mirror of
https://github.com/Lizonghang/prima.cpp.git
synced 2025-09-11 13:14:33 +00:00
improve the computing buffer estimate
This commit is contained in:
parent
0b4ffdfde5
commit
dd589561b4
8 changed files with 87 additions and 34 deletions
|
@ -765,6 +765,13 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||
params.force = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_FORCE"));
|
||||
add_opt(llama_arg(
|
||||
{"--master-priority"}, "N",
|
||||
format("priority to assign workload to the master (default: %f, set 1.01 to use master first, and 0.99 to offload to other devices)", params.master_priority),
|
||||
[](gpt_params & params, const std::string & value) {
|
||||
params.master_priority = std::stof(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_MASTER_PRIORITY"));
|
||||
// #ifdef GGML_USE_METAL
|
||||
// // warn: if the output layer weights are not kept in metal shared memory, its mmap-ed weight data
|
||||
// // could be released by the OS and reloaded repeatedly, which causes additional disk I/O latency.
|
||||
|
|
|
@ -1053,7 +1053,7 @@ static bool assign_layers_to_device(
|
|||
GGML_ASSERT(!is_windows && "Windows is not tested yet\n");
|
||||
|
||||
bool use_gpu = dev.gpu_support.metal || dev.gpu_support.cuda;
|
||||
llama_model_compute_buf_size(&c_cpu[m], &c_gpu[m], model, cparams, use_gpu, m == 0, w[m] * k, n[m] * k);
|
||||
llama_model_compute_buf_size(&c_cpu[m], &c_gpu[m], model, cparams, use_gpu, m == 0, dev_info_set[0].model_bytes, w[m] > n[m]);
|
||||
|
||||
int l_m = w[m] * k; // total number of layers assigned to device m
|
||||
int l_m_gpu = n[m] * k; // number of layers assigned to device m that run on GPU
|
||||
|
@ -1248,10 +1248,8 @@ static bool assign_layers_to_device(
|
|||
return cost * k;
|
||||
}
|
||||
);
|
||||
// apply higher priority to the head device, here 0.99 is a heuristic value
|
||||
// to ensure that small models in homogeneous clusters result in 32:0 partitioning,
|
||||
// rather than 1:31.
|
||||
model.lp_.col_cost_[0] *= 0.99;
|
||||
// apply priority to the head device
|
||||
model.lp_.col_cost_[0] *= 1.0 / cparams.master_priority;
|
||||
|
||||
// define the variable bounds
|
||||
model.lp_.col_lower_ = std::vector<double>(n_world * 2, 0.0);
|
||||
|
@ -1524,7 +1522,7 @@ static bool assign_layers_to_device(
|
|||
for (uint32_t m = 0; m < n_world; ++m) {
|
||||
const device_info & dev = dev_info_set[m];
|
||||
bool use_gpu = dev.gpu_support.metal || dev.gpu_support.cuda;
|
||||
llama_model_compute_buf_size(&c_cpu[m], &c_gpu[m], model, cparams, use_gpu, m == 0, w[m], n[m]);
|
||||
llama_model_compute_buf_size(&c_cpu[m], &c_gpu[m], model, cparams, use_gpu, m == 0, dev_info_set[0].model_bytes);
|
||||
|
||||
if (dev.gpu_support.cuda || dev.gpu_support.metal) {
|
||||
int64_t required_mem = w[m] * b_prime;
|
||||
|
@ -2024,6 +2022,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
cparams.rank = params.rank;
|
||||
cparams.prefetch = params.prefetch;
|
||||
cparams.force = params.force;
|
||||
cparams.master_priority = params.master_priority;
|
||||
cparams.keep_out_in_metal = params.keep_out_in_metal;
|
||||
cparams.n_gpu_layers = params.n_gpu_layers;
|
||||
cparams.n_cycles = params.n_cycles;
|
||||
|
|
|
@ -152,6 +152,7 @@ struct gpt_params {
|
|||
bool prefetch = false; // prefetch layer weights
|
||||
bool keep_out_in_metal = true; // whether to keep output weights in metal memory, true by default
|
||||
bool force = false; // force to start prefetching after computation
|
||||
float master_priority = 1.01; // priority to assign workload to the master (set 1.01 to use master first, and 0.99 to offload to other devices)
|
||||
int32_t gpu_mem = 999.0; // gpu memory to use, in GiB
|
||||
int32_t n_cycles = 0; // number of cycles to output one token
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
|
|
|
@ -1603,10 +1603,10 @@ static float device_disk_access_delay(struct device_info & dev_info, struct llam
|
|||
|
||||
#if defined(GGML_USE_METAL) || defined(GGML_USE_CUDA)
|
||||
llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, true);
|
||||
llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, true, true, n_layers, n_gpu_layers);
|
||||
llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, true, true, n_bytes, n_layers > n_gpu_layers);
|
||||
#else
|
||||
llama_kv_size(&cpu_kv_size, &gpu_kv_size, model, cparams, false);
|
||||
llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, false, true, n_layers, n_gpu_layers);
|
||||
llama_model_compute_buf_size(&cpu_compute_buf, &gpu_compute_buf, model, cparams, false, true, n_bytes, n_layers > n_gpu_layers);
|
||||
#endif
|
||||
|
||||
double cpu_kv_size_gib = static_cast<double>(cpu_kv_size) / 1024.0 / 1024.0 / 1024.0; // convert to GiB
|
||||
|
|
|
@ -293,10 +293,20 @@ struct model_bytes {
|
|||
int64_t nb_layer;
|
||||
int64_t nb_output;
|
||||
|
||||
// used to estimate the compute buffer size
|
||||
int64_t nb_output_w;
|
||||
int64_t nb_attn_norm_w;
|
||||
int64_t nb_ffn_gate_w;
|
||||
int64_t nb_ffn_down_w;
|
||||
|
||||
model_bytes() :
|
||||
nb_input (0),
|
||||
nb_layer (0),
|
||||
nb_output(0) {}
|
||||
nb_input (0),
|
||||
nb_layer (0),
|
||||
nb_output (0),
|
||||
nb_output_w (0),
|
||||
nb_attn_norm_w(0),
|
||||
nb_ffn_gate_w (0),
|
||||
nb_ffn_down_w (0) {}
|
||||
};
|
||||
|
||||
struct disk_props {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue