kvcache-ai-ktransformers/ktransformers/models/custom_cache.py

333 lines
No EOL
14 KiB
Python

'''
Description :
Author : Boxin Zhang
Version : 0.1.0
'''
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/cache_utils.py
# Copyright 2018- The Hugging Face team. All rights reserved.
# Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
import torch
import torch.nn as nn
import transformers
from transformers import Cache, PretrainedConfig
from typing import List, Optional, Dict, Any, Tuple
try:
from ktransformers.server.balance_serve.settings import sched_ext
except:
print("no balance_serve")
class StaticCache(transformers.StaticCache):
"""
Static Cache class to be used with `torch.compile(model)`.
Parameters:
config (`PretrainedConfig):
The configuration file defining the shape-related attributes required to initialize the static cache.
max_batch_size (`int`):
The maximum batch size with which the model will be used.
max_cache_len (`int`):
The maximum sequence length with which the model will be used.
device (`torch.device` or `dict`):
The device on which the cache should be initialized. Should be the same as the layer.
If a `dict`, it should contain the `device` key with the device name as the value.
dtype (*optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
"""
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device: torch.device| dict, dtype=None) -> None:
Cache.__init__(self)
self.max_batch_size = max_batch_size
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
if config.architectures[0] == "DeepseekV3ForCausalLM":
self.head_dim = config.qk_rope_head_dim
else:
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
self.dtype = dtype if dtype is not None else torch.float32
self.num_key_value_heads = (
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
)
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
if config.architectures[0] == "DeepseekV2ForCausalLM" or config.architectures[0] == "DeepseekV3ForCausalLM":
# TODO: for deepseek, cache_shape is different whether using Absorbed MLA, check it automatically
self.page_size = 64
self.max_pages = (self.max_cache_len + self.page_size - 1) // self.page_size
latent_shape = (self.max_pages, self.page_size, 1, config.kv_lora_rank + config.qk_rope_head_dim)
self.kv_lora_rank = config.kv_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
# TODO: support real page table
self.page_table_map = dict()
self.page_table_list = []
for idx in range(config.num_hidden_layers):
if isinstance(device, dict):
target_device = device[f"model.layers.{idx}.self_attn"]["generate_device"]
else:
target_device = device
if target_device not in self.page_table_map:
page_table = torch.zeros((max_batch_size, self.max_pages), dtype=torch.int32, device=target_device)
for seq_id in range(max_batch_size):
page_table[seq_id, :] = torch.arange(seq_id * self.max_pages, seq_id * self.max_pages + self.max_pages, dtype=torch.int32, device=target_device)
self.page_table_map[target_device] = page_table
self.page_table_list.append(self.page_table_map[target_device])
self.is_MLA = True
self.is_page = True
else:
key_shape = cache_shape
value_shape = cache_shape
self.is_MLA = False
self.past_tokens = []
self.num_hidden_layers = config.num_hidden_layers
for idx in range(self.num_hidden_layers):
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
# breaks when updating the cache.
if isinstance(device, dict):
target_device = device[f"model.layers.{idx}.self_attn"]["generate_device"]
else:
target_device = device
if self.is_MLA:
new_layer_key_cache = torch.zeros(latent_shape, dtype=self.dtype, device=target_device)
new_layer_value_cache = None
torch._dynamo.mark_static_address(new_layer_key_cache)
else:
new_layer_key_cache = torch.zeros(key_shape, dtype=self.dtype, device=target_device)
new_layer_value_cache = torch.zeros(value_shape, dtype=self.dtype, device=target_device)
torch._dynamo.mark_static_address(new_layer_key_cache)
torch._dynamo.mark_static_address(new_layer_value_cache)
self.key_cache.append(new_layer_key_cache)
self.value_cache.append(new_layer_value_cache)
self.past_tokens.append(0)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
to know how where to write in the cache.
Return:
A tuple containing the updated key and value states.
"""
cache_position = cache_kwargs.get("cache_position")
k_out = self.key_cache[layer_idx]
v_out = self.value_cache[layer_idx]
self.past_tokens[layer_idx] += cache_position.size(0)
#print(cache_position)
if self.is_MLA:
page_idx = cache_position // self.page_size
page_offset = cache_position % self.page_size
# key shape (self.max_pages, self.page_size, 1, config.kv_lora_rank + config.qk_rope_head_dim)
k_out[page_idx, page_offset, :, :self.kv_lora_rank] = key_states
k_out[page_idx, page_offset, :, self.kv_lora_rank:] = value_states
return k_out, self.page_table_list[layer_idx]
else:
k_out[:, :, cache_position] = key_states
v_out[:, :, cache_position] = value_states
return k_out, v_out
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states that were seen by the model."""
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
# limit the check to the first batch member and head dimension.
# TODO: deprecate this function in favor of `cache_position`
return self.past_tokens[layer_idx]
def change_seq_length(self, bias: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states that were seen by the model."""
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
# limit the check to the first batch member and head dimension.
# TODO: deprecate this function in favor of `cache_position`
for layer_idx in range(self.num_hidden_layers):
self.past_tokens[layer_idx] += bias
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states."""
return self.max_cache_len
def reset(self):
"""Resets the cache values while preserving the objects"""
for layer_idx in range(len(self.key_cache)):
# In-place ops prevent breaking the static address
self.key_cache[layer_idx].zero_()
if self.value_cache[layer_idx] is not None:
self.value_cache[layer_idx].zero_()
self.past_tokens[layer_idx] = 0
def remove_suffix(self, start_pos):
for layer_idx in range(len(self.key_cache)):
# In-place ops prevent breaking the static address
if self.is_MLA:
k_cache = self.key_cache[layer_idx]
k_cache.view(-1, k_cache.shape[-1])[start_pos:].zero_()
else:
self.key_cache[layer_idx][..., start_pos:, :].zero_()
self.value_cache[layer_idx][..., start_pos:, :].zero_()
self.past_tokens[layer_idx] = start_pos
def get_max_cache_shape(self) -> Tuple[int, int, int, int]:
"""Returns the maximum shape of the cache."""
return self.max_cache_len
class KDeepSeekV3Cache(nn.Module):
def __init__(
self,
config: PretrainedConfig,
page_size: int = 256,
dtype=torch.bfloat16,
device=torch.device("cuda:0"),
):
super().__init__()
self.config = config
self.dtype = dtype
self.device = device
self.kv_lora_rank = config.kv_lora_rank
self.page_size = page_size
self.k_caches = []
self.v_caches = []
def load(self, inference_context: "sched_ext.InferenceContext"):
for i in range(self.config.num_hidden_layers):
self.k_caches.append(
inference_context.k_cache[0][i]
)
self.max_cache_len = self.k_caches[0].shape[0]*self.k_caches[0].shape[1]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
to know how where to write in the cache.
Return:
A tuple containing the updated key and value states.
"""
k_out = self.k_caches[layer_idx]
k_out[page_idx, page_offset, :, :self.kv_lora_rank] = key_states.reshape(-1, *key_states.shape[2:])
k_out[page_idx, page_offset, :, self.kv_lora_rank:] = value_states.reshape(-1, *value_states.shape[2:])
return k_out
def get_page_table(self, cache_position: torch.Tensor, q_indptr: torch.Tensor, kv_indptr: torch.Tensor, kv_indices: torch.Tensor, bsz_tensors: torch.tensor):
page_offset = cache_position % self.page_size
page_idx_local = cache_position // self.page_size
query_ids = torch.zeros_like(cache_position)
for i in range(len(q_indptr) - 1):
start_idx = q_indptr[i]
end_idx = q_indptr[i + 1]
query_ids[start_idx:end_idx] = i
page_idx = torch.zeros_like(page_idx_local)
for i in range(bsz_tensors[0]):
query_id = query_ids[i]
local_block = page_idx_local[i]
start_block = kv_indptr[query_id]
if local_block < kv_indptr[query_id + 1] - kv_indptr[query_id]:
page_idx[i] = kv_indices[start_block + local_block]
return page_idx, page_offset
class KGQACache(nn.Module):
def __init__(
self,
config: PretrainedConfig,
page_size: int = 256,
dtype=torch.bfloat16,
device=torch.device("cuda:0"),
):
super().__init__()
self.config = config
self.dtype = dtype
self.device = device
self.page_size = page_size
self.k_caches = []
self.v_caches = []
def load(self, inference_context: sched_ext.InferenceContext):
print(self.config.num_hidden_layers)
for i in range(self.config.num_hidden_layers):
self.k_caches.append(
inference_context.k_cache[0][i]
)
self.v_caches.append(
inference_context.v_cache[0][i]
)
self.max_cache_len = self.k_caches[0].shape[0]*self.k_caches[0].shape[1]
def get_page_table(self, cache_position: torch.Tensor, q_indptr: torch.Tensor, kv_indptr: torch.Tensor, kv_indices: torch.Tensor, bsz_tensors: torch.tensor):
page_offset = cache_position % self.page_size
page_idx_local = cache_position // self.page_size
query_ids = torch.zeros_like(cache_position)
for i in range(len(q_indptr) - 1):
start_idx = q_indptr[i]
end_idx = q_indptr[i + 1]
query_ids[start_idx:end_idx] = i
page_idx = torch.zeros_like(page_idx_local)
for i in range(bsz_tensors[0]):
query_id = query_ids[i]
local_block = page_idx_local[i]
start_block = kv_indptr[query_id]
if local_block < kv_indptr[query_id + 1] - kv_indptr[query_id]:
page_idx[i] = kv_indices[start_block + local_block]
return page_idx, page_offset
def get_k_cache(self, layer_idx):
return self.k_caches[layer_idx]
def get_v_cache(self, layer_idx):
return self.v_caches[layer_idx]