mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
240 lines
No EOL
7 KiB
Python
240 lines
No EOL
7 KiB
Python
'''
|
|
Description : flashinfer MLA wrapper
|
|
Author : Boxin Zhang
|
|
Version : 0.2.2
|
|
'''
|
|
import torch
|
|
|
|
flashinfer_enabled = False
|
|
|
|
try:
|
|
import flashinfer
|
|
flashinfer_enabled = False # disabled now, TODO:use new version of flashinfer and enable
|
|
print("found flashinfer")
|
|
|
|
except ImportError:
|
|
print("flashinfer not found, use triton for linux")
|
|
|
|
import math
|
|
|
|
def attention_ref(
|
|
batch_size,
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
causal: bool,
|
|
sm_scale: float,
|
|
) -> torch.Tensor:
|
|
qo_len = q.shape[0] // batch_size
|
|
kv_len = k.shape[0] // batch_size
|
|
num_qo_heads = q.shape[1]
|
|
head_dim_qk = q.shape[2]
|
|
head_dim_vo = v.shape[2]
|
|
logits = (
|
|
torch.einsum(
|
|
"bmhd,bnhd->bhmn",
|
|
q.view(batch_size, qo_len, num_qo_heads, head_dim_qk).float(),
|
|
k.view(batch_size, kv_len, num_qo_heads, head_dim_qk).float(),
|
|
)
|
|
* sm_scale
|
|
)
|
|
|
|
#print("attn weights", logits)
|
|
|
|
if causal:
|
|
mask = (
|
|
torch.arange(kv_len - qo_len, kv_len).unsqueeze(1)
|
|
>= torch.arange(0, kv_len).unsqueeze(0)
|
|
).to(q.device)
|
|
else:
|
|
mask = torch.ones(qo_len, kv_len).to(q.device)
|
|
|
|
logits = logits.masked_fill(mask.unsqueeze(0).unsqueeze(0) == 0, float("-inf"))
|
|
lse_ref = torch.logsumexp(logits, -1).transpose(-1, -2)
|
|
p = torch.softmax(logits, dim=-1)
|
|
o_ref = (
|
|
torch.einsum(
|
|
"bhmn,bnhd->bmhd",
|
|
p,
|
|
v.view(batch_size, kv_len, num_qo_heads, head_dim_vo).float(),
|
|
)
|
|
.contiguous()
|
|
.view(batch_size * qo_len, num_qo_heads, head_dim_vo)
|
|
.to(q)
|
|
)
|
|
|
|
return o_ref, lse_ref * math.log2(math.e)
|
|
|
|
class MLAWrapper():
|
|
def __init__(self,
|
|
max_batch_size,
|
|
max_pages,
|
|
use_cuda_graph = True,
|
|
device = "cuda",
|
|
):
|
|
self.float_workspace_buffer = torch.empty(128*1024*1024, dtype=torch.int8, device=device)
|
|
self.max_batch_size = max_batch_size
|
|
self.max_pages = max_pages
|
|
if use_cuda_graph:
|
|
if self.max_batch_size == 1:
|
|
self.qo_indptr_buf = torch.arange(0, max_batch_size+1, dtype=torch.int32, device=device)
|
|
self.kv_indptr_buf = torch.tensor([0, max_pages], dtype=torch.int32, device=device)
|
|
self.kv_indices_buf = torch.arange(0, max_pages, dtype=torch.int32, device=device)
|
|
else:
|
|
self.qo_indptr_buf = torch.empty(max_batch_size+1, dtype=torch.int32, device=device)
|
|
self.kv_indptr_buf = torch.empty(max_batch_size+1, dtype=torch.int32, device=device)
|
|
self.kv_indices_buf = torch.empty(max_pages, dtype=torch.int32, device=device)
|
|
self.kv_len_arr_buf = torch.empty(max_batch_size, dtype=torch.int32, device=device)
|
|
else:
|
|
self.qo_indptr_buf = None
|
|
self.kv_indptr_buf = None
|
|
self.kv_indices_buf = None
|
|
self.kv_len_arr_buf = None
|
|
self.wrapper = flashinfer.mla.BatchMLAPagedAttentionWrapper(
|
|
self.float_workspace_buffer,
|
|
use_cuda_graph=False,
|
|
qo_indptr=self.qo_indptr_buf,
|
|
kv_indptr=self.kv_indptr_buf,
|
|
kv_indices=self.kv_indices_buf,
|
|
kv_len_arr=self.kv_len_arr_buf,
|
|
)
|
|
self.need_plan = True
|
|
|
|
def plan(self,
|
|
qo_indptr,
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_len_arr,
|
|
num_heads,
|
|
head_dim_ckv,
|
|
head_dim_kpe,
|
|
page_size,
|
|
sm_scale,
|
|
q_data_type,
|
|
kv_data_type,
|
|
):
|
|
if qo_indptr is None:
|
|
assert self.max_batch_size == 1
|
|
qo_indptr = self.qo_indptr_buf
|
|
if kv_indptr is None:
|
|
assert self.max_batch_size == 1
|
|
kv_indptr = self.kv_indptr_buf
|
|
if kv_indices is None:
|
|
assert self.max_batch_size == 1
|
|
kv_indices = self.kv_indices_buf
|
|
|
|
self.wrapper.plan(
|
|
qo_indptr,
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_len_arr,
|
|
num_heads,
|
|
head_dim_ckv,
|
|
head_dim_kpe,
|
|
page_size,
|
|
False, # causal is False for decoding
|
|
sm_scale,
|
|
q_data_type,
|
|
kv_data_type,
|
|
)
|
|
|
|
def run(self, q_nope, q_pe, ckv, k_pe, return_lse = False):
|
|
return self.wrapper.run(q_nope, q_pe, ckv, k_pe, return_lse)
|
|
|
|
class MLAWrapperSingleton():
|
|
wrappers:dict = {}
|
|
|
|
@classmethod
|
|
def get_instance(cls, device, *args, **kwargs)->MLAWrapper:
|
|
if device not in cls.wrappers:
|
|
cls.make_instance(device, *args, **kwargs)
|
|
return cls.wrappers[device]
|
|
|
|
@classmethod
|
|
def make_instance(cls, device, *args, **kwargs):
|
|
cls.wrappers[device] = MLAWrapper(*args, **kwargs, device=device)
|
|
|
|
@classmethod
|
|
def plan_all(cls, qo_indptr,
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_len_arr,
|
|
num_heads,
|
|
head_dim_ckv,
|
|
head_dim_kpe,
|
|
page_size,
|
|
sm_scale,
|
|
q_data_type,
|
|
kv_data_type,):
|
|
for device, wrapper in cls.wrappers.items():
|
|
kv_len_arr_cur_device = kv_len_arr.to(device)
|
|
wrapper.plan(qo_indptr,
|
|
kv_indptr,
|
|
kv_indices,
|
|
kv_len_arr_cur_device,
|
|
num_heads,
|
|
head_dim_ckv,
|
|
head_dim_kpe,
|
|
page_size,
|
|
sm_scale,
|
|
q_data_type,
|
|
kv_data_type,)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
max_batch_size = 1
|
|
max_pages = 1
|
|
page_size = 64
|
|
num_heads = 128
|
|
|
|
q_nope = torch.randn((1, num_heads, 512), dtype=torch.bfloat16, device="cuda")
|
|
q_pe = torch.randn((1, num_heads, 64), dtype=torch.bfloat16, device="cuda")
|
|
ckv = torch.randn((max_pages, page_size, 512), dtype=torch.bfloat16, device="cuda")
|
|
k_pe = torch.randn((max_pages, page_size, 64), dtype=torch.bfloat16, device="cuda")
|
|
|
|
|
|
wrapper = MLAWrapperSingleton.get_instance(
|
|
"cuda",
|
|
max_batch_size,
|
|
max_pages,
|
|
)
|
|
|
|
kv_len_arr = torch.tensor([10], dtype=torch.int32, device="cuda")
|
|
|
|
wrapper.plan(
|
|
None,
|
|
None,
|
|
None,
|
|
kv_len_arr,
|
|
128,
|
|
512,
|
|
64,
|
|
page_size,
|
|
192 ** (-0.5),
|
|
torch.bfloat16,
|
|
torch.bfloat16,
|
|
)
|
|
|
|
attn_output = wrapper.run(q_nope, q_pe, ckv, k_pe)
|
|
|
|
k = (
|
|
torch.cat([ckv, k_pe], dim=-1)
|
|
.view(-1, 1, 512 + 64)
|
|
.repeat_interleave(num_heads, dim=1)
|
|
)
|
|
v = ckv.view(-1, 1, 512).repeat_interleave(num_heads, dim=1)
|
|
|
|
print(k[:10].shape)
|
|
print(v[:10].shape)
|
|
|
|
attn_ref, lse_ref = attention_ref(
|
|
max_batch_size,
|
|
torch.cat([q_nope, q_pe], dim=-1),
|
|
k[:10],
|
|
v[:10],
|
|
False,
|
|
192 ** (-0.5)
|
|
)
|
|
|
|
torch.testing.assert_close(attn_output, attn_ref, rtol=1e-3, atol=1e-3)
|
|
print("test past") |