kvcache-ai-ktransformers/third_party/llamafile/tinyblas_cpu_sgemm.inc
2024-08-12 11:41:26 +00:00

364 lines
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Adapted from
// https://github.com/Mozilla-Ocho/llamafile/blob/0.8.8/llamafile/tinyblas_cpu_sgemm.inc
// Copyrigth 2024 Mozilla Foundation.
// Copyright(c) 2024 by KVCache.AI, All Rights Reserved.
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi
//
// Copyright 2024 Mozilla Foundation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tinyblas_cpu.h"
//
//
// ██████╗ ██╗ █████╗ ██████╗
// ██████╗██╗██╗ ██╗██═██╗██╔══██╗██║ ██╔══██╗██╔═══╝
// ╚═██╔═╝██║███▄██║██ ██║██████╔╝██║ ███████║██████╗
// ██║ ██║██▀███║╚███╔╝██╔══██╗██║ ██╔══██║╔═══██║
// ██║ ██║██║ ██║ ███║ ██████╔╝████╗██║ ██║██████║
// ╚═╝ ╚═╝╚═╝ ╚═╝ ╚══╝ ╚═════╝ ╚═══╝╚═╝ ╚═╝╚═════╝
//
// BASIC LINEAR ALGEBRA SUBPROGRAMS
//
//
// This file implements multithreaded CPU matrix multiplication for the
// common contiguous use case C = Aᵀ * B. These kernels are designed to
// have excellent performance[1] for matrices that fit in the CPU cache
// without imposing any overhead such as cache filling or malloc calls.
//
// This implementation does not guarantee any upper bound with rounding
// errors, which grow along with k. Our goal's to maximally exploit the
// hardware for performance, and then use whatever resources remain for
// improving numerical accuracy.
//
// [1] J. Tunney, LLaMA Now Goes Faster on CPUs, Mar. 2024. [Online].
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
namespace {
template <typename TC>
bool llamafile_sgemm_impl(long m, long n, long k, const void* A, long lda, const void* B, long ldb, TC* C, long ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype, int precision) {
switch (Atype) {
case GGML_TYPE_F32: {
if (Btype != GGML_TYPE_F32)
return NOT_SUPPORTED;
#if defined(__AVX512F__)
if (k % 16)
return NOT_SUPPORTED;
tinyBLAS<0, 16, __m512, __m512, float, float, TC> tb{
k, (const float*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#elif defined(__AVX__) || defined(__AVX2__)
if (k % 8)
return NOT_SUPPORTED;
tinyBLAS<0, 8, __m256, __m256, float, float, TC> tb{
k, (const float*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#elif defined(__ARM_NEON)
if (k % 4)
return NOT_SUPPORTED;
tinyBLAS<0, 4, float32x4_t, float32x4_t, float, float, TC> tb{
k, (const float*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#else
return NOT_SUPPORTED;
#endif
}
case GGML_TYPE_BF16: {
#if defined(__AVX512BF16__)
if (k % 32)
return NOT_SUPPORTED;
if (Btype == GGML_TYPE_F32 && n < 2) {
tinyBLAS<0, 16, __m512, __m512, ggml_bf16_t, float, TC> tb{
k, (const ggml_bf16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
}
if (Btype == GGML_TYPE_F32)
return WANT_QUANTIZATION;
if (Btype != GGML_TYPE_BF16)
return NOT_SUPPORTED;
if (!FLAG_precise) {
tinyBLAS<0, 32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, TC> tb{
k, (const ggml_bf16_t*)A, lda, (const ggml_bf16_t*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
} else {
tinyBLAS<0, 16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, TC> tb{
k, (const ggml_bf16_t*)A, lda, (const ggml_bf16_t*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
}
#elif defined(__AVX512F__)
if (k % 16)
return NOT_SUPPORTED;
tinyBLAS<0, 16, __m512, __m512, ggml_bf16_t, float, TC> tb{
k, (const ggml_bf16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#elif defined(__AVX2__)
if (k % 8)
return NOT_SUPPORTED;
if (Btype != GGML_TYPE_F32)
return NOT_SUPPORTED;
tinyBLAS<0, 8, __m256, __m256, ggml_bf16_t, float, TC> tb{
k, (const ggml_bf16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (k % 4)
return NOT_SUPPORTED;
if (Btype != GGML_TYPE_F32)
return NOT_SUPPORTED;
tinyBLAS<0, 4, float32x4_t, float32x4_t, ggml_bf16_t, float, TC> tb{
k, (const ggml_bf16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#else
return NOT_SUPPORTED;
#endif
}
case GGML_TYPE_F16: {
#if defined(__AVX512F__)
if (k % 16)
return NOT_SUPPORTED;
if (Btype == GGML_TYPE_F32 && n < 2) {
tinyBLAS<0, 16, __m512, __m512, ggml_fp16_t, float, TC> tb{
k, (const ggml_fp16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
}
if (Btype == GGML_TYPE_F32)
return WANT_QUANTIZATION;
if (Btype != GGML_TYPE_F16)
return NOT_SUPPORTED;
tinyBLAS<0, 16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, TC> tb{
k, (const ggml_fp16_t*)A, lda, (const ggml_fp16_t*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
// if (X86_CHECK(F16C)) {
if (k % 8)
return NOT_SUPPORTED;
if (Btype == GGML_TYPE_F32 && n < 2) {
tinyBLAS<0, 8, __m256, __m256, ggml_fp16_t, float, TC> tb{
k, (const ggml_fp16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
}
if (Btype == GGML_TYPE_F32)
return WANT_QUANTIZATION;
if (Btype != GGML_TYPE_F16)
return NOT_SUPPORTED;
tinyBLAS<0, 8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, TC> tb{
k, (const ggml_fp16_t*)A, lda, (const ggml_fp16_t*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
// } else {
// return NOT_SUPPORTED;
// }
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (n < 2 && !FLAG_precise)
// TODO(jart): Why is ggml_vec_dot_f16_unroll() so fast at matvec?
return NOT_SUPPORTED;
if (precision == GGML_PREC_F32) {
if (k % 4)
return NOT_SUPPORTED;
if (Btype != GGML_TYPE_F32)
return NOT_SUPPORTED;
tinyBLAS<0, 4, float32x4_t, float32x4_t, ggml_fp16_t, float, TC> tb{
k, (const ggml_fp16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
} else {
if (k % 8)
return NOT_SUPPORTED;
if (Btype == GGML_TYPE_F32)
return WANT_QUANTIZATION;
if (Btype != GGML_TYPE_F16)
return NOT_SUPPORTED;
tinyBLAS<0, 8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, TC> tb{
k, (const ggml_fp16_t*)A, lda, (const ggml_fp16_t*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
}
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (n < 2 && !FLAG_precise)
// TODO(jart): Why is ggml_vec_dot_f16_unroll() so fast at matvec?
return NOT_SUPPORTED;
if (k % 4)
return NOT_SUPPORTED;
if (Btype != GGML_TYPE_F32)
return NOT_SUPPORTED;
tinyBLAS<0, 4, float32x4_t, float32x4_t, ggml_fp16_t, float, TC> tb{
k, (const ggml_fp16_t*)A, lda, (const float*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#else
return NOT_SUPPORTED;
#endif
}
case GGML_TYPE_Q8_0: {
if (Btype == GGML_TYPE_F32)
return WANT_QUANTIZATION;
if (Btype != GGML_TYPE_Q8_0)
return NOT_SUPPORTED;
#if defined(__AVX2__) || defined(__AVX512F__)
tinyBLAS_Q0_AVX2<0, block_q8_0, block_q8_0, TC> tb{
k, (const block_q8_0*)A, lda, (const block_q8_0*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<0, block_q8_0, block_q8_0, TC> tb{
k, (const block_q8_0*)A, lda, (const block_q8_0*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#else
return NOT_SUPPORTED;
#endif
}
case GGML_TYPE_Q4_0: {
if (Btype == GGML_TYPE_F32)
return WANT_QUANTIZATION;
if (Btype != GGML_TYPE_Q8_0)
return NOT_SUPPORTED;
#if defined(__AVX2__) || defined(__AVX512F__)
tinyBLAS_Q0_AVX2<0, block_q4_0, block_q8_0, TC> tb{
k, (const block_q4_0*)A, lda, (const block_q8_0*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<0, block_q4_0, block_q8_0, TC> tb{
k, (const block_q4_0*)A, lda, (const block_q8_0*)B, ldb, C, ldc, ith, nth};
tb.matmul(m, n, task);
return true;
#else
return NOT_SUPPORTED;
#endif
}
default:
return NOT_SUPPORTED;
}
(void)m;
(void)n;
(void)k;
(void)A;
(void)lda;
(void)B;
(void)ldb;
(void)C;
(void)ldc;
(void)ith;
(void)nth;
(void)Atype;
(void)Btype;
(void)precision;
}
} // namespace
/**
* Performs optimized matrix multiplication on CPU.
*
* This subroutine may compute C = Aᵀ * B with column major ordering.
* Despite its name, this isn't a generalized implementation. Work is
* only performed when a handwritten kernel is written and available.
* Otherwise the caller should fall back to a general matmul routine.
*
* For example, for single-threaded single-precision GEMM you can say
*
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc, 0, 1,
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32,
* GGML_PREC_DEFAULT);
*
* @param m is rows in `A` and `C`
* @param n is cols in `B` and `C`
* @param k is cols in `A` and rows in `B`
* @param A is first input matrix (always transposed)
* @param lda is row stride of `A`
* @param B is second input matrix (never transposed)
* @param ldb is row stride of `B`
* @param C is input/output array of output matrices
* @param ldc is row stride of `C`
* @param ith is thread id (must be less than `nth`)
* @param nth is number of threads (must be greater than zero)
* @param Atype is GGML data type of `A`
* @param Btype is GGML data type of `B`
* @param Ctype is GGML data type of `C`
* @param precision may be used to control the internal compute type
* @return true if this function was able to service the matmul request
*/
bool llamafile_sgemm(long m, long n, long k, const void* A, long lda, const void* B, long ldb, void* C, long ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype, int precision) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
#if QK_K == 256
#if defined(__x86_64__) || defined(_M_X64)
#if defined(__AVX2__) && (defined(__FMA__) || (defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))))
// if (X86_CHECK(AVX2) && X86_CHECK(FMA)) {
if (Btype == GGML_TYPE_Q8_K && Ctype == GGML_TYPE_F32) {
if (iqk_mul_mat(m, n, k * QK_K, Atype, A, B, (float*)C, ldc, ith, nth)) {
return true;
}
}
if ((Btype == GGML_TYPE_Q8_0 || Btype == GGML_TYPE_Q8_1) && Ctype == GGML_TYPE_F32) {
// assert(QK8_0 == QK8_1 == QK4_0 == QK4_1 == QK5_0 == QK5_1 == 32);
assert((QK8_0 == 32) && (QK8_1 == 32) && (QK4_0 == 32) && (QK4_1 == 32) && (QK5_0 == 32) && (QK5_1 == 32));
if (iqk_mul_mat(m, n, k * QK8_0, Atype, A, B, (float*)C, ldc, ith, nth)) {
return true;
}
}
// }
#endif
#elif defined __aarch64__ && defined __ARM_FEATURE_DOTPROD && !defined _MSC_VER
if (Btype == GGML_TYPE_Q8_K && Ctype == GGML_TYPE_F32) {
if (iqk_mul_mat(m, n, k * QK_K, Atype, A, B, (float*)C, ldc, ith, nth)) {
return true;
}
}
if ((Btype == GGML_TYPE_Q8_0 || Btype == GGML_TYPE_Q8_1) && Ctype == GGML_TYPE_F32) {
// assert(QK8_0 == QK8_1 == QK4_0 == QK4_1 == QK5_0 == QK5_1 == 32);
assert((QK8_0 == 32) && (QK8_1 == 32) && (QK4_0 == 32) && (QK4_1 == 32) && (QK5_0 == 32) && (QK5_1 == 32));
if (iqk_mul_mat(m, n, k * QK8_0, Atype, A, B, (float*)C, ldc, ith, nth)) {
return true;
}
}
#endif
#endif
switch (Ctype) {
case GGML_TYPE_F32:
return llamafile_sgemm_impl(m, n, k, A, lda, B, ldb, (float*)C, ldc, ith, nth, task, Atype,
Btype, Ctype, precision);
default:
return NOT_SUPPORTED;
}
}