add f32, f16, q4k_f32, q6k_f32 flops test and fix duplicate inp_embd in subgraphs

This commit is contained in:
Lizonghang 2024-11-23 21:36:34 +04:00
parent 7ee1423006
commit a5ba34169a
3 changed files with 184 additions and 70 deletions

View file

@ -82,7 +82,7 @@ uint32_t device_cpu_cores() {
return core_count; return core_count;
} }
static float device_flops(struct llama_model * model, enum ggml_type dtype, profiler_backend_type btype, int n_threads) { static float device_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t, profiler_backend_type btype, int n_threads) {
const int n_embd = llama_n_embd(model); const int n_embd = llama_n_embd(model);
std::vector<float> matrix_A(n_embd * n_embd, 1.0f); std::vector<float> matrix_A(n_embd * n_embd, 1.0f);
std::vector<float> matrix_B(n_embd * n_embd, 1.0f / n_embd); std::vector<float> matrix_B(n_embd * n_embd, 1.0f / n_embd);
@ -119,8 +119,8 @@ static float device_flops(struct llama_model * model, enum ggml_type dtype, prof
}; };
struct ggml_context * ctx = ggml_init(params); struct ggml_context * ctx = ggml_init(params);
struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, dtype, n_embd, n_embd); struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, src0t, n_embd, n_embd);
struct ggml_tensor * tensor_b = ggml_new_tensor_2d(ctx, dtype, n_embd, n_embd); struct ggml_tensor * tensor_b = ggml_new_tensor_2d(ctx, src1t, n_embd, n_embd);
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
@ -168,27 +168,29 @@ static float device_flops(struct llama_model * model, enum ggml_type dtype, prof
return (float)flops; return (float)flops;
} }
float device_cpu_flops(struct llama_model * model, enum ggml_type dtype, int n_threads) { float device_cpu_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t, int n_threads) {
return device_flops(model, dtype, PROFILER_BACKEND_TYPE_CPU, n_threads); return device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_CPU, n_threads);
} }
float device_metal_flops(struct llama_model * model, enum ggml_type dtype) { float device_metal_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t) {
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
return device_flops(model, dtype, PROFILER_BACKEND_TYPE_METAL, 4); return device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_METAL, 4);
#endif #endif
(void)model; (void)model;
(void)dtype; (void)src0t;
(void)src1t;
return 0.0f; return 0.0f;
} }
float device_cuda_flops(struct llama_model * model, enum ggml_type dtype) { float device_cuda_flops(struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t) {
#ifdef GGML_USE_CUDA #ifdef GGML_USE_CUDA
return device_flops(model, dtype, PROFILER_BACKEND_TYPE_CUDA, 4); return device_flops(model, src0t, src1t, PROFILER_BACKEND_TYPE_CUDA, 4);
#endif #endif
(void)model; (void)model;
(void)dtype; (void)src0t;
(void)src1t;
return 0.0f; return 0.0f;
} }
@ -463,18 +465,30 @@ void device_print_props(struct device_info * dev_info_set, int n, struct llama_m
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| CPU flops (F32, GFLOPS) "); LOG_INF("| CPU flops (F32 x F32, GFLOPS)");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f32); LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f32);
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| CPU flops (F16, GFLOPS) "); LOG_INF("| CPU flops (F16 x F16, GFLOPS)");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f16); LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_f16);
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| CPU flops (Q4K x F32, GFLOPS)");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q4k_f32);
}
LOG_INF("\n");
LOG_INF("| CPU flops (Q6K x F32, GFLOPS)");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].cpu_props.flops_q6k_f32);
}
LOG_INF("\n");
LOG_INF("| Physical Mem Total (GB) "); LOG_INF("| Physical Mem Total (GB) ");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.2f ", dev_info_set[i].memory.total_physical); LOG_INF("| %-10.2f ", dev_info_set[i].memory.total_physical);
@ -577,33 +591,51 @@ void device_print_props(struct device_info * dev_info_set, int n, struct llama_m
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| Metal flops (F32, GFLOPS) "); LOG_INF("| Metal flops (F32xF32, GFLOPS)");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops); LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_f32);
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| CUDA flops (F32, GFLOPS) "); LOG_INF("| Metal flops (F16xF16, GFLOPS)");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_f16);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q4KxF32, GFLOPS)");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q4k_f32);
}
LOG_INF("\n");
LOG_INF("| Metal flops (Q6KxF32, GFLOPS)");
for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.metal_flops_q6k_f32);
}
LOG_INF("\n");
LOG_INF("| CUDA flops (F32xF32, GFLOPS)");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f32); LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f32);
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| CUDA flops (F16, GFLOPS) "); LOG_INF("| CUDA flops (F16xF16, GFLOPS)");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f16); LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_f16);
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| CUDA flops (Q8_0, GFLOPS) "); LOG_INF("| CUDA flops (Q4KxF32, GFLOPS)");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q8); LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q4k_f32);
} }
LOG_INF("\n"); LOG_INF("\n");
LOG_INF("| CUDA flops (Q4_K, GFLOPS) "); LOG_INF("| CUDA flops (Q6KxF32, GFLOPS)");
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q4k); LOG_INF("| %-10.1f ", dev_info_set[i].gpu_props.cuda_flops_q6k_f32);
} }
LOG_INF("\n"); LOG_INF("\n");
@ -660,10 +692,11 @@ size_t serialize(const struct device_info * dev_info, char ** buffer) {
+ gpu_description_len + gpu_description_len
+ sizeof(float) // disk_read_bandwidth + sizeof(float) // disk_read_bandwidth
+ sizeof(uint32_t) // cpu_props.cores + sizeof(uint32_t) // cpu_props.cores
+ sizeof(float) * 2 // cpu_props.flops_f32 and cpu_props.flops_f16 + sizeof(float) * 4 // cpu_props.flops_f32, cpu_props.flops_f16, cpu_props.flops_q4k_f32, cpu_props.flops_q6k_f32
+ sizeof(struct memory_info) + sizeof(struct memory_info)
+ sizeof(struct gpu_support) + sizeof(struct gpu_support)
+ sizeof(float) * 7; // gpu_props.memory_free, gpu_props.memory_total, gpu_props.metal_flops, + sizeof(float) * 10; // gpu_props.memory_free, gpu_props.memory_total,
// gpu_props.metal_flops_f32, gpu_props.metal_flops_f16, gpu_props.metal_flops_q4k_f32, gpu_props.metal_flops_q6k_f32,
// gpu_props.cuda_flops_f32, gpu_props.cuda_flops_f16, gpu_props.cuda_flops_q8, and gpu_props.cuda_flops_q4k // gpu_props.cuda_flops_f32, gpu_props.cuda_flops_f16, gpu_props.cuda_flops_q8, and gpu_props.cuda_flops_q4k
*buffer = (char *)malloc(total_size); *buffer = (char *)malloc(total_size);
@ -712,6 +745,12 @@ size_t serialize(const struct device_info * dev_info, char ** buffer) {
memcpy(ptr, &dev_info->cpu_props.flops_f16, sizeof(float)); memcpy(ptr, &dev_info->cpu_props.flops_f16, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q4k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->cpu_props.flops_q6k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->memory, sizeof(struct memory_info)); memcpy(ptr, &dev_info->memory, sizeof(struct memory_info));
ptr += sizeof(struct memory_info); ptr += sizeof(struct memory_info);
@ -724,7 +763,16 @@ size_t serialize(const struct device_info * dev_info, char ** buffer) {
memcpy(ptr, &dev_info->gpu_props.memory_total, sizeof(float)); memcpy(ptr, &dev_info->gpu_props.memory_total, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops, sizeof(float)); memcpy(ptr, &dev_info->gpu_props.metal_flops_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_f16, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q4k_f32, sizeof(float));
ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.metal_flops_q6k_f32, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_f32, sizeof(float)); memcpy(ptr, &dev_info->gpu_props.cuda_flops_f32, sizeof(float));
@ -733,10 +781,10 @@ size_t serialize(const struct device_info * dev_info, char ** buffer) {
memcpy(ptr, &dev_info->gpu_props.cuda_flops_f16, sizeof(float)); memcpy(ptr, &dev_info->gpu_props.cuda_flops_f16, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q8, sizeof(float)); memcpy(ptr, &dev_info->gpu_props.cuda_flops_q4k_f32, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(ptr, &dev_info->gpu_props.cuda_flops_q4k, sizeof(float)); memcpy(ptr, &dev_info->gpu_props.cuda_flops_q6k_f32, sizeof(float));
// no need to synchronize model flops // no need to synchronize model flops
return total_size; return total_size;
@ -802,6 +850,12 @@ void deserialize(const char * buffer, struct device_info * dev_info) {
memcpy(&dev_info->cpu_props.flops_f16, ptr, sizeof(float)); memcpy(&dev_info->cpu_props.flops_f16, ptr, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q4k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->cpu_props.flops_q6k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->memory, ptr, sizeof(struct memory_info)); memcpy(&dev_info->memory, ptr, sizeof(struct memory_info));
ptr += sizeof(struct memory_info); ptr += sizeof(struct memory_info);
@ -814,7 +868,16 @@ void deserialize(const char * buffer, struct device_info * dev_info) {
memcpy(&dev_info->gpu_props.memory_total, ptr, sizeof(float)); memcpy(&dev_info->gpu_props.memory_total, ptr, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops, ptr, sizeof(float)); memcpy(&dev_info->gpu_props.metal_flops_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_f16, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q4k_f32, ptr, sizeof(float));
ptr += sizeof(float);
memcpy(&dev_info->gpu_props.metal_flops_q6k_f32, ptr, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_f32, ptr, sizeof(float)); memcpy(&dev_info->gpu_props.cuda_flops_f32, ptr, sizeof(float));
@ -823,10 +886,10 @@ void deserialize(const char * buffer, struct device_info * dev_info) {
memcpy(&dev_info->gpu_props.cuda_flops_f16, ptr, sizeof(float)); memcpy(&dev_info->gpu_props.cuda_flops_f16, ptr, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q8, ptr, sizeof(float)); memcpy(&dev_info->gpu_props.cuda_flops_q4k_f32, ptr, sizeof(float));
ptr += sizeof(float); ptr += sizeof(float);
memcpy(&dev_info->gpu_props.cuda_flops_q4k, ptr, sizeof(float)); memcpy(&dev_info->gpu_props.cuda_flops_q6k_f32, ptr, sizeof(float));
// no need to synchronize model flops // no need to synchronize model flops
} }

View file

@ -10,9 +10,17 @@ struct cpu_props {
uint32_t cores; uint32_t cores;
float flops_f32; // in GFLOPS float flops_f32; // in GFLOPS
float flops_f16; // in GFLOPS float flops_f16; // in GFLOPS
float flops_q4k_f32; // in GFLOPS
float flops_q6k_f32; // in GFLOPS
cpu_props() cpu_props() :
: name(""), description(""), cores(0), flops_f32(0.0f), flops_f16(0.0f) {} name(""),
description(""),
cores(0),
flops_f32 (0.0f),
flops_f16 (0.0f),
flops_q4k_f32(0.0f),
flops_q6k_f32(0.0f) {}
}; };
struct memory_info { struct memory_info {
@ -22,8 +30,12 @@ struct memory_info {
float available_swap; // in GB float available_swap; // in GB
float bandwidth; // in GB/s float bandwidth; // in GB/s
memory_info() memory_info() :
: total_physical(0.0f), available_physical(0.0f), total_swap(0.0f), available_swap(0.0f), bandwidth(0.0f) {} total_physical (0.0f),
available_physical(0.0f),
total_swap (0.0f),
available_swap (0.0f),
bandwidth (0.0f) {}
}; };
struct gpu_support { struct gpu_support {
@ -35,8 +47,14 @@ struct gpu_support {
bool blas; bool blas;
bool sycl; bool sycl;
gpu_support() gpu_support() :
: metal(false), cuda(false), vulkan(false), kompute(false), gpublas(false), blas(false), sycl(false) {} metal (false),
cuda (false),
vulkan (false),
kompute(false),
gpublas(false),
blas (false),
sycl (false) {}
}; };
struct gpu_props { struct gpu_props {
@ -44,14 +62,28 @@ struct gpu_props {
const char * description; const char * description;
float memory_free; // in GB float memory_free; // in GB
float memory_total; // in GB float memory_total; // in GB
float metal_flops; // in GFLOPS float metal_flops_f32; // in GFLOPS
float metal_flops_f16; // in GFLOPS
float metal_flops_q4k_f32; // in GFLOPS
float metal_flops_q6k_f32; // in GFLOPS
float cuda_flops_f32; // in GFLOPS float cuda_flops_f32; // in GFLOPS
float cuda_flops_f16; // in GFLOPS float cuda_flops_f16; // in GFLOPS
float cuda_flops_q8; // in GFLOPS float cuda_flops_q4k_f32; // in GFLOPS
float cuda_flops_q4k; // in GFLOPS float cuda_flops_q6k_f32; // in GFLOPS
gpu_props() gpu_props() :
: name(""), description(""), memory_free(0.0f), memory_total(0.0f), metal_flops(0.0f), cuda_flops_f32(0.0f), cuda_flops_f16(0.0f), cuda_flops_q8(0.0f), cuda_flops_q4k(0.0f) {} name(""),
description(""),
memory_free (0.0f),
memory_total (0.0f),
metal_flops_f32 (0.0f),
metal_flops_f16 (0.0f),
metal_flops_q4k_f32(0.0f),
metal_flops_q6k_f32(0.0f),
cuda_flops_f32 (0.0f),
cuda_flops_f16 (0.0f),
cuda_flops_q4k_f32 (0.0f),
cuda_flops_q6k_f32 (0.0f) {}
}; };
struct model_flops { struct model_flops {
@ -65,8 +97,13 @@ struct model_flops {
int64_t output_params; int64_t output_params;
int64_t layer_params; int64_t layer_params;
model_flops() model_flops() :
: input_flops(0), output_flops(0), layer_flops(0), input_params(0), output_params(0), layer_params(0) {} input_flops (0),
output_flops (0),
layer_flops (0),
input_params (0),
output_params(0),
layer_params (0) {}
}; };
struct device_info { struct device_info {
@ -79,8 +116,15 @@ struct device_info {
struct gpu_props gpu_props; struct gpu_props gpu_props;
struct model_flops model_flops; struct model_flops model_flops;
device_info() device_info() :
: rank(0), device_name(""), disk_read_bandwidth(0.0f), cpu_props(), memory(), gpu_support(), gpu_props(), model_flops() {} rank(0),
device_name(""),
disk_read_bandwidth(0.0f),
cpu_props(),
memory(),
gpu_support(),
gpu_props(),
model_flops() {}
}; };
enum profiler_backend_type { enum profiler_backend_type {
@ -92,9 +136,9 @@ enum profiler_backend_type {
const char * device_name(void); const char * device_name(void);
uint32_t device_cpu_cores (void); uint32_t device_cpu_cores (void);
float device_cpu_flops (struct llama_model * model, enum ggml_type dtype, int n_threads); float device_cpu_flops (struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t, int n_threads);
float device_metal_flops (struct llama_model * model, enum ggml_type dtype); float device_metal_flops (struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t);
float device_cuda_flops (struct llama_model * model, enum ggml_type dtype); float device_cuda_flops (struct llama_model * model, enum ggml_type src0t, enum ggml_type src1t);
uint64_t device_physical_memory(bool available); uint64_t device_physical_memory(bool available);
uint64_t device_swap_memory (bool available); uint64_t device_swap_memory (bool available);
uint64_t device_disk_read_bw (const char * test_file, size_t buffer_size_mb); uint64_t device_disk_read_bw (const char * test_file, size_t buffer_size_mb);

View file

@ -3549,8 +3549,10 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_
void llama_profile_device(device_info * dev_info, struct llama_model * model, llama_model_loader * ml, const char * test_file, int n_threads) { void llama_profile_device(device_info * dev_info, struct llama_model * model, llama_model_loader * ml, const char * test_file, int n_threads) {
dev_info->device_name = device_name(); dev_info->device_name = device_name();
dev_info->cpu_props.cores = device_cpu_cores(); dev_info->cpu_props.cores = device_cpu_cores();
dev_info->cpu_props.flops_f32 = device_cpu_flops(model, GGML_TYPE_F32, n_threads); dev_info->cpu_props.flops_f32 = device_cpu_flops(model, GGML_TYPE_F32, GGML_TYPE_F32, n_threads);
dev_info->cpu_props.flops_f16 = device_cpu_flops(model, GGML_TYPE_F16, n_threads); dev_info->cpu_props.flops_f16 = device_cpu_flops(model, GGML_TYPE_F16, GGML_TYPE_F16, n_threads);
dev_info->cpu_props.flops_q4k_f32 = device_cpu_flops(model, GGML_TYPE_Q4_K, GGML_TYPE_F32, n_threads);
dev_info->cpu_props.flops_q6k_f32 = device_cpu_flops(model, GGML_TYPE_Q6_K, GGML_TYPE_F32, n_threads);
dev_info->memory.total_physical = round(device_physical_memory(false) / (double)(1 << 30) * 100) / 100; dev_info->memory.total_physical = round(device_physical_memory(false) / (double)(1 << 30) * 100) / 100;
dev_info->memory.available_physical = round(device_physical_memory(true) / (double)(1 << 30) * 100) / 100; dev_info->memory.available_physical = round(device_physical_memory(true) / (double)(1 << 30) * 100) / 100;
@ -3580,11 +3582,14 @@ void llama_profile_device(device_info * dev_info, struct llama_model * model, ll
dev_info->gpu_props.description = gpu_props.description; dev_info->gpu_props.description = gpu_props.description;
dev_info->gpu_props.memory_free = round(gpu_props.memory_free / (double)(1 << 30) * 100) / 100; dev_info->gpu_props.memory_free = round(gpu_props.memory_free / (double)(1 << 30) * 100) / 100;
dev_info->gpu_props.memory_total = round(gpu_props.memory_total / (double)(1 << 30) * 100) / 100; dev_info->gpu_props.memory_total = round(gpu_props.memory_total / (double)(1 << 30) * 100) / 100;
dev_info->gpu_props.metal_flops = device_metal_flops(model, GGML_TYPE_F32); dev_info->gpu_props.metal_flops_f32 = device_metal_flops(model, GGML_TYPE_F32, GGML_TYPE_F32);
dev_info->gpu_props.cuda_flops_f32 = device_cuda_flops(model, GGML_TYPE_F32); dev_info->gpu_props.metal_flops_f16 = device_metal_flops(model, GGML_TYPE_F16, GGML_TYPE_F16);
dev_info->gpu_props.cuda_flops_f16 = device_cuda_flops(model, GGML_TYPE_F16); dev_info->gpu_props.metal_flops_q4k_f32 = device_metal_flops(model, GGML_TYPE_Q4_K, GGML_TYPE_F32);
dev_info->gpu_props.cuda_flops_q8 = device_cuda_flops(model, GGML_TYPE_Q8_0); dev_info->gpu_props.metal_flops_q6k_f32 = device_metal_flops(model, GGML_TYPE_Q6_K, GGML_TYPE_F32);
dev_info->gpu_props.cuda_flops_q4k = device_cuda_flops(model, GGML_TYPE_Q4_K); dev_info->gpu_props.cuda_flops_f32 = device_cuda_flops (model, GGML_TYPE_F32, GGML_TYPE_F32);
dev_info->gpu_props.cuda_flops_f16 = device_cuda_flops (model, GGML_TYPE_F16, GGML_TYPE_F16);
dev_info->gpu_props.cuda_flops_q4k_f32 = device_cuda_flops (model, GGML_TYPE_Q4_K, GGML_TYPE_F32);
dev_info->gpu_props.cuda_flops_q6k_f32 = device_cuda_flops (model, GGML_TYPE_Q6_K, GGML_TYPE_F32);
if (dev_info->rank == 0) { if (dev_info->rank == 0) {
struct model_flops * ffo = &dev_info->model_flops; struct model_flops * ffo = &dev_info->model_flops;
@ -10687,7 +10692,9 @@ struct llm_build_context {
// build the input layer as a seperate subgraph // build the input layer as a seperate subgraph
ggml_build_forward_expand(sub_gf, inpL); ggml_build_forward_expand(sub_gf, inpL);
sub_gfs.push_back(sub_gf); sub_gfs.push_back(sub_gf);
sub_gf = nullptr; sub_gf = nullptr;
inpL = nullptr;
} }
// inpB - contains the output embedding from other nodes // inpB - contains the output embedding from other nodes