kvcache-ai-ktransformers/ktransformers/server/backend/args.py

89 lines
5.3 KiB
Python

from pydantic import BaseModel, Field
from typing import Optional
from ktransformers.server.config.config import Config
class ConfigArgs(BaseModel):
model_name: Optional[str] = Field(..., description="Model name")
model_dir: Optional[str] = Field(..., description="Path to model directory")
optimize_config_path: Optional[str] = Field(None, description="Path of your optimize config yml file")
gguf_path: Optional[str] = Field(None, description="Path of your gguf file")
class Config:
protected_namespaces = ()
paged: bool = Field(None, description="Whether to use paged attention kv cache")
total_context: int = Field(
None,
description=(
"Total number of tokens to allocate space for. This is not the max_seq_len supported by the model but the"
" total to distribute dynamically over however many jobs are active at once"
),
)
max_batch_size: int = Field(
None, description="Max number of batches to run at once, assuming the sequences will fit within total_context"
)
max_chunk_size: int = Field(
None,
description=(
"Max chunk size. Determines the size of prefill operations. Can be reduced to reduce pauses whenever a new"
" job is started, but at the expense of overall prompt ingestion speed"
),
)
max_new_tokens: int = Field(None, description="Max new tokens per completion. For this example applies to all jobs")
json_mode: bool = Field(
None, description="Use LMFE to constrain the output to JSON format. See schema and details below"
)
healing: bool = Field(None, description="Demonstrate token healing")
ban_strings: Optional[list] = Field(None, description="Ban some phrases maybe")
gpu_split: Optional[str] = Field(None, description='"auto", or VRAM allocation per GPU in GB')
length: Optional[int] = Field(None, description="Maximum sequence length")
rope_scale: Optional[float] = Field(None, description="RoPE scaling factor")
rope_alpha: Optional[float] = Field(None, description="RoPE alpha value (NTK)")
no_flash_attn: bool = Field(None, description="Disable Flash Attention")
low_mem: bool = Field(None, description="Enable VRAM optimizations, potentially trading off speed")
experts_per_token: Optional[int] = Field(
None, description="Override MoE model's default number of experts per token"
)
load_q4: bool = Field(None, description="Load weights in Q4 mode")
fast_safetensors: bool = Field(None, description="Optimized safetensors loading with direct I/O (experimental!)")
draft_model_dir: Optional[str] = Field(None, description="Path to draft model directory")
no_draft_scale: bool = Field(
None,
description="If draft model has smaller context size than model, don't apply alpha (NTK) scaling to extend it",
)
modes: bool = Field(None, description="List available modes and exit.")
mode: str = Field(None, description="Chat mode. Use llama for Llama 1/2 chat finetunes.")
username: str = Field(None, description="Username when using raw chat mode")
botname: str = Field(None, description="Bot name when using raw chat mode")
system_prompt: Optional[str] = Field(None, description="Use custom system prompt")
temperature: float = Field(None, description="Sampler temperature, default = 0.95 (1 to disable)")
smoothing_factor: float = Field(None, description="Smoothing Factor, default = 0.0 (0 to disable)")
dynamic_temperature: Optional[str] = Field(
None, description="Dynamic temperature min,max,exponent, e.g. -dyntemp 0.2,1.5,1"
)
top_k: int = Field(None, description="Sampler top-K, default = 50 (0 to disable)")
top_p: float = Field(None, description="Sampler top-P, default = 0.8 (0 to disable)")
top_a: float = Field(None, description="Sampler top-A, default = 0.0 (0 to disable)")
skew: float = Field(None, description="Skew sampling, default = 0.0 (0 to disable)")
typical: float = Field(None, description="Sampler typical threshold, default = 0.0 (0 to disable)")
repetition_penalty: float = Field(None, description="Sampler repetition penalty, default = 1.01 (1 to disable)")
frequency_penalty: float = Field(None, description="Sampler frequency penalty, default = 0.0 (0 to disable)")
presence_penalty: float = Field(None, description="Sampler presence penalty, default = 0.0 (0 to disable)")
max_response_tokens: int = Field(None, description="Max tokens per response, default = 1000")
response_chunk: int = Field(None, description="Space to reserve in context for reply, default = 250")
no_code_formatting: bool = Field(None, description="Disable code formatting/syntax highlighting")
cache_8bit: bool = Field(None, description="Use 8-bit (FP8) cache")
cache_q4: bool = Field(None, description="Use Q4 cache")
ngram_decoding: bool = Field(None, description="Use n-gram speculative decoding")
print_timings: bool = Field(None, description="Output timings after each prompt")
amnesia: bool = Field(None, description="Forget context after every response")
# for transformers
batch_size: int = Field(None, description="Batch Size")
cache_lens: int = Field(None, description="Cache lens for transformers static cache")
device: str = Field(None, description="device")
cfg = Config()
default_args = cfg