mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 12:09:48 +00:00
133 lines
No EOL
5.7 KiB
Python
133 lines
No EOL
5.7 KiB
Python
"""
|
|
Date: 2024-11-06 10:05:11
|
|
LastEditors: djw
|
|
LastEditTime: 2024-11-13 07:50:51
|
|
"""
|
|
|
|
import math
|
|
from dataclasses import dataclass
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
import math
|
|
from typing import List, Optional, Tuple, Union
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from ktransformers.server.balance_serve.inference.forward_batch import ForwardBatchInput, ForwardBatchOutput
|
|
from ktransformers.models.custom_cache import KGQACache
|
|
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeModel, Qwen2MoePreTrainedModel
|
|
from ktransformers.models.configuration_qwen2_moe import Qwen2MoeConfig
|
|
from ktransformers.operators.flashinfer_batch_prefill_wrapper import flashInferAttn
|
|
|
|
torch.set_grad_enabled(False)
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
import flashinfer
|
|
|
|
class KQwen2MoeForCausalLM(Qwen2MoePreTrainedModel):
|
|
|
|
cache: KGQACache
|
|
use_cuda_graph = False
|
|
def __init__(
|
|
self,
|
|
config: Qwen2MoeConfig,
|
|
cache,
|
|
):
|
|
super().__init__(config)
|
|
self.model = Qwen2MoeModel(config)
|
|
self.config = config
|
|
self.cache = cache
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
self.attn = [None] * 100
|
|
|
|
def init_wrapper(self, use_cuda_graph, device, max_batch_token, max_batch_size, max_pages, cuda_graph_idx = 0):
|
|
self.attn[cuda_graph_idx] = flashInferAttn(use_cuda_graph=use_cuda_graph, max_batch_token=max_batch_token, max_batch_size=max_batch_size, max_pages=max_pages, device=device)
|
|
|
|
|
|
def batch_embeddings(self, batch: ForwardBatchInput, device="cuda:0"):
|
|
features = []
|
|
for i in range(batch.batch_size):
|
|
tokens = batch.minibatch.tokens.contiguous()
|
|
feature = (
|
|
self.model.embed_tokens(tokens.to(torch.device('cpu')))
|
|
.to(torch.bfloat16)
|
|
.to(device=device)
|
|
)
|
|
features.append(feature)
|
|
|
|
return features
|
|
|
|
|
|
def forward(
|
|
self,
|
|
batch: ForwardBatchInput | None = None,
|
|
features: List[torch.Tensor] | None = None,
|
|
bsz_tensors: torch.Tensor | None = None,
|
|
num_tokens_tensors: torch.Tensor | None = None,
|
|
page_idx: torch.Tensor | None = None,
|
|
page_offset: torch.Tensor | None = None,
|
|
cuda_graph_idx: int | None = 0
|
|
) -> ForwardBatchOutput:
|
|
current_stream = torch.cuda.current_stream()
|
|
|
|
forward_batch_output = ForwardBatchOutput()
|
|
|
|
|
|
hidden_states = features[0]
|
|
self.attn[cuda_graph_idx].calc_batch_indices(hidden_states.shape[0])
|
|
|
|
with torch.cuda.stream(current_stream):
|
|
residual = torch.zeros_like(hidden_states)
|
|
for i, decode_layer in enumerate(self.model.layers):
|
|
if self.model.transfer_map is not None and i in self.model.transfer_map:
|
|
prev_stream = torch.cuda.current_stream()
|
|
cur_device = self.model.transfer_map[i]
|
|
if cur_device not in self.model.stream_device_map:
|
|
self.model.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
|
|
torch.cuda.set_device(cur_device)
|
|
self.model.stream_device_map[cur_device].wait_stream(prev_stream)
|
|
torch.cuda.set_stream(self.model.stream_device_map[cur_device])
|
|
hidden_states = hidden_states.to(
|
|
self.model.transfer_map[i], non_blocking=True
|
|
)
|
|
|
|
batch.minibatch.position_ids = (
|
|
batch.minibatch.position_ids.to(self.model.transfer_map[i], non_blocking=True)
|
|
if batch.minibatch.position_ids is not None
|
|
else None
|
|
)
|
|
hidden_states, residual = decode_layer.input_layernorm(hidden_states, num_tokens_tensors, residual)
|
|
hidden_states = decode_layer.self_attn(hidden_states, self.cache,
|
|
position_ids=batch.minibatch.position_ids,
|
|
wrapper=self.attn[cuda_graph_idx], bsz_tensors=num_tokens_tensors,
|
|
page_idx=page_idx,
|
|
page_offset=page_offset
|
|
)
|
|
|
|
hidden_states, residual = decode_layer.post_attention_layernorm(hidden_states, num_tokens_tensors, residual)
|
|
hidden_states = decode_layer.mlp(hidden_states.unsqueeze(0), num_tokens_tensors, cuda_graph_idx)
|
|
hidden_states = hidden_states.squeeze(0)
|
|
forward_batch_output = ForwardBatchOutput()
|
|
with torch.cuda.stream(current_stream):
|
|
local_logit = self.lm_head(self.model.norm(hidden_states, num_tokens_tensors, residual)[0], num_tokens_tensors)
|
|
forward_batch_output.logits.append(local_logit)
|
|
|
|
return forward_batch_output
|
|
|
|
|
|
|
|
def flash_infer_attn_plan(self, batch: ForwardBatchInput, bsz_tensors, num_tokens_tensors,
|
|
num_q_heads: int,
|
|
num_kv_heads: int,
|
|
head_dim: int,
|
|
page_size: int,
|
|
causal: bool,
|
|
q_data_type: torch.dtype,
|
|
kv_data_type: torch.dtype,
|
|
cuda_graph_idx: int = 0
|
|
):
|
|
minibatch = batch.minibatch
|
|
self.attn[cuda_graph_idx].plan(minibatch.q_indptr, minibatch.kv_indptr, minibatch.kv_indices,
|
|
minibatch.kv_last_page_len, bsz_tensors, num_tokens_tensors,num_q_heads, num_kv_heads, head_dim, page_size, causal=causal, q_data_type=q_data_type, kv_data_type=kv_data_type)
|
|
|