mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
74 lines
3 KiB
Python
74 lines
3 KiB
Python
'''
|
|
Description :
|
|
Author : Boxin Zhang
|
|
Version : 0.1.0
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
'''
|
|
from torch import nn
|
|
from ktransformers.models.modeling_deepseek import DeepseekV2YarnRotaryEmbedding, DeepseekV2RotaryEmbedding
|
|
from ktransformers.operators.base_operator import BaseInjectedModule
|
|
from ktransformers.util.custom_gguf import GGUFLoader
|
|
from ktransformers.util.utils import InferenceState
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe
|
|
class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
|
|
def __init__(self,
|
|
key: str,
|
|
gguf_loader : GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs):
|
|
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
|
|
self.orig_module.__init__(orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.device)
|
|
|
|
class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
|
|
def __init__(self,
|
|
key: str,
|
|
gguf_loader : GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs):
|
|
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
|
|
self.orig_module.__init__(orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base,
|
|
None, #device
|
|
orig_module.scaling_factor,
|
|
orig_module.original_max_position_embeddings,
|
|
orig_module.beta_fast,
|
|
orig_module.beta_slow,
|
|
orig_module.mscale,
|
|
orig_module.mscale_all_dim)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.generate_device,
|
|
self.orig_module.scaling_factor,
|
|
self.orig_module.original_max_position_embeddings,
|
|
self.orig_module.beta_fast,
|
|
self.orig_module.beta_slow,
|
|
self.orig_module.mscale,
|
|
self.orig_module.mscale_all_dim)
|
|
|