mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
150 lines
5.7 KiB
Python
150 lines
5.7 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Description :
|
|
Author : chenht2022
|
|
Date : 2024-07-16 10:43:18
|
|
Version : 1.0.0
|
|
LastEditors : chenht2022
|
|
LastEditTime : 2024-08-06 10:36:04
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
'''
|
|
import os, sys
|
|
import time
|
|
sys.path.append(os.path.dirname(__file__) + '/../build')
|
|
import cpuinfer_ext
|
|
import torch
|
|
|
|
hidden_size = 5120
|
|
intermediate_size = 3072
|
|
stride = 16
|
|
group_max_len = 1024
|
|
layer_num = 10
|
|
qlen = 1
|
|
CPUInfer = cpuinfer_ext.CPUInfer(64)
|
|
warm_up_iter = 1000
|
|
test_iter = 10000
|
|
|
|
def bench_mlp(quant_mode: str):
|
|
with torch.inference_mode(mode=True):
|
|
|
|
hidden_type = 30 # ggml_type::GGML_TYPE_BF16
|
|
if quant_mode == "fp32":
|
|
gate_type = 0 # ggml_type::GGML_TYPE_F32
|
|
up_type = 0 # ggml_type::GGML_TYPE_F32
|
|
down_type = 0 # ggml_type::GGML_TYPE_F32
|
|
bytes_per_elem = 4.000000
|
|
elif quant_mode == "fp16":
|
|
gate_type = 1 # ggml_type::GGML_TYPE_F16
|
|
up_type = 1 # ggml_type::GGML_TYPE_F16
|
|
down_type = 1 # ggml_type::GGML_TYPE_F16
|
|
bytes_per_elem = 2.000000
|
|
elif quant_mode == "bf16":
|
|
gate_type = 30 # ggml_type::GGML_TYPE_BF16
|
|
up_type = 30 # ggml_type::GGML_TYPE_BF16
|
|
down_type = 30 # ggml_type::GGML_TYPE_BF16
|
|
bytes_per_elem = 2.000000
|
|
elif quant_mode == "q8_0":
|
|
gate_type = 8 # ggml_type::GGML_TYPE_Q8_0
|
|
up_type = 8 # ggml_type::GGML_TYPE_Q8_0
|
|
down_type = 8 # ggml_type::GGML_TYPE_Q8_0
|
|
bytes_per_elem = 1.062500
|
|
elif quant_mode == "q6_k":
|
|
gate_type = 14 # ggml_type::GGML_TYPE_Q6_K
|
|
up_type = 14 # ggml_type::GGML_TYPE_Q6_K
|
|
down_type = 14 # ggml_type::GGML_TYPE_Q6_K
|
|
bytes_per_elem = 0.820312
|
|
elif quant_mode == "q5_k_m":
|
|
gate_type = 13 # ggml_type::GGML_TYPE_Q5_K
|
|
up_type = 13 # ggml_type::GGML_TYPE_Q5_K
|
|
down_type = 14 # ggml_type::GGML_TYPE_Q6_K
|
|
bytes_per_elem = 0.731771
|
|
elif quant_mode == "q4_k_m":
|
|
gate_type = 12 # ggml_type::GGML_TYPE_Q4_K
|
|
up_type = 12 # ggml_type::GGML_TYPE_Q4_K
|
|
down_type = 14 # ggml_type::GGML_TYPE_Q6_K
|
|
bytes_per_elem = 0.648437
|
|
elif quant_mode == "q3_k_m":
|
|
gate_type = 11 # ggml_type::GGML_TYPE_Q3_K
|
|
up_type = 11 # ggml_type::GGML_TYPE_Q3_K
|
|
down_type = 13 # ggml_type::GGML_TYPE_Q5_K
|
|
bytes_per_elem = 0.515625
|
|
elif quant_mode == "q2_k":
|
|
gate_type = 10 # ggml_type::GGML_TYPE_Q2_K
|
|
up_type = 10 # ggml_type::GGML_TYPE_Q2_K
|
|
down_type = 11 # ggml_type::GGML_TYPE_Q3_K
|
|
bytes_per_elem = 0.328125
|
|
elif quant_mode == "iq3_xs":
|
|
gate_type = 21 # ggml_type::GGML_TYPE_IQ3_S
|
|
up_type = 21 # ggml_type::GGML_TYPE_IQ3_S
|
|
down_type = 21 # ggml_type::GGML_TYPE_IQ3_S
|
|
bytes_per_elem = 0.429688
|
|
elif quant_mode == "iq2_xxs":
|
|
gate_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS
|
|
up_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS
|
|
down_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS
|
|
bytes_per_elem = 0.257812
|
|
else:
|
|
assert(False)
|
|
|
|
|
|
mlps = []
|
|
gate_projs = []
|
|
up_projs = []
|
|
down_projs = []
|
|
for _ in range(layer_num):
|
|
gate_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
|
|
up_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
|
|
down_proj = torch.randn((hidden_size, intermediate_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
|
|
config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
|
|
mlp = cpuinfer_ext.mlp.MLP(config)
|
|
gate_projs.append(gate_proj)
|
|
up_projs.append(up_proj)
|
|
down_projs.append(down_proj)
|
|
mlps.append(mlp)
|
|
input = torch.randn((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
|
|
output = torch.empty((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
|
|
|
|
# warm up
|
|
for i in range(warm_up_iter):
|
|
CPUInfer.submit(
|
|
mlps[i % layer_num].forward(
|
|
qlen,
|
|
input[i % layer_num].data_ptr(),
|
|
output[i % layer_num].data_ptr()
|
|
)
|
|
)
|
|
CPUInfer.sync()
|
|
|
|
# test
|
|
start = time.perf_counter()
|
|
for i in range(test_iter):
|
|
CPUInfer.submit(
|
|
mlps[i % layer_num].forward(
|
|
qlen,
|
|
input[i % layer_num].data_ptr(),
|
|
output[i % layer_num].data_ptr()
|
|
)
|
|
)
|
|
CPUInfer.sync()
|
|
end = time.perf_counter()
|
|
total_time = end - start
|
|
print('Quant mode: ', quant_mode)
|
|
print('Time(s): ', total_time)
|
|
print('Iteration: ', test_iter)
|
|
print('Time(us) per iteration: ', total_time / test_iter * 1000000)
|
|
print('Bandwidth: ', hidden_size * intermediate_size * 3 * bytes_per_elem * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
|
|
print('')
|
|
|
|
bench_mlp("fp32")
|
|
bench_mlp("fp16")
|
|
bench_mlp("bf16")
|
|
bench_mlp("q8_0")
|
|
bench_mlp("q6_k")
|
|
bench_mlp("q5_k_m")
|
|
bench_mlp("q4_k_m")
|
|
bench_mlp("q3_k_m")
|
|
bench_mlp("q2_k")
|
|
# Not supported on __x86_64__
|
|
# bench_linear("iq3_xs")
|
|
# bench_linear("iq2_xxs")
|