mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 12:40:02 +00:00
1156 lines
No EOL
52 KiB
Python
1156 lines
No EOL
52 KiB
Python
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
# This file was automatically generated from src/transformers/models/deepseek_v3/modular_deepseek_v3.py.
|
|
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
# the file from the modular. If any change should be done, please apply the change to the
|
|
# modular_deepseek_v3.py file directly. One of our CI enforces this.
|
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
import math
|
|
from typing import Callable, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from transformers.activations import ACT2FN
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
from transformers.generation import GenerationMixin
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
# from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
|
from ktransformers.util.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
|
from transformers.modeling_utils import PreTrainedModel # ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
# from transformers.processing_utils import Unpack
|
|
from transformers.utils import (
|
|
# LossKwargs,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
from .configuration_deepseek_v3 import DeepseekV3Config
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
_CONFIG_FOR_DOC = "DeepseekV3Config"
|
|
|
|
|
|
class DeepseekV3RMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
DeepseekV3RMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
def extra_repr(self):
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
|
|
|
|
class DeepseekV3RotaryEmbedding(nn.Module):
|
|
def __init__(self, config: DeepseekV3Config, device=None):
|
|
super().__init__()
|
|
# BC: "rope_type" was originally "type"
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
|
else:
|
|
self.rope_type = "default"
|
|
self.max_seq_len_cached = config.max_position_embeddings
|
|
self.original_max_seq_len = config.max_position_embeddings
|
|
|
|
self.config = config
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self.original_inv_freq = self.inv_freq
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device):
|
|
"""
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
|
1 - growing beyond the cached sequence length (allow scaling)
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
|
"""
|
|
seq_len = torch.max(position_ids) + 1
|
|
if seq_len > self.max_seq_len_cached: # growth
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
|
# This .to() is needed if the model has been moved to a device after being initialized (because
|
|
# the buffer is automatically moved, but not the original copy)
|
|
self.original_inv_freq = self.original_inv_freq.to(device)
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
|
self.max_seq_len_cached = self.original_max_seq_len
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids):
|
|
if "dynamic" in self.rope_type:
|
|
self._dynamic_frequency_update(position_ids, device=x.device)
|
|
|
|
# Core RoPE block
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()
|
|
sin = emb.sin()
|
|
|
|
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
|
cos = cos * self.attention_scaling
|
|
sin = sin * self.attention_scaling
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
|
|
class DeepseekV3MLP(nn.Module):
|
|
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
|
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, x):
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
return down_proj
|
|
|
|
|
|
class DeepseekV3TopkRouter(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.top_k = config.num_experts_per_tok
|
|
self.n_routed_experts = config.n_routed_experts
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
self.n_group = config.n_group
|
|
self.topk_group = config.topk_group
|
|
|
|
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, config.hidden_size)))
|
|
self.e_score_correction_bias = nn.Parameter(torch.empty((self.n_routed_experts)))
|
|
|
|
def forward(self, hidden_states):
|
|
batch_size, seq_length = hidden_states.shape[:-1]
|
|
hidden_states = hidden_states.view(-1, self.config.hidden_size)
|
|
router_logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32))
|
|
|
|
scores = router_logits.sigmoid()
|
|
scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0)
|
|
group_scores = (
|
|
scores_for_choice.view(-1, self.n_group, self.n_routed_experts // self.n_group)
|
|
.topk(2, dim=-1)[0]
|
|
.sum(dim=-1)
|
|
) # [n, n_group]
|
|
group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] # [n, top_k_group]
|
|
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
|
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
|
score_mask = (
|
|
group_mask.unsqueeze(-1)
|
|
.expand(batch_size * seq_length, self.n_group, self.n_routed_experts // self.n_group)
|
|
.reshape(-1, self.n_routed_experts)
|
|
) # [n, e]
|
|
scores_for_choice = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
|
_, topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)
|
|
topk_weights = scores.gather(1, topk_indices)
|
|
denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20
|
|
topk_weights /= denominator
|
|
topk_weights = topk_weights * self.routed_scaling_factor # must multiply the scaling factor
|
|
return topk_indices, topk_weights, router_logits
|
|
|
|
|
|
class DeepseekV3MoE(nn.Module):
|
|
"""
|
|
A mixed expert module containing shared experts.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.experts = nn.ModuleList(
|
|
[
|
|
DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size)
|
|
for _ in range(config.n_routed_experts)
|
|
]
|
|
)
|
|
self.gate = DeepseekV3TopkRouter(config)
|
|
self.shared_experts = DeepseekV3MLP(config=config, intermediate_size=config.moe_intermediate_size)
|
|
|
|
def forward(self, hidden_states):
|
|
residuals = hidden_states
|
|
orig_shape = hidden_states.shape
|
|
topk_indices, topk_weights, router_logits = self.gate(hidden_states)
|
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
|
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
|
|
hidden_states = hidden_states + self.shared_experts(residuals)
|
|
return hidden_states, router_logits
|
|
|
|
def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor):
|
|
final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype)
|
|
expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=len(self.experts))
|
|
expert_mask = expert_mask.permute(2, 0, 1)
|
|
|
|
for expert_idx in range(len(self.experts)):
|
|
expert = self.experts[expert_idx]
|
|
mask = expert_mask[expert_idx]
|
|
token_indices, weight_indices = torch.where(mask)
|
|
|
|
if token_indices.numel() > 0:
|
|
expert_weights = topk_weights[token_indices, weight_indices]
|
|
expert_input = hidden_states[token_indices]
|
|
expert_output = expert(expert_input)
|
|
weighted_output = expert_output * expert_weights.unsqueeze(-1)
|
|
final_hidden_states.index_add_(0, token_indices, weighted_output)
|
|
return final_hidden_states.type(hidden_states.dtype)
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
|
|
Args:
|
|
q (`torch.Tensor`): The query tensor.
|
|
k (`torch.Tensor`): The key tensor.
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
position_ids (`torch.Tensor`, *optional*):
|
|
Deprecated and unused.
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
Returns:
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
"""
|
|
cos = cos.unsqueeze(unsqueeze_dim)
|
|
sin = sin.unsqueeze(unsqueeze_dim)
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
def eager_attention_forward(
|
|
module: nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor],
|
|
scaling: float,
|
|
dropout: float = 0.0,
|
|
**kwargs,
|
|
):
|
|
key_states = repeat_kv(key, module.num_key_value_groups)
|
|
value_states = repeat_kv(value, module.num_key_value_groups)
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
|
if attention_mask is not None:
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
attn_weights = attn_weights + causal_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
return attn_output, attn_weights
|
|
|
|
|
|
def yarn_get_mscale(scale=1, mscale=1):
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * mscale * math.log(scale) + 1.0
|
|
|
|
|
|
class DeepseekV3Attention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: DeepseekV3Config, layer_idx: int):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
|
self.attention_dropout = config.attention_dropout
|
|
self.num_heads = config.num_attention_heads
|
|
self.rope_theta = config.rope_theta
|
|
self.q_lora_rank = config.q_lora_rank
|
|
self.qk_rope_head_dim = config.qk_rope_head_dim
|
|
self.kv_lora_rank = config.kv_lora_rank
|
|
self.v_head_dim = config.v_head_dim
|
|
self.qk_nope_head_dim = config.qk_nope_head_dim
|
|
self.q_head_dim = config.qk_rope_head_dim + config.qk_nope_head_dim
|
|
|
|
self.is_causal = True
|
|
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
|
|
self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
|
|
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False)
|
|
|
|
self.kv_a_proj_with_mqa = nn.Linear(
|
|
config.hidden_size,
|
|
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
bias=config.attention_bias,
|
|
)
|
|
self.kv_a_layernorm = DeepseekV3RMSNorm(self.kv_lora_rank)
|
|
self.kv_b_proj = nn.Linear(
|
|
self.kv_lora_rank,
|
|
self.num_heads * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
|
bias=False,
|
|
)
|
|
|
|
self.o_proj = nn.Linear(
|
|
self.num_heads * self.v_head_dim,
|
|
config.hidden_size,
|
|
bias=config.attention_bias,
|
|
)
|
|
|
|
self.scaling = self.q_head_dim ** (-0.5)
|
|
if self.config.rope_scaling is not None:
|
|
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
|
scaling_factor = self.config.rope_scaling["factor"]
|
|
if mscale_all_dim:
|
|
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
|
self.scaling = self.scaling * mscale * mscale
|
|
# TODO apply in DeepSeekV3Model to share accrose layers
|
|
self.rotary_emb = DeepseekV3RotaryEmbedding(config=config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
attention_mask: Optional[torch.Tensor],
|
|
past_key_value: Optional[Cache] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs# : Unpack[FlashAttentionKwargs],
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
input_shape = hidden_states.shape[:-1]
|
|
hidden_shape = (*input_shape, self.num_heads, -1)
|
|
|
|
q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(hidden_shape).transpose(1, 2)
|
|
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
|
|
|
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
|
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
|
|
|
k_pass = self.kv_b_proj(self.kv_a_layernorm(k_pass)).view(hidden_shape).transpose(1, 2)
|
|
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
|
|
k_rot = k_rot.view(*input_shape, 1, self.qk_rope_head_dim).transpose(1, 2)
|
|
|
|
cos, sin = position_embeddings
|
|
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin)
|
|
k_rot = k_rot.expand(-1, self.num_heads, -1, -1)
|
|
|
|
query_states = torch.cat((q_pass, q_rot), dim=-1)
|
|
key_states = torch.cat((k_pass, k_rot), dim=-1)
|
|
|
|
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
|
|
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
|
|
|
if past_key_value is not None:
|
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
if self.config._attn_implementation != "eager":
|
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
|
logger.warning_once(
|
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Attention implementation {self.config._attn_implementation} is not supported. "
|
|
"Please use 'eager' or 'sdpa'."
|
|
)
|
|
# attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
dropout=0.0 if not self.training else self.attention_dropout,
|
|
scaling=self.scaling,
|
|
**kwargs,
|
|
)
|
|
|
|
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
|
|
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class DeepseekV3DecoderLayer(nn.Module):
|
|
def __init__(self, config: DeepseekV3Config, layer_idx: int):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.self_attn = DeepseekV3Attention(config=config, layer_idx=layer_idx)
|
|
|
|
if layer_idx >= config.first_k_dense_replace:
|
|
self.mlp = DeepseekV3MoE(config)
|
|
else:
|
|
self.mlp = DeepseekV3MLP(config)
|
|
|
|
self.input_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
output_router_logits: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
|
**kwargs# : Unpack[FlashAttentionKwargs],
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
# Self Attention
|
|
hidden_states, self_attn_weights = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
**kwargs,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
if isinstance(hidden_states, tuple):
|
|
hidden_states, router_logits = hidden_states
|
|
else:
|
|
router_logits = (torch.zeros((1,), device=hidden_states.device, dtype=torch.int64),)
|
|
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
if output_router_logits:
|
|
outputs += (router_logits,)
|
|
|
|
return outputs
|
|
|
|
|
|
DEEPSEEK_V3_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`DeepseekV3Config`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
|
|
DEEPSEEK_V3_START_DOCSTRING,
|
|
)
|
|
class DeepseekV3PreTrainedModel(PreTrainedModel):
|
|
config_class = DeepseekV3Config
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["DeepseekV3DecoderLayer"]
|
|
_skip_keys_device_placement = ["past_key_values"]
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_flex_attn = True
|
|
_supports_cache_class = True
|
|
_supports_quantized_cache = True
|
|
_supports_static_cache = True
|
|
_supports_attention_backend = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
DEEPSEEK_V3_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance, see our
|
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
|
the complete sequence length.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
|
|
DEEPSEEK_V3_START_DOCSTRING,
|
|
)
|
|
class DeepseekV3Model(DeepseekV3PreTrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
|
|
|
|
Args:
|
|
config: DeepseekV3Config
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList(
|
|
[DeepseekV3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.rotary_emb = DeepseekV3RotaryEmbedding(config=config)
|
|
self.gradient_checkpointing = False
|
|
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(DEEPSEEK_V3_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Cache] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**flash_attn_kwargs# : Unpack[FlashAttentionKwargs],
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
)
|
|
use_cache = False
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if use_cache and past_key_values is None:
|
|
past_key_values = DynamicCache()
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
cache_position = torch.arange(
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
)
|
|
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
causal_mask = self._update_causal_mask(
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# create position embeddings to be shared across the decoder layers
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
position_embeddings,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
**flash_attn_kwargs,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
output = BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=past_key_values if use_cache else None,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
return output if return_dict else output.to_tuple()
|
|
|
|
def _update_causal_mask(
|
|
self,
|
|
attention_mask: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
cache_position: torch.Tensor,
|
|
past_key_values: Cache,
|
|
output_attentions: bool,
|
|
):
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
if attention_mask is not None and (attention_mask == 0.0).any():
|
|
return attention_mask
|
|
return None
|
|
|
|
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
|
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
|
# to infer the attention mask.
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
|
|
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
|
attention_mask,
|
|
inputs_embeds=input_tensor,
|
|
past_key_values_length=past_seen_tokens,
|
|
is_training=self.training,
|
|
):
|
|
return None
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device
|
|
sequence_length = input_tensor.shape[1]
|
|
if using_static_cache:
|
|
target_length = past_key_values.get_max_length()
|
|
else:
|
|
target_length = (
|
|
attention_mask.shape[-1]
|
|
if isinstance(attention_mask, torch.Tensor)
|
|
else past_seen_tokens + sequence_length + 1
|
|
)
|
|
|
|
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=sequence_length,
|
|
target_length=target_length,
|
|
dtype=dtype,
|
|
device=device,
|
|
cache_position=cache_position,
|
|
batch_size=input_tensor.shape[0],
|
|
)
|
|
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and attention_mask is not None
|
|
and attention_mask.device.type == "cuda"
|
|
and not output_attentions
|
|
):
|
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
return causal_mask
|
|
|
|
@staticmethod
|
|
def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask: torch.Tensor,
|
|
sequence_length: int,
|
|
target_length: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
cache_position: torch.Tensor,
|
|
batch_size: int,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
|
|
Args:
|
|
attention_mask (`torch.Tensor`):
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
|
`(batch_size, 1, query_length, key_value_length)`.
|
|
sequence_length (`int`):
|
|
The sequence length being processed.
|
|
target_length (`int`):
|
|
The target length: when generating with static cache, the mask should be as long as the static cache,
|
|
to account for the 0 padding, the part of the cache that is not filled yet.
|
|
dtype (`torch.dtype`):
|
|
The dtype to use for the 4D attention mask.
|
|
device (`torch.device`):
|
|
The device to plcae the 4D attention mask on.
|
|
cache_position (`torch.Tensor`):
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
batch_size (`torch.Tensor`):
|
|
Batch size.
|
|
"""
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
|
causal_mask = attention_mask
|
|
else:
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = torch.full(
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
|
)
|
|
if sequence_length != 1:
|
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
|
mask_length = attention_mask.shape[-1]
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
|
padding_mask = padding_mask == 0
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
padding_mask, min_dtype
|
|
)
|
|
|
|
return causal_mask
|
|
|
|
def load_hook(self, state_dict, prefix, *args):
|
|
"""
|
|
Weights have to be permuted for correct rope formulation. We can't do this in the weights
|
|
as every other framework already uses the `Llama` original function (which is copyrighted btw).
|
|
And I am not even sure it's better.... anyways end of my rant
|
|
"""
|
|
|
|
def permute_for_rope(input_tensor):
|
|
"""
|
|
When you go from the complex ROPE formulation to sin and cos one, you need
|
|
to permute the query and key weights (to avoid doing it on the fly)
|
|
"""
|
|
n_heads, dim1, dim2 = input_tensor.shape[0], input_tensor.shape[1], input_tensor.shape[2]
|
|
input_tensor = input_tensor.reshape(n_heads * dim1, dim2)
|
|
input_tensor = input_tensor.view(n_heads, dim1 // 2, 2, dim2)
|
|
input_tensor = input_tensor.transpose(1, 2).reshape(n_heads, dim1, dim2)
|
|
return input_tensor
|
|
|
|
def permute_layer_for_rope(key, num_heads, head_dim, rope_dim):
|
|
weight = state_dict[key]
|
|
weight = weight.view(num_heads, head_dim, -1)
|
|
weight_rot = weight[:, -rope_dim:]
|
|
weight_rot = permute_for_rope(weight_rot)
|
|
weight[:, -rope_dim:] = weight_rot
|
|
weight = weight.view(-1, weight.shape[-1])
|
|
state_dict[key] = weight
|
|
|
|
for k in state_dict:
|
|
if "q_b_proj." in k:
|
|
permute_layer_for_rope(
|
|
k,
|
|
num_heads=self.config.num_attention_heads,
|
|
head_dim=self.config.q_head_dim,
|
|
rope_dim=self.config.qk_rope_head_dim,
|
|
)
|
|
if "kv_a_proj_with_mqa." in k:
|
|
permute_layer_for_rope(
|
|
k,
|
|
num_heads=1,
|
|
head_dim=self.config.kv_lora_rank + self.config.qk_rope_head_dim,
|
|
rope_dim=self.config.qk_rope_head_dim,
|
|
)
|
|
|
|
|
|
# class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
|
|
|
|
|
class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
_tp_plan = {"lm_head": "colwise_rep"}
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = DeepseekV3Model(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@add_start_docstrings_to_model_forward(DEEPSEEK_V3_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
**kwargs# : Unpack[KwargsForCausalLM],
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
|
|
|
|
>>> model = DeepseekV3ForCausalLM.from_pretrained("meta-deepseek_v3/DeepseekV3-2-7b-hf")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("meta-deepseek_v3/DeepseekV3-2-7b-hf")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
**kwargs,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
[`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-2) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
DEEPSEEK_V3_START_DOCSTRING,
|
|
)
|
|
class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = DeepseekV3Model(config)
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(DEEPSEEK_V3_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size = input_ids.shape[0]
|
|
else:
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
|
sequence_lengths = sequence_lengths.to(logits.device)
|
|
else:
|
|
sequence_lengths = -1
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
|
|
|
if not return_dict:
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"DeepseekV3PreTrainedModel",
|
|
"DeepseekV3Model",
|
|
"DeepseekV3ForCausalLM",
|
|
"DeepseekV3ForSequenceClassification",
|
|
] |