kvcache-ai-ktransformers/csrc/balance_serve/kvc2/test/pytest_mem_read.py
2025-03-31 22:55:32 +08:00

72 lines
2.2 KiB
Python

import sys
sys.path.append('./build')
sys.path.append('./src')
import torch
import kvc2_ext
from kvc2_utils import alloc_aligned_cache,dealloc_aligned_cache,get_tensor_ptr,get_tensor_from_data_ptr
# Create a kvc2 instance
path = "/mnt/data/kvc2"
kvc2_instance = kvc2_ext.create_kvc2(path,int(10e9)) # 10 G memory pool
# Start IO thread
print("Start IO thread")
kvc2_ext.start_io_thread(kvc2_instance)
print("IO thread started")
# Create CacheInfoInput
test_info = kvc2_ext.CacheInfoInput()
test_info.model_type = kvc2_ext.ModelType.MT_DeepseekV2
test_info.cache_type = kvc2_ext.CacheType.CT_KeyCache
test_info.quant_type = kvc2_ext.QuantType.QT_F32
print("Element size: ", test_info.element_size())
# Generate random test IDs (length = 2560)
length = 2560
test_id = torch.randint(0, 65536, (length,), dtype=torch.uint16).contiguous()
block_count = (length+255) // 256
# print("Test ID: ", test_id)
# Generate test data based on element size and hidden layer count
element_size = test_info.element_size()
hidden_layer_count = test_info.hidden_layer_count()
write_data,write_data_mem = alloc_aligned_cache(hidden_layer_count,block_count,element_size)
# print(test_data,test_data_mem)
print('Generate Insert Data')
for layer in write_data:
for data in layer:
random_values = torch.randint(0, 256, (element_size,), dtype=torch.uint8)
data.copy_(random_values)
print('Insert New data')
# Insert raw data
kvc2_ext.raw_insert(kvc2_instance, test_info, test_id.data_ptr(), length, get_tensor_ptr(write_data))
handle = kvc2_ext.lookup(kvc2_instance, test_info, test_id.data_ptr(), length)
matched_length = kvc2_ext.matched_length(handle)
matched_data = kvc2_ext.handle_data(handle)
print('Matched length: ', matched_length)
print(f'Match data layer {len(matched_data)}')
print(f'Match layer block count {len(matched_data[0])}')
read_data = get_tensor_from_data_ptr(matched_data,element_size)
for layer_w,layer_r in zip(write_data,read_data):
for data_w,data_r in zip(layer_w,layer_r):
# print(data_w,data_r)
assert torch.equal(data_w,data_r)
print("Lookup read check ok.")
dealloc_aligned_cache(write_data_mem)
kvc2_ext.save(kvc2_instance)
print("Test completed successfully.")