mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-07 13:09:50 +00:00
137 lines
No EOL
5 KiB
Python
137 lines
No EOL
5 KiB
Python
# adapt from https://github.com/abacaj/code-eval?tab=readme-ov-file
|
|
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
import requests
|
|
import tqdm
|
|
|
|
from evaluation import filter_answer
|
|
from prompts import instruct_prompt
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
|
|
|
|
|
def generate_text(api_url,question , model_name, stream=False, auth_token=None):
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'Content-Type': 'application/json',
|
|
# 添加 API Key
|
|
'Authorization' : 'Bearer ' + auth_token if auth_token else ''
|
|
}
|
|
question = instruct_prompt(question)
|
|
data = {
|
|
"messages": [{"content": question, "role": "user"}],
|
|
"model": model_name,
|
|
"stream": stream,
|
|
"temperature": 0.6,
|
|
"max_tokens": 10240,
|
|
}
|
|
print(f"content: {question}")
|
|
response = requests.post(api_url, headers=headers, json=data,verify=False)
|
|
if response.status_code == 200:
|
|
result = response.json()
|
|
results = result.get('choices', [{}])[0].get('message', {}).get('content', '')
|
|
return filter_answer(results)
|
|
else:
|
|
print(f"API Request failed with status code {response.status_code}")
|
|
return None
|
|
def load_data(file_path):
|
|
"""
|
|
Load data from a Parquet file into a list.
|
|
Each record in the Parquet file should represent an individual record.
|
|
"""
|
|
# 读取 Parquet 文件
|
|
# dataset = load_dataset('parquet', data_files=file_path)
|
|
data = []
|
|
ds = load_dataset(file_path)
|
|
df = pd.DataFrame(ds['train'])
|
|
for _, row in df.iterrows():
|
|
data.append(row.to_dict())
|
|
return data
|
|
|
|
def get_score(pred, answer):
|
|
"""
|
|
Calculate scores between the prediction and the answer.
|
|
Uses ROUGE scores as the evaluation metric.
|
|
:param pred: The predicted string.
|
|
:param answer: The reference answer string.
|
|
:return: A dictionary containing ROUGE scores.
|
|
"""
|
|
if pred == answer:
|
|
return 1
|
|
# if we need to compare str with number, convert teh str to number
|
|
try:
|
|
pred = float(pred)
|
|
answer = float(answer)
|
|
except:
|
|
pass
|
|
if pred == answer:
|
|
return 1
|
|
return 0
|
|
|
|
def run_eval_api(
|
|
api_url: str,
|
|
model_name: str,
|
|
out_path: str,
|
|
format_tabs: bool = False,
|
|
auth_token: str = None,
|
|
problem_file: str = None,
|
|
append: bool = False,
|
|
skip: int = 0
|
|
):
|
|
|
|
data = load_data(problem_file)
|
|
pbar = tqdm.tqdm(total=len(data) * 1)
|
|
pbar.update(skip)
|
|
for i in range(len(data)):
|
|
i = i+skip
|
|
data_item = data[i]
|
|
question = data_item['Problem']
|
|
# Start the timer for this evaluation
|
|
start_time = time.time()
|
|
try:
|
|
completion = generate_text(api_url, question, model_name, auth_token=auth_token)
|
|
if completion is None:
|
|
raise Exception(f"Failed to get prediction for {question}")
|
|
answer = data_item['Answer']
|
|
score = get_score(completion, answer)
|
|
elapsed_time = time.time() - start_time
|
|
result = {
|
|
"index": i,
|
|
"question_id": data_item["ID"],
|
|
"answer": answer,
|
|
"prediction": completion,
|
|
"score": score,
|
|
"time": elapsed_time
|
|
}
|
|
with open(out_path, "a" if append else "w") as f:
|
|
f.write(json.dumps(result) + "\n")
|
|
|
|
except Exception as e:
|
|
print(f"Failed to get prediction for {question}")
|
|
print(e)
|
|
continue
|
|
|
|
pbar.update(1)
|
|
|
|
|
|
def main(output_path, api_url, model_name, auth_token, format_tabs,problem_file, append,skip):
|
|
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
|
run_eval_api(api_url, model_name, output_path, format_tabs, auth_token, problem_file,append,skip)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="API Generate Tester")
|
|
parser.add_argument("--api_url", type=str, default="https://api.siliconflow.cn/v1/chat/completions", help="API URL")
|
|
parser.add_argument("--model_name", type=str, default="Pro/deepseek-ai/DeepSeek-R1", help="Model Name")
|
|
parser.add_argument("--out_path", type=str, default="results/api/eval_aime.jsonl", help="Output Path")
|
|
parser.add_argument("--auth_token", type=str, default=None, help="Auth Token")
|
|
parser.add_argument("--format_tabs", action="store_true", help="Format Tabs")
|
|
parser.add_argument("--problem_file", type=str, default="Maxwell-Jia/AIME_2024", help="Evalset File")
|
|
parser.add_argument("--no_append", action="store_false", help="Append to existing file")
|
|
parser.add_argument("--skip", type=int, default=0, help="Skip some tasks")
|
|
args = parser.parse_args()
|
|
# api_url = "https://api.siliconflow.cn/v1/chat/completions"
|
|
main(args.out_path, args.api_url, args.model_name, args.auth_token, args.format_tabs, args.problem_file, args.no_append, args.skip) |