kvcache-ai-ktransformers/csrc/ktransformers_ext/operators/amx/moe.hpp
2025-05-07 19:12:19 +08:00

398 lines
18 KiB
C++

/**
* @Description :
* @Author : chenht2022
* @Date : 2025-04-25 18:28:12
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditTime : 2025-04-25 18:28:12
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#ifndef CPUINFER_OPERATOR_AMX_MOE_H
#define CPUINFER_OPERATOR_AMX_MOE_H
#include <cmath>
#include <cstdio>
#include <functional>
#include <mutex>
#include <vector>
#include "../../cpu_backend/backend.h"
#include "../../cpu_backend/shared_mem_buffer.h"
#include "llama.cpp/ggml-impl.h"
#include "llama.cpp/ggml-quants.h"
#include "llama.cpp/ggml.h"
#include "llamafile/sgemm.h"
#include "la/amx.hpp"
#ifdef USE_NUMA
#include <numa.h>
#include <numaif.h>
void *numa_alloc_aligned(size_t size, int node, size_t alignment) {
void *ptr = numa_alloc_onnode(size, node);
assert(reinterpret_cast<intptr_t>(ptr) % 64 == 0);
return ptr;
}
#endif
static inline __m512 exp_avx512(__m512 x) {
const __m512 log2e = _mm512_set1_ps(1.44269504089f);
const __m512 c1 = _mm512_set1_ps(0.69314718056f);
__m512 y = _mm512_mul_ps(x, log2e);
__m512i int_part = _mm512_cvtps_epi32(y);
__m512 frac_part = _mm512_sub_ps(y, _mm512_cvtepi32_ps(int_part));
const __m512 poly_1 = _mm512_set1_ps(0.9999999995f);
const __m512 poly_2 = _mm512_set1_ps(0.6931471805f);
const __m512 poly_3 = _mm512_set1_ps(0.2402265069f);
const __m512 poly_4 = _mm512_set1_ps(0.0555041087f);
const __m512 poly_5 = _mm512_set1_ps(0.0096181291f);
const __m512 poly_6 = _mm512_set1_ps(0.0013333558f);
__m512 frac_exp = _mm512_fmadd_ps(
frac_part, poly_6,
_mm512_fmadd_ps(frac_part, poly_5,
_mm512_fmadd_ps(frac_part, poly_4,
_mm512_fmadd_ps(frac_part, poly_3, _mm512_fmadd_ps(frac_part, poly_2, poly_1)))));
__m512 two_pow_i = _mm512_scalef_ps(_mm512_set1_ps(1.0f), _mm512_cvtepi32_ps(int_part));
return _mm512_mul_ps(two_pow_i, frac_exp);
}
static inline __m512 act_fn(__m512 gate_val, __m512 up_val) {
__m512 neg_gate_val = _mm512_sub_ps(_mm512_setzero_ps(), gate_val);
__m512 exp_neg_gate = exp_avx512(neg_gate_val);
__m512 denom = _mm512_add_ps(_mm512_set1_ps(1.0f), exp_neg_gate);
__m512 act_val = _mm512_div_ps(gate_val, denom);
return _mm512_mul_ps(act_val, up_val);
}
struct AMX_MOEConfig {
int expert_num;
int routed_expert_num;
int hidden_size;
int intermediate_size;
int max_len;
void *gate_proj;
void *up_proj;
void *down_proj;
AMX_MOEConfig() {}
AMX_MOEConfig(int expert_num, int routed_expert_num, int hidden_size, int intermediate_size, int max_len,
void *gate_proj, void *up_proj, void *down_proj)
: expert_num(expert_num), routed_expert_num(routed_expert_num), hidden_size(hidden_size),
intermediate_size(intermediate_size), max_len(max_len), gate_proj(gate_proj), up_proj(up_proj),
down_proj(down_proj) {}
};
template <class T> class AMX_MOE {
private:
AMX_MOEConfig config_;
void *gate_proj_; // [expert_num * intermediate_size * hidden_size ( /32 if quantized)]
void *up_proj_; // [expert_num * intermediate_size * hidden_size ( /32 if quantized)]
void *down_proj_; // [expert_num * hidden_size * intermediate_size ( /32 if quantized)]
ggml_bf16_t *m_local_input_; // [routed_expert_num * max_len * hidden_size]
ggml_bf16_t *m_local_gate_output_; // [routed_expert_num * max_len * intermediate_size]
ggml_bf16_t *m_local_up_output_; // [routed_expert_num * max_len * intermediate_size]
ggml_bf16_t *m_local_down_output_; // [routed_expert_num * max_len * hidden_size]
std::vector<std::vector<int>> m_local_pos_; // [max_len, routed_expert_num]
std::vector<int> m_local_num_; // [expert_num]
std::vector<int> m_expert_id_map_; // [expert_num]
std::vector<ggml_bf16_t *> m_local_input_ptr_; // [expert_num]
std::vector<ggml_bf16_t *> m_local_gate_output_ptr_; // [expert_num]
std::vector<ggml_bf16_t *> m_local_up_output_ptr_; // [expert_num]
std::vector<ggml_bf16_t *> m_local_down_output_ptr_; // [expert_num]
std::vector<std::shared_ptr<typename T::BufferA>> gate_up_ba_;
std::vector<std::shared_ptr<typename T::BufferC>> gate_bc_;
std::vector<std::shared_ptr<typename T::BufferC>> up_bc_;
std::vector<std::shared_ptr<typename T::BufferA>> down_ba_;
std::vector<std::shared_ptr<typename T::BufferC>> down_bc_;
#ifdef USE_NUMA
std::vector<std::vector<std::shared_ptr<typename T::BufferB>>> gate_bb_numa_;
std::vector<std::vector<std::shared_ptr<typename T::BufferB>>> up_bb_numa_;
std::vector<std::vector<std::shared_ptr<typename T::BufferB>>> down_bb_numa_;
#else
std::vector<std::shared_ptr<typename T::BufferB>> gate_bb_;
std::vector<std::shared_ptr<typename T::BufferB>> up_bb_;
std::vector<std::shared_ptr<typename T::BufferB>> down_bb_;
#endif
public:
AMX_MOE(AMX_MOEConfig config) {
config_ = config;
gate_proj_ = config_.gate_proj;
up_proj_ = config_.up_proj;
down_proj_ = config_.down_proj;
std::vector<std::pair<void **, uint64_t>> m_mem_requests;
m_mem_requests.push_back({(void **)&m_local_input_,
sizeof(ggml_bf16_t) * config_.routed_expert_num * config_.max_len * config_.hidden_size});
m_mem_requests.push_back({(void **)&m_local_gate_output_, sizeof(ggml_bf16_t) * config_.routed_expert_num *
config_.max_len * config_.intermediate_size});
m_mem_requests.push_back({(void **)&m_local_up_output_, sizeof(ggml_bf16_t) * config_.routed_expert_num *
config_.max_len * config_.intermediate_size});
m_mem_requests.push_back({(void **)&m_local_down_output_,
sizeof(ggml_bf16_t) * config_.routed_expert_num * config_.max_len * config_.hidden_size});
std::vector<void *> gate_up_ba_ptr(config_.expert_num);
std::vector<void *> gate_bc_ptr(config_.expert_num);
std::vector<void *> up_bc_ptr(config_.expert_num);
std::vector<void *> down_ba_ptr(config_.expert_num);
std::vector<void *> down_bc_ptr(config_.expert_num);
for (int i = 0; i < config_.expert_num; i++) {
m_mem_requests.push_back(
{(void **)&gate_up_ba_ptr[i], T::BufferA::required_size(config_.max_len, config_.hidden_size)});
m_mem_requests.push_back(
{(void **)&gate_bc_ptr[i], T::BufferC::required_size(config_.max_len, config_.intermediate_size)});
m_mem_requests.push_back(
{(void **)&up_bc_ptr[i], T::BufferC::required_size(config_.max_len, config_.intermediate_size)});
m_mem_requests.push_back(
{(void **)&down_ba_ptr[i], T::BufferA::required_size(config_.max_len, config_.intermediate_size)});
m_mem_requests.push_back(
{(void **)&down_bc_ptr[i], T::BufferC::required_size(config_.max_len, config_.hidden_size)});
}
shared_mem_buffer.alloc(this, m_mem_requests);
m_local_pos_.resize(config_.max_len);
for (int i = 0; i < config_.max_len; i++) {
m_local_pos_[i].resize(config_.routed_expert_num);
}
m_expert_id_map_.resize(config_.expert_num);
m_local_num_.resize(config_.expert_num);
m_local_input_ptr_.resize(config_.expert_num);
m_local_gate_output_ptr_.resize(config_.expert_num);
m_local_up_output_ptr_.resize(config_.expert_num);
m_local_down_output_ptr_.resize(config_.expert_num);
for (uint64_t i = 0; i < config_.expert_num; i++) {
gate_up_ba_.push_back(
std::make_shared<typename T::BufferA>(config_.max_len, config_.hidden_size, gate_up_ba_ptr[i]));
gate_bc_.push_back(
std::make_shared<typename T::BufferC>(config_.max_len, config_.intermediate_size, gate_bc_ptr[i]));
up_bc_.push_back(std::make_shared<typename T::BufferC>(config_.max_len, config_.intermediate_size, up_bc_ptr[i]));
down_ba_.push_back(
std::make_shared<typename T::BufferA>(config_.max_len, config_.intermediate_size, down_ba_ptr[i]));
down_bc_.push_back(std::make_shared<typename T::BufferC>(config_.max_len, config_.hidden_size, down_bc_ptr[i]));
#ifdef USE_NUMA
int numa_nodes = numa_num_configured_nodes();
gate_bb_numa_.resize(numa_nodes);
up_bb_numa_.resize(numa_nodes);
down_bb_numa_.resize(numa_nodes);
for (int j = 0; j < numa_nodes; j++) {
void *gate_bb_ptr =
numa_alloc_aligned(T::BufferB::required_size(config_.intermediate_size, config_.hidden_size), j, 64);
gate_bb_numa_[j].push_back(
std::make_shared<typename T::BufferB>(config_.intermediate_size, config_.hidden_size, gate_bb_ptr));
void *up_bb_ptr =
numa_alloc_aligned(T::BufferB::required_size(config_.intermediate_size, config_.hidden_size), j, 64);
up_bb_numa_[j].push_back(
std::make_shared<typename T::BufferB>(config_.intermediate_size, config_.hidden_size, up_bb_ptr));
void *down_bb_ptr =
numa_alloc_aligned(T::BufferB::required_size(config_.hidden_size, config_.intermediate_size), j, 64);
down_bb_numa_[j].push_back(
std::make_shared<typename T::BufferB>(config_.hidden_size, config_.intermediate_size, down_bb_ptr));
}
#else
void *gate_bb_ptr =
std::aligned_alloc(64, T::BufferB::required_size(config_.intermediate_size, config_.hidden_size));
gate_bb_.push_back(
std::make_shared<typename T::BufferB>(config_.intermediate_size, config_.hidden_size, gate_bb_ptr));
void *up_bb_ptr =
std::aligned_alloc(64, T::BufferB::required_size(config_.intermediate_size, config_.hidden_size));
up_bb_.push_back(
std::make_shared<typename T::BufferB>(config_.intermediate_size, config_.hidden_size, up_bb_ptr));
void *down_bb_ptr =
std::aligned_alloc(64, T::BufferB::required_size(config_.hidden_size, config_.intermediate_size));
down_bb_.push_back(
std::make_shared<typename T::BufferB>(config_.hidden_size, config_.intermediate_size, down_bb_ptr));
#endif
}
}
~AMX_MOE() { shared_mem_buffer.dealloc(this); }
void load_weights(Backend *backend) {
int nth = T::recommended_nth(config_.intermediate_size);
backend->do_work_stealing_job(
nth * config_.expert_num, nullptr,
[&](int task_id) {
uint64_t expert_idx = task_id / nth;
int ith = task_id % nth;
#ifdef USE_NUMA
int numa_nodes = numa_num_configured_nodes();
for (int j = 0; j < numa_nodes; j++) {
gate_bb_numa_[j][expert_idx]->from_mat((ggml_bf16_t *)config_.gate_proj +
expert_idx * config_.intermediate_size * config_.hidden_size,
ith, nth);
up_bb_numa_[j][expert_idx]->from_mat((ggml_bf16_t *)config_.up_proj +
expert_idx * config_.intermediate_size * config_.hidden_size,
ith, nth);
}
#else
gate_bb_[expert_idx]->from_mat((ggml_bf16_t *)config_.gate_proj +
expert_idx * config_.intermediate_size * config_.hidden_size,
ith, nth);
up_bb_[expert_idx]->from_mat(
(ggml_bf16_t *)config_.up_proj + expert_idx * config_.intermediate_size * config_.hidden_size, ith, nth);
#endif
},
nullptr);
nth = T::recommended_nth(config_.hidden_size);
backend->do_work_stealing_job(
nth * config_.expert_num, nullptr,
[&](int task_id) {
uint64_t expert_idx = task_id / nth;
int ith = task_id % nth;
#ifdef USE_NUMA
int numa_nodes = numa_num_configured_nodes();
for (int j = 0; j < numa_nodes; j++) {
down_bb_numa_[j][expert_idx]->from_mat((ggml_bf16_t *)config_.down_proj +
expert_idx * config_.hidden_size * config_.intermediate_size,
ith, nth);
}
#else
down_bb_[expert_idx]->from_mat((ggml_bf16_t *)config_.down_proj +
expert_idx * config_.hidden_size * config_.intermediate_size,
ith, nth);
#endif
},
nullptr);
}
void warm_up(Backend *backend) {}
void forward(int qlen, int k, const uint64_t *expert_ids, const float *weights, const void *input, void *output,
int *batch_size_tensor, Backend *backend) {
qlen = batch_size_tensor[0];
bool use_amx = (qlen > 4 * config_.expert_num / config_.routed_expert_num);
int activated_expert = 0;
for (int i = 0; i < config_.expert_num; i++) {
m_local_num_[i] = 0;
}
for (int i = 0; i < qlen; i++) {
for (int j = 0; j < k; j++) {
m_local_pos_[i][j] = m_local_num_[expert_ids[i * k + j]]++;
}
}
for (int i = 0; i < config_.expert_num; i++) {
if (m_local_num_[i] > 0) {
m_expert_id_map_[activated_expert] = i;
activated_expert++;
}
}
uint64_t offset = 0;
for (int i = 0; i < config_.expert_num; i++) {
m_local_input_ptr_[i] = m_local_input_ + offset * config_.hidden_size;
m_local_gate_output_ptr_[i] = m_local_gate_output_ + offset * config_.intermediate_size;
m_local_up_output_ptr_[i] = m_local_up_output_ + offset * config_.intermediate_size;
m_local_down_output_ptr_[i] = m_local_down_output_ + offset * config_.hidden_size;
offset += m_local_num_[i];
}
backend->do_work_stealing_job(
qlen, nullptr,
[&](int i) {
for (int j = 0; j < k; j++) {
memcpy(m_local_input_ptr_[expert_ids[i * k + j]] + m_local_pos_[i][j] * config_.hidden_size,
(ggml_bf16_t *)input + i * config_.hidden_size, sizeof(ggml_bf16_t) * config_.hidden_size);
}
},
nullptr);
backend->do_work_stealing_job(
activated_expert, nullptr,
[&](int task_id) {
int expert_idx = m_expert_id_map_[task_id];
gate_up_ba_[expert_idx]->from_mat(m_local_num_[expert_idx], m_local_input_ptr_[expert_idx], 0, 1);
},
nullptr);
int nth = T::recommended_nth(config_.intermediate_size);
backend->do_work_stealing_job(
nth * activated_expert, [&](int _) { T::config(); },
[&](int task_id) {
int expert_idx = m_expert_id_map_[task_id / nth];
int ith = task_id % nth;
#ifdef USE_NUMA
amx::mat_mul(m_local_num_[expert_idx], config_.intermediate_size, config_.hidden_size,
gate_up_ba_[expert_idx], gate_bb_numa_[Backend::numa_node][expert_idx], gate_bc_[expert_idx],
ith, nth, use_amx);
amx::mat_mul(m_local_num_[expert_idx], config_.intermediate_size, config_.hidden_size,
gate_up_ba_[expert_idx], up_bb_numa_[Backend::numa_node][expert_idx], up_bc_[expert_idx], ith,
nth, use_amx);
#else
amx::mat_mul(m_local_num_[expert_idx], config_.intermediate_size, config_.hidden_size,
gate_up_ba_[expert_idx], gate_bb_[expert_idx], gate_bc_[expert_idx], ith, nth, use_amx);
amx::mat_mul(m_local_num_[expert_idx], config_.intermediate_size, config_.hidden_size,
gate_up_ba_[expert_idx], up_bb_[expert_idx], up_bc_[expert_idx], ith, nth, use_amx);
#endif
gate_bc_[expert_idx]->to_mat(m_local_num_[expert_idx], m_local_gate_output_ptr_[expert_idx], ith, nth);
up_bc_[expert_idx]->to_mat(m_local_num_[expert_idx], m_local_up_output_ptr_[expert_idx], ith, nth);
auto [n_start, n_end] = T::split_range_n(config_.intermediate_size, ith, nth);
for (int i = 0; i < m_local_num_[expert_idx]; i++) {
ggml_bf16_t *gate_output_ptr = &m_local_gate_output_ptr_[expert_idx][i * config_.intermediate_size];
ggml_bf16_t *up_output_ptr = &m_local_up_output_ptr_[expert_idx][i * config_.intermediate_size];
for (int j = n_start; j < n_end; j += 32) {
__m512 gate_val0, gate_val1, up_val0, up_val1;
avx512_32xbf16_to_32xfp32((__m512i *)(gate_output_ptr + j), &gate_val0, &gate_val1);
avx512_32xbf16_to_32xfp32((__m512i *)(up_output_ptr + j), &up_val0, &up_val1);
__m512 result0 = act_fn(gate_val0, up_val0);
__m512 result1 = act_fn(gate_val1, up_val1);
avx512_32xfp32_to_32xbf16(&result0, &result1, (__m512i *)(gate_output_ptr + j));
}
}
},
nullptr);
backend->do_work_stealing_job(
activated_expert, nullptr,
[&](int task_id) {
int expert_idx = m_expert_id_map_[task_id];
down_ba_[expert_idx]->from_mat(m_local_num_[expert_idx], m_local_gate_output_ptr_[expert_idx], 0, 1);
},
nullptr);
nth = T::recommended_nth(config_.hidden_size);
backend->do_work_stealing_job(
nth * activated_expert, [&](int _) { T::config(); },
[&](int task_id) {
int expert_idx = m_expert_id_map_[task_id / nth];
int ith = task_id % nth;
#ifdef USE_NUMA
amx::mat_mul(m_local_num_[expert_idx], config_.hidden_size, config_.intermediate_size, down_ba_[expert_idx],
down_bb_numa_[Backend::numa_node][expert_idx], down_bc_[expert_idx], ith, nth, use_amx);
#else
amx::mat_mul(m_local_num_[expert_idx], config_.hidden_size, config_.intermediate_size, down_ba_[expert_idx],
down_bb_[expert_idx], down_bc_[expert_idx], ith, nth, use_amx);
#endif
down_bc_[expert_idx]->to_mat(m_local_num_[expert_idx], m_local_down_output_ptr_[expert_idx], ith, nth);
},
nullptr);
backend->do_work_stealing_job(
qlen, nullptr,
[&](int i) {
for (int e = 0; e < config_.hidden_size; e += 32) {
__m512 x0 = _mm512_setzero_ps();
__m512 x1 = _mm512_setzero_ps();
for (int j = 0; j < k; j++) {
__m512 weight = _mm512_set1_ps(weights[i * k + j]);
__m512 down_output0, down_output1;
avx512_32xbf16_to_32xfp32((__m512i *)(m_local_down_output_ptr_[expert_ids[i * k + j]] +
m_local_pos_[i][j] * config_.hidden_size + e),
&down_output0, &down_output1);
x0 = _mm512_fmadd_ps(down_output0, weight, x0);
x1 = _mm512_fmadd_ps(down_output1, weight, x1);
}
avx512_32xfp32_to_32xbf16(&x0, &x1, (__m512i *)((ggml_bf16_t *)output + i * config_.hidden_size + e));
}
},
nullptr);
}
};
#endif