer_q2k / (double)n_layer);
|
||||
n_params->layer_q4k = static_cast<int64_t>((double)n_params->layer_q4k / (double)n_layer);
|
||||
n_params->layer_q5k = static_cast<int64_t>((double)n_params->layer_q5k / (double)n_layer);
|
||||
n_params->layer_q6k = static_cast<int64_t>((double)n_params->layer_q6k / (double)n_layer);
|
||||
n_params->layer_iq2xxs = static_cast<int64_t>((double)n_params->layer_iq2xxs / (double)n_layer);
|
||||
n_params->layer_q50 = static_cast<int64_t>((double)n_params->layer_q50 / (double)n_layer);
|
||||
n_params->layer_q80 = static_cast<int64_t>((double)n_params->layer_q80 / (double)n_layer);
|
||||
n_params->layer_iq1s = static_cast<int64_t>((double)n_params->layer_iq1s / (double)n_layer);
|
||||
n_params->layer_iq4nl = static_cast<int64_t>((double)n_params->layer_iq4nl / (double)n_layer);
|
||||
n_params->layer_iq1m = static_cast<int64_t>((double)n_params->layer_iq1m / (double)n_layer);
|
||||
|
||||
n_bytes->nb_layer = static_cast<int64_t>((double)n_bytes->nb_layer / (double)n_layer);
|
||||
n_bytes->nb_layer = static_cast<int64_t>((double)n_bytes->nb_layer / (double)n_layer);
|
||||
|
||||
// reset ml, model, and clear contexts
|
||||
ml->n_created = 0;
|
||||
|
|
Loading…
Add table
Reference in a new issue