kvcache-ai-ktransformers/ktransformers/server/backend/interfaces/ktransformers.py
2025-07-22 10:58:25 +00:00

526 lines
No EOL
23 KiB
Python

import torch
from torch import nn
try:
import torch_npu
from ktransformers.util.ascend.ascend_utils import get_absort_weight, setup_model_parallel
from ktransformers.util.utils import get_device, get_all_used_cuda_device
from ktransformers.util import utils
use_torch_npu = torch_npu.npu.is_available()
except:
use_torch_npu = False
import os
from typing import Optional, List
import asyncio
from transformers import AutoTokenizer, AutoConfig, GenerationConfig
from ktransformers.server.backend.interfaces.transformers import (
TransformersInterface,
ConfigArgs,
TransformersThreadContext,
default_args,
TextStreamer,
)
from ktransformers.server.config.log import logger
from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.custom_cache import StaticCache
from ktransformers.util.cuda_graph_runner import CUDAGraphRunner
from ktransformers.local_chat import custom_models, default_optimize_rules
from ktransformers.util.utils import get_device
from typing import Optional
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled, MLAWrapperSingleton
from ktransformers.server.schemas.endpoints.chat import RawUsage
warm_uped = False
class KTransformersThreadContext(TransformersThreadContext):
pass
class KTransformersInterface(TransformersInterface):
def __init__(self, args: ConfigArgs = default_args, input_args=None):
if use_torch_npu:
self.args = input_args
self.local_rank, self.world_size = setup_model_parallel(tp=self.args.tp)
if utils.CUR_DEVICE is None:
utils.CUR_DEVICE = f"npu:{torch.npu.current_device()}"
self.args.device = utils.CUR_DEVICE
else:
self.args = args
torch.set_grad_enabled(False)
self.tokenizer = AutoTokenizer.from_pretrained(args.model_dir, device=args.device, trust_remote_code=args.trust_remote_code)
config = AutoConfig.from_pretrained(args.model_dir, trust_remote_code=args.trust_remote_code)
try:
generation_config = GenerationConfig.from_pretrained(args.model_dir)
except:
generation_config = GenerationConfig(
max_length=args.max_new_tokens,
temperature=args.temperature,
top_p=args.top_p,
do_sample=True
)
torch.set_default_dtype(config.torch_dtype)
if config.architectures[0] == "Qwen2MoeForCausalLM":
config._attn_implementation = "flash_attention_2"
with torch.device("meta"):
self.model = custom_models[config.architectures[0]](config)
if use_torch_npu and input_args.optimize_config_path is not None:
optimize_config_path = input_args.optimize_config_path
elif default_args.optimize_config_path is None:
optimize_config_path = default_optimize_rules[config.architectures[0]]
else:
optimize_config_path = args.optimize_config_path
# print(optimize_config)
gguf_path = args.gguf_path
if gguf_path is None:
gguf_path = input(
"please input the path of your gguf file(gguf file in the dir containing input gguf file must all"
" belong to current model):"
)
if use_torch_npu:
optimize_and_load_gguf(self.model, optimize_config_path, gguf_path, config, q4_gguf_path=input_args.q4_gguf_path)
#提前absorbed
get_absort_weight(self.model, config)
self.model.eval()
else:
optimize_and_load_gguf(self.model, optimize_config_path, gguf_path, config)
self.model.generation_config = generation_config
self.device_map = self.model.gguf_loader.tensor_device_map
# logger.info(f"{args.model_name} loaded from {args.model_dir} to {self.device_map}")
self.cache = StaticCache(
config=self.model.config,
max_batch_size=args.batch_size,
max_cache_len=args.cache_lens,
device=self.device_map,
dtype=self.model.dtype,
)
# logger.info(f"StaticCache (length={args.cache_lens}), batch size:{args.batch_size}")
if self.model.generation_config.pad_token_id is None:
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
self.streamer = TextStreamer(self.tokenizer)
if use_torch_npu:
self.top_p = torch.tensor([[self.model.generation_config.top_p]], dtype=torch.float16, device=self.args.device)
self.top_k = torch.tensor([[self.model.generation_config.top_k]], dtype=torch.int32, device=self.args.device)
self.temperature = torch.tensor([[self.model.generation_config.temperature]], dtype=torch.float16, device=self.args.device)
self.next_token_fake = torch.tensor([[1]], dtype=torch.int32, device=self.args.device)
self.next_token_probs = torch.tensor([[1.0]], dtype=torch.float16, device=self.args.device)
self._infer_lock = asyncio.Lock()
self._infer_lock = asyncio.Lock()
def decode_logits_to_token(self, logits: torch.Tensor):
if self.model.generation_config.do_sample:
logits = logits / self.temperature
torch.manual_seed(0)
probs = logits.view(1, self.model.config.vocab_size)
sm = nn.Softmax(dim=-1)
probs = sm(probs).half().npu()
next_token = self.next_token_fake
torch_npu._npu_topk_topp_sampling(probs, self.top_k, self.top_p, next_token, self.next_token_probs)
last = next_token.squeeze(-1)
else:
logits = self.logits_warper(self.inputs.view(1, -1), logits.view(1, -1))
probs = torch.nn.functional.softmax(logits, dim=-1)
_, last = torch.topk(probs, k=1, dim=-1)
last = last.item()
self.ever_generated_ids.add(last)
return last
def decode_one_tokens_npu(self):
global warm_uped
device_map = self.model.gguf_loader.tensor_device_map
torch_device = get_device("blk.0.self_attn", device_map)
torch_device = "cuda:0" if torch_device == "cuda" else torch_device
torch.cuda.set_device(torch_device)
if warm_uped and self.args.use_cuda_graph:
from ktransformers.util.npu_graph_runner import get_or_create_runner, check_runner
if check_runner(self.args.device):
npu_graph_runner = get_or_create_runner(self.args.device)
npu_graph_runner.init(self.args.batch_size, self.seq_length)
self.cuda_graph_runner = npu_graph_runner
utils._USE_NPU_GRAPH = True
self.cuda_graph_runner.capture(
self.model,
self.current_ids,
self.active_cache_position.unsqueeze(0),
self.active_cache_position,
self.cache,
main_device=self.args.device,
return_dict=False,
use_cache=True,
)
if hasattr(self, "cuda_graph_runner"):
inputs_embeds = self.model.model.embed_tokens(self.current_ids.to("cpu")).to(self.args.device)
logits = self.cuda_graph_runner(
inputs_embeds, self.active_cache_position.unsqueeze(0), self.active_cache_position
)
self.cache.change_seq_length(1)
torch.cuda.synchronize()
logits = logits[0, -1, :]
return self.decode_logits_to_token(logits)
if self.args.use_cuda_graph:
warm_uped = True
if self.use_static_cache:
logits = self.model(
self.current_ids.to(torch_device),
cache_position=self.active_cache_position,
past_key_values=self.cache,
return_dict=False,
use_cache=True,
)[0]
else:
logits = self.model(self.current_ids, return_dict=False)[0]
self.cache.change_seq_length(1)
logits = logits[0, -1, :]
return self.decode_logits_to_token(logits)
def decode_one_tokens(self):
if use_torch_npu:
return self.decode_one_tokens_npu()
global warm_uped
device_map = self.model.gguf_loader.tensor_device_map
torch_device = get_device("blk.0.self_attn", device_map)
torch_device = "cuda:0" if torch_device == "cuda" else torch_device
torch.cuda.set_device(torch_device)
if warm_uped and self.args.use_cuda_graph:
if not hasattr(self, "cuda_graph_runner"):
self.cuda_graph_runner = CUDAGraphRunner()
self.cuda_graph_runner.capture(
self.model,
self.current_ids,
self.active_cache_position.unsqueeze(0),
self.active_cache_position,
self.cache,
main_device=torch_device,
return_dict=False,
use_cache=True,
)
if hasattr(self, "cuda_graph_runner"):
logits = self.cuda_graph_runner(
self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position
)
self.cache.change_seq_length(1)
torch.cuda.synchronize()
logits = logits[0, -1, :]
return self.logits_to_token(logits)
if self.args.use_cuda_graph:
warm_uped = True
if self.use_static_cache:
logits = self.model(
self.current_ids.to(torch_device),
cache_position=self.active_cache_position,
past_key_values=self.cache,
return_dict=False,
use_cache=True,
)[0]
else:
logits = self.model(self.current_ids, return_dict=False)[0]
logits = logits[0, -1, :]
return self.logits_to_token(logits)
@torch.no_grad
def prefill_npu(self, input_ids: torch.Tensor, is_new: bool, temperature: Optional[float] = None, top_p: Optional[float] = None, max_tokens: Optional[float] = None, max_completion_tokens: Optional[float] = None):
input_ids_length = input_ids.shape[-1]
if(input_ids_length >= self.args.cache_lens):
logger.warning(f"input_ids_length {input_ids_length} > cache_lens {self.args.cache_lens}")
self.seq_length = input_ids_length
return
logger.debug(f"input_ids: {input_ids.shape}")
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
device = "cuda:0" if device == "cuda" else device
device = self.args.device
if is_new:
self.ever_generated_ids.clear()
same_prefix = 0
flat_input_ids = input_ids.flatten()
if getattr(self, 'generated_ids', None) is None:
self.generated_ids = torch.zeros(
self.args.batch_size,
input_ids.shape[-1] + self.args.max_new_tokens + 1,
dtype=torch.int,
device=self.args.device,
)
self.seq_length = 1
# flat_prev_ids = self.generated_ids.flatten()
# for i in range(min(self.seq_length, flat_input_ids.shape[0]) - 1):
# if flat_input_ids[i] == flat_prev_ids[i]:
# same_prefix += 1
# else:
# break
logger.debug(f"same prefix len: {same_prefix}")
self.cache.remove_suffix(same_prefix)
self.seq_length = same_prefix
self.cache.position[0] = same_prefix
self.generated_ids = self.generated_ids[..., :same_prefix]
input_ids = input_ids[..., same_prefix:]
input_ids_length = input_ids.shape[-1]
self.ever_generated_ids.clear()
self.profiler.set_counter("prefill", input_ids_length)
logger.debug(f"input_ids: {input_ids.shape}")
logger.debug(f"generate_ids: {self.generated_ids.shape}")
former_seq_length = self.seq_length
self.seq_length += input_ids_length
expected_length = min(self.seq_length + self.args.max_new_tokens + 1, self.args.cache_lens)
delta_length = expected_length - self.generated_ids.shape[-1]
if delta_length > 0:
new_generate_ids = torch.zeros(
self.args.batch_size, delta_length, dtype=torch.int, device=self.args.device
)
self.generated_ids = torch.cat([self.generated_ids, new_generate_ids], dim=-1)
else:
logger.warning(f"seq_length bigger than cache_lens, killed")
exit(0)
logger.debug(f"cache position: {former_seq_length} to {self.seq_length}")
cache_position = torch.arange(former_seq_length, self.seq_length, device=device)
self.cache.position[0] = self.seq_length + 1
self.generated_ids[:, cache_position] = input_ids.to(self.args.device).to(torch.int)
if not (type(self) is TransformersInterface):
input_ids = input_ids.to("cpu")
def chunk_prefill(input_ids, cache_position):
inputs_embeds = self.model.model.embed_tokens(input_ids).to(device)
torch.cuda.set_device(device)
if flashinfer_enabled:
MLAWrapperSingleton.need_plan_all()
if self.use_static_cache:
logits = self.model(
inputs_embeds=inputs_embeds,
cache_position=cache_position,
past_key_values=self.cache,
return_dict=False,
use_cache=True,
)[0]
else:
logits = self.model(inputs_embeds=inputs_embeds, return_dict=False)[0]
return logits
logits = None
def prefill_wrapper(prof=None):
nonlocal logits
chunk_start = 0
while chunk_start < input_ids_length:
chunk_end = min(chunk_start + self.args.chunk_size, input_ids_length)
if self.cache != None:
self.cache.cur_idx = cache_position[chunk_start:chunk_end]
logits = chunk_prefill(input_ids[:, chunk_start:chunk_end], cache_position[chunk_start:chunk_end])
chunk_start += self.args.chunk_size
if prof is not None:
prof.step()
if prof is not None:
prof.stop()
if logits is None:
raise ValueError('logits cannot be None')
global WARM_UP_SKIP_CNT
prof_prefill = os.environ["PROF_PREFILL"] if "PROF_PREFILL" in os.environ else "0"
if prof_prefill == "1":
experimental_config = torch_npu.profiler._ExperimentalConfig(
aic_metrics=torch_npu.profiler.AiCMetrics.PipeUtilization,
profiler_level=torch_npu.profiler.ProfilerLevel.Level1, l2_cache=False
)
with torch_npu.profiler.profile(
activities=[
torch_npu.profiler.ProfilerActivity.CPU,
torch_npu.profiler.ProfilerActivity.NPU
],
schedule=torch_npu.profiler.schedule(wait=0, warmup=0, active=8, repeat=1, skip_first=0),
on_trace_ready=torch_npu.profiler.tensorboard_trace_handler("./prefill_prof_lm_head"),
record_shapes=True,
profile_memory=True,
with_stack=False,
with_flops=False,
with_modules=False,
experimental_config=experimental_config) as prof:
prefill_wrapper(prof)
else:
prefill_wrapper()
if flashinfer_enabled:
MLAWrapperSingleton.reset_buffer()
self.prepare_logits_wrapper(input_ids, device, temperature, top_p)
next_token = self.logits_to_token(logits[0, -1, :])
yield self.append_new_tokens(next_token)
@torch.no_grad
def prefill(self, input_ids: torch.Tensor, is_new: bool, temperature: Optional[float] = None, top_p: Optional[float] = None, max_tokens: Optional[float] = None, max_completion_tokens: Optional[float] = None):
if use_torch_npu:
return self.prefill_npu(self, input_ids, is_new, temperature, top_p, max_tokens, max_completion_tokens)
input_ids_length = input_ids.shape[-1]
if max_tokens is not None:
max_completion_tokens = max_tokens
if max_completion_tokens is None:
max_new_tokens = self.args.max_new_tokens
else:
max_new_tokens = min(self.args.max_new_tokens, max_completion_tokens)
if(input_ids_length >= self.args.cache_lens):
logger.warning(f"input_ids_length {input_ids_length} > cache_lens {self.args.cache_lens}")
self.seq_length = input_ids_length
return
logger.debug(f"input_ids: {input_ids.shape}")
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
device = "cuda:0" if device == "cuda" else device
if use_torch_npu:
device = self.args.device
if is_new:
self.ever_generated_ids.clear()
same_prefix = 0
flat_input_ids = input_ids.flatten()
if getattr(self, 'generated_ids', None) is None:
self.generated_ids = torch.zeros(
self.args.batch_size,
input_ids.shape[-1] + max_new_tokens + 1,
dtype=torch.int,
device=self.args.device,
)
self.seq_length = 1
if not use_torch_npu:
flat_prev_ids = self.generated_ids.flatten()
for i in range(min(self.seq_length, flat_input_ids.shape[0]) - 1):
if flat_input_ids[i] == flat_prev_ids[i]:
same_prefix += 1
else:
break
logger.debug(f"same prefix len: {same_prefix}")
self.cache.remove_suffix(same_prefix)
self.seq_length = same_prefix
if use_torch_npu:
self.cache.position[0] = same_prefix
self.generated_ids = self.generated_ids[..., :same_prefix]
input_ids = input_ids[..., same_prefix:]
input_ids_length = input_ids.shape[-1]
self.ever_generated_ids.clear()
self.profiler.set_counter("prefill", input_ids_length)
logger.debug(f"input_ids: {input_ids.shape}")
logger.debug(f"generate_ids: {self.generated_ids.shape}")
former_seq_length = self.seq_length
self.seq_length += input_ids_length
expected_length = min(self.seq_length + max_new_tokens + 1, self.args.cache_lens)
delta_length = expected_length - self.generated_ids.shape[-1]
if delta_length > 0:
new_generate_ids = torch.zeros(
self.args.batch_size, delta_length, dtype=torch.int, device=self.args.device
)
self.generated_ids = torch.cat([self.generated_ids, new_generate_ids], dim=-1)
else:
logger.warning(f"seq_length bigger than cache_lens, killed")
exit(0)
logger.debug(f"cache position: {former_seq_length} to {self.seq_length}")
cache_position = torch.arange(former_seq_length, self.seq_length, device=device)
if use_torch_npu:
self.cache.position[0] = self.seq_length + 1
self.generated_ids[:, cache_position] = input_ids.to(self.args.device).to(torch.int)
if not (type(self) is TransformersInterface):
input_ids = input_ids.to("cpu")
def chunk_prefill(input_ids, cache_position):
inputs_embeds = self.model.model.embed_tokens(input_ids).to(device)
torch.cuda.set_device(device)
if flashinfer_enabled:
MLAWrapperSingleton.need_plan_all()
if self.use_static_cache:
logits = self.model(
inputs_embeds=inputs_embeds,
cache_position=cache_position,
past_key_values=self.cache,
return_dict=False,
use_cache=True,
)[0]
else:
logits = self.model(inputs_embeds=inputs_embeds, return_dict=False)[0]
return logits
chunk_start = 0
while chunk_start < input_ids_length:
chunk_end = min(chunk_start + self.args.chunk_size, input_ids_length)
if self.cache != None:
self.cache.cur_idx=cache_position[chunk_start:chunk_end]
logits = chunk_prefill(input_ids[:, chunk_start:chunk_end], cache_position[chunk_start:chunk_end])
chunk_start += self.args.chunk_size
if flashinfer_enabled:
MLAWrapperSingleton.reset_buffer()
self.prepare_logits_wrapper(input_ids, device, temperature, top_p)
next_token = self.logits_to_token(logits[0, -1, :])
self.max_new_tokens = min(max_new_tokens, self.args.cache_lens - self.seq_length) - 1
yield self.append_new_tokens(next_token)
@property
def active_cache_position(self):
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
return torch.tensor([self.seq_length - 1], device=device)
async def inference(self, local_messages, thread_id: str, temperature: Optional[float] = None, top_p: Optional[float] = None, max_tokens: Optional[float] = None, max_completion_tokens: Optional[float] = None):
async with self._infer_lock:
async for v in super().inference(local_messages, thread_id, temperature, top_p, max_tokens, max_completion_tokens):
yield v
# return this inference raw usage
yield RawUsage(
tokenize_time = self.profiler.get_timer_sec('tokenize'),
prefill_time = self.profiler.get_timer_sec('prefill'),
decode_time = self.profiler.get_timer_sec('decode'),
prefill_count = self.profiler.get_counter('prefill'),
decode_count = self.profiler.get_counter('decode'),
)
def sync_inference(self, local_messages, thread_id: str, temperature: Optional[float] = None, top_p: Optional[float] = None) -> str:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
async def run_async():
result = []
async for chunk in self.inference(local_messages, thread_id, temperature, top_p):
pass
return ""
return loop.run_until_complete(run_async())
finally:
loop.close()